ebook img

E6SSM vs MSSM gluino phenomenology PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview E6SSM vs MSSM gluino phenomenology

E SSM vs MSSM gluino phenomenology 6 PatrikSvantessonab,AlexanderBelyaev,JonathanP.Hall,andStephenF.King UniversityofSouthampton Abstract. TheE SSMisapromisingmodelbasedonthegroupE ,assumedtobebrokenattheGUTscale, 6 6 2 leadingtothegroupSU(3) SU(2) U(1) U(1) attheTeVscale.ItgivesasolutiontotheMSSMµ-problem ′ 1 withoutintroducingmassles×saxions,×gauge×anomaliesorcosmologicaldomainwalls.Themodelcontainsthree 0 familiesofcomplete27sofE ,givingaricherphenomenologythantheMSSM.TheE SSMgenericallypredicts 6 6 2 gluinocascadedecaychainswhichareabout2stepslongerthantheMSSM’sduetothepresenceofseverallight n neutralinostates.Thisimplieslessmissing(andmorevisible)transversemomentumincolliderexperimentsand a kinematicaldistributionssuchasM aredifferent.ScansofparameterspaceandMCanalysissuggestthatcurrent eff J SUSYsearchstrategiesandexclusionlimitshavetobereconsidered. 4 2 1 Introduction – Inthe NMSSM a cubicterm S3 is addedto breakthe ] global U(1) to a descrete Z symmetry. The breaking h 3 p Supersymmetry(SUSY)isapopulartheoryofphysicsbe- ofthisZ3 couldhoweverleadtocosmologicaldomain - yondthe StandardModel(SM) because by extendingthe wallswhichwouldoverclosetheuniverse. p – IntheUSSMtheU(1)isgaugedandamassiveZ bo- e Lorentzsymmetryintheonlypossiblywayyoufind ′ sonappearinsteadbutthetheoryisnotanomalyfree. h [ – AsolutiontotheSMhierarchyproblem, – In the E6SSM the gauged U(1) is a remnant of the – Adarkmatter(DM)candidate, breaking of a larger gauge group at the GUT scale - 1 – Anindicationofagrandunificationtheory(GUT) E . Anomaliesare cancellednaturallysince the parti- 6 v – AsupportforStringTheory cleslieincomplete27sofE . 1 6 4 Thesimplest,moststudiedmodel,theconstrainedversion The E6 is broken down to the standard model with one 1 of the minimalsupersymmetricstandardmodel(MSSM), extrasurvivingU(1): 5 isalreadylargelyexcluded.Bothconstraintsfromexperi- 1. mentsandtheoreticalmotivations,e.g.theµ-problem,forces E6 SO(10) U(1)ψ → × 0 us to look beyond the MSSM. To test more complicated SU(5) U(1)χ U(1)ψ 2 → × × SUSYmodelsthantheconstrainedMSSMorMSSMone SU(3) SU(2) U(1) U(1) 1 needs to change current search strategies to make them → C× W × Y × N : v flexibleenoughtobesensitivetoextensionsoftheMSSM. EachSMgenerationiscontainedina27anditisthesin- i The study presented here investigates the differences of glet, S, and the two Higgs doublets, H and H , of the X u d gluinodecaysinMSSMandtheE inspiredsupersymmet- third 27 that are assumed to acquire VEVs. The particle 6 r a ricstandardmodel(E6SSM)[1]. content is much bigger in the E6SSM than in the MSSM or USSM because of these three 27s. Contained in these 2 E SSM 27sthere are, forexample,righthandedneutrinos,which 6 areneutralundertheextraU(1)andcanthusbeheavyand provideasee-sawmechanism.Furthermore,sixmore,nat- IntheMSSMthereisabilinearHiggscoupling,µ,which urallylight,neutralinostatesareintroducedinadditionto needstobeoftheorder1TeVtogiveanacceptableelec- thesixneutralinosoftheUSSM.Theseneutralinosprovide troweaksymmetrybreaking.NothingpreventsthisSUSY a new possible source of dark matter [2] and interesting preservingcouplingtobeoftheorderofthePlanckscale. Higgs[3]andgluinophenomenology[9]. To naturally get a µ of order 1 TeV one may extend the MSSM with a scalar field S, which couples to the Higgs fields through an interaction λSH H and then let S get 3 Parameterspaces u d a VEV, S s . This provides a µ-term with µ = λs. h i ≡ √2 √2 A consequenceofthisisthata globalU(1)Peccei-Quinn The recent XENON100 experiment [4] puts a bound on symmetry is introducedand broken. The breaking of this thedirectdetectioncrosssectionfortheLSPandWMAP U(1)impliestheexistenceofamasslessaxion,whichhas [5]putsaboundonitsrelicdensity.Theseconstraintsex- notbeenobserved.Therearevariousproposedsolutionsto cludes large portions of the parameter space for SUSY avoidtheappearanceoftheaxion: models.WehaveusedCalcHEP[6]andMicrOMEGAs[7] whenscanningtheparameterspacesofMSSMandE SSM 6 a PresenteroftheprojectatHCP-2011 topickoutbenchmarkswhichsatisfytheseconstraintson b e-mail:[email protected] the LSP as well as constraintsfrom colliderexperiments. EPJWebofConferences MSSM E6SSM MSSM E6SSM MSSME6SSM parameter min max min max tanβ 39.2 1.77 χ˜0 149.9 151.2 M1 tanβ 2 60 1.4 2 λ - -0.462 χ˜0 302.8 303.7 M2 |λ| - - 0.3 0.7 s - 5418 χ˜0M3 1580 1766 [G s - - 3.7 8 µ 1578 (-1770) [G χ˜0M4 1581 1771 eV µ -2 2 - - [T A -566.1 476.2 eV χ˜±M1 302.8 300.9 ] A -3 3 -3 3 eV MA 302.5 2074 ] χ˜±M2 1582 1771 MA 0.1 2 1 5 ] M1 150 150 χ˜0U1 - 1909 [G M2 285 300 χ˜0U2 - 2062 eV Table1:Tobeabletocomparethemodelsonacommonbasis M - 151 χ˜0 - 45.2 ] thegauginomasseswerefixedsothatagluinomassof800GeV, m1′ 800.2 800.0 χ˜0E1 - 53.2 g˜ E2 awinomassaround300GeVandabinomassaround150GeV P(l=1) 0.188 <10−5 χ˜0E3 - 141.6 were provided. A common squark and slepton mass scale was P(l=2) 0.812 0.1723 χ˜0E4 - 187.4 [G fixedtoMS =2TeV.FortheE6SSMalargenumberofYukawa P(l=3) 0 0.7986 χ˜0E5 - 227.8 eV couplingswerescannedoverwhichisomittedfromthistable. P(l=4) 0 0.02915 χ˜0E6 - 265.6 ] P(l=5) 0 0 χ˜±E1 - 122.7 χ˜ - 225.1 Ωh2 0.00816 0.0006937 ±E2 Tinhcelusdcianngnbinegncrhemgiaornkss,aarreepprleostetendteidnitnheTapbla.n1eaonfdthpeoLinStsP, σSI 0.38×10−8 16.35×10−8 [pb] t˜h1 111999.20 121064.23 [GeV] relic density andthe directdetectioncross section in Fig. Table2:Propertiesoftwochosenbenchmarks.Inthenotationfor 2.Thegluinodecaychainlength,l,relevanthereisdefined neutralinoandcharginostatesthesubscriptMdenotesaMSSM- asthenumberofstepsinthegluinodecaychainafterthe likestate,UaUSSM-likestateandEanE SSM-likestate.This firstsquarkandillustratedinFig.1. 6 distinctionisreasonablesincethesesectorsareveryweaklycou- pled.Thefollowingnumberordersthestatesbymass. g˜ MSSM: q q′ W±(h) (Primary Decaychainlength: 1 2 3 4 chain) Fig.1:Thedefinitionofthegluinodecaychainlength,l. g˜ q˜ χ˜±M1(χ˜0M2) χ˜0M1 MSSM: q q¯ (Secondary b102 chain) p -80 g˜ q˜ χ˜0M1 /1SI10 E6SSM: q q′ W±(h) Z σ ΓZ→χχ(cid:1)0.0015 GeV (Primary 1 mh(cid:2)114.4 GeV chain) 0.5(cid:1) (cid:1)1.5 1.5(cid:1) (cid:1)2.5 g˜ q˜ χ˜±M1(χ˜0M2) χ˜0M1 χ˜0E1 10-1 2.5(cid:1) (cid:1)3.5 3.5(cid:1) (cid:1)4.5 -2 4.5(cid:1) (cid:1)5.5 Fig.3:Feynmandiagramsfortheleadinggluinodecaychainsfor 10 10-5 10-4 10-3 10-2 10-1 10-5 10-4 10-3 10-2 10-1 1 eachbenchmark. Ω h2 Ω h2 χ χ Fig. 2: The scanned regions of the parameter spaces projected 5 Event analysis onto the plane spanned by the spin independent cross section, σ , and the relic density, Ωh2. The area right of the solid line SI is excluded by XENON100 [4] and WMAP [5]. The colouring representstheeffectivegluinodecaychainlengthl =P l P(l) for each point, where P(l) is the probability for aeffchainlle·ngth SincetheE6SSMintroducesnewneutralinos,naturallylig- ofl,asdefinedinFig.1.ThechosenbenchmarksofMSSMand hterthantheMSSMLSP,thegluinodecaychainswillbe E SSMareencircled. longerthantheMSSM’singeneral.Thisisconfirmedand 6 illustrated by the parameter scans in Fig. 2 and bench- marks in Tab. 2. An effect of longer decay chains is that 4 Benchmarks therewillbelessmissingmomentaincolliderexperiments. This affects the conventionalSUSY jets plus missing en- ergysearches,e.g.[10]and[11],wheretheE SSMisdis- 6 ThebenchmarksconsideredforMCeventanalysisaresum- favouredcomparedtotheMSSM.ThiscanbeseeninTab. marizedinTab.2,wheretheneutralinospectrumislisted, 3 and Figs. 6 and 7. Another important feature is the in- andencircledinFig.2.Thesebenchmarksdonotprovidea creaseinleptonaswellasjetmultiplicity,asshowninFig. sufficientamountofdarkmatterandanothersourceofdark 4. Effective variables for distinguishing models with dif- matterisassumed.Otherscenarios,whereE6SSMgivethe ferentgluinodecaychainlengths,liketheMSSMandthe rthigehstaammeoaunnatlyosfisda[9rk],mbuatttaerre[n8o],tphraevseenbteeednhceoren.sidered in Ew6hSeSreMth,earsem/paTllearn/pdT/paTn/dMlaeffr,gwerhMicehff oarfeEp6SloSttMedpiunshFitgh.es5e, distributionstolowervalues. HadronCollierPhysicsSymposium2011,Paris,France -1-1-15 fb5 fb5 fb 10 EM6SSSSMM -1-1-15 fb5 fb5 fb 10 EM6SSSSMM -1-1-1-1-1-1-1-1-1-1-1-1bbbbbbbbbbbb 10 Events @ Events @ Events @ 101-1 Events @ Events @ Events @ 101-1 V @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 f 1 ttttVVttttVWejVejW 10-2 10-2 GeGeGeGeGeGeGeGeGeGeGeGe WME6SWSSWSMMW 10-3 10-3 20 20 20 20 20 20 20 20 20 20 20 20 111111111111 -1 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 14 16 //////////// 10 NNNuuummmbbbeeerrr ooofff llleeeppptttooonnnsss NNNuuummmbbbeeerrr ooofff jjjeeetttsss ssssssssssss tttttttttttt nnnnnnnnnnnn Fig.4:Leptonmultiplicity,requiringp >10GeVand η <2.5, eeeeeeeeeeee T | | vvvvvvvvvvvv andjetmultiplicity,requiring p >20GeVand η <4.5. EEEEEEEEEEEE T | | 10-2 0 500 1000 1500 2000 2500 3000 -1-1-1-1vents/20 GeV @ 5 fbvents/20 GeV @ 5 fbvents/20 GeV @ 5 fbvents/20 GeV @ 5 fb 123456 EM6SSSSMM -1-1Events/0.02 @ 5 fbEvents/0.02 @ 5 fb 123456 EM6SSSSMM No01. FAigT.L7A:TS/phCeU>e1Tff3Se0cntolGiivmceeuVimtt ass00E..a01fffM09t.eSrS9FM10CMMMMMMMMMMMMr..aM08ceeeeeeeeeeee01.Sffffffffffffffffffffffffs((((((((((((tGGGGGGGGGGGGy00El..04eeeeeeeeeeeeeffE00c.VVVVVVVVVVVV6uS))))))))))))tSsFM10r..a06c00. EEEE T 2 pjet1 >130GeV 0.04 0.77 0.03 0.59 0 0 10020030040050060pppp0TTTT7mmmm00iiiissss8ssss00((((GGGG90eeee01VVVV00))))0 00.050.10.150.20.250.30pp.3TT5mm0.ii4ss0ss.//4MM50ee.ff5ff 3 pTTjet2 >40GeV 0.01 0.76 0.00 0.58 4 pjet3 >40GeV 0.11 0.68 0.04 0.56 T Fig.5: Missingtransverse momentum anditsratiowiththeef- 5 pjet4 >40GeV 0.20 0.54 0.11 0.50 fectivemass,Meff,beforeselectioncuts. 6 ∆φ(/pT,Tjet)min>0.4 0.37 0.34 0.58 0.21 7 /p /M >0.25 0.49 0.17 0.68 0.07 T eff 111111111111 10 CMSCUTS MSSM E6SSM ------------bbbbbbbbbbbb No. limit Eff. Frac. Eff. Frac. ffffffffffff tt 5 5 5 5 5 5 5 5 5 5 5 5 ttV 0 nocut 0.00 1.00 0.00 1.00 @ @ @ @ @ @ @ @ @ @ @ @ ttVttWejeW 1 H/T >200GeV 0.34 0.66 0.47 0.53 V V V V V V V V V V V V 1 VVj 2 pjet1 >50GeV 0.00 0.66 0.00 0.53 eeeeeeeeeeee WMSWSWMW 3 pTjet2 >50GeV 0.02 0.64 0.01 0.53 GGGGGGGGGGGG E6SSM T 4 pjet3 >50GeV 0.13 0.56 0.06 0.50 000000000000 T 121212121212121212121212 -1 5 ∆φ(/pT,jet1)>0.5 0.02 0.55 0.03 0.48 s/s/s/s/s/s/s/s/s/s/s/s/ 10 6 ∆φ(/pT,jet2)>0.5 0.08 0.50 0.12 0.42 ntntntntntntntntntntntnt 7 ∆φ(/pT,jet3)>0.3 0.07 0.47 0.10 0.38 eeeeeeeeeeee 8 ∆R(jet,lep) <0.3 0.24 0.36 0.36 0.25 vvvvvvvvvvvv min EEEEEEEEEEEE 9 H >800GeV 0.49 0.18 0.38 0.15 -2 T 10 0 500 1000 1500 2000 2500 3000 MMMMMMMMMMMM ((((((((((((GGGGGGGGGGGGeeeeeeeeeeeeVVVVVVVVVVVV)))))))))))) Table 3: Efficiency of ATLAS and CMS cuts and the fraction eeeeeeeeeeeeffffffffffffffffffffffff eventsleftaftersuccessiveapplicationsofcuts. Fig.6:Theeffectivemassafter7ATLASstylecuts References 1. S. F. King, S. Moretti and R. Nevzorov,Phys. Rev. D 73,(2006)035009,[arXiv:hep-ph/0510419] 6 Conclusions 2. J. P. Hall and S. F. King, JHEP 0908, (2009) 088, [arXiv:0905.2696] 3. J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa CarefulanalysishastobemadetodistinguishSUSYmod- and M. Sher, Phys. Rev. D 83, (2011) 075013, els. The models studied here are very different but con- [arXiv:1012.5114] ventional cuts and the use of effective mass makes them 4. XENON100 Collaboration, Phys. Rev. Lett. 107, blend into each other. The E6SSM has large visible and (2011)131302,[arXiv:1104.2549] small missing pT. The effect of these features cancels in 5. WMAP Collaboration, Astrophys. J. Suppl. 192, M ,whileitisenhancedin /p /P pvisible.Hardcutson (2011)18,[arXiv:1001.4538v3] eff T visible| T | /p and /p /M orequivalents,like thoseusedbyATLAS 6. A.Pukhov,CalcHEP,[arXiv:hep-ph/0412191] T T eff andCMSinTab.3,aresevereformodelswithlongdecay 7. G.Belanger,F.Boudjema,A.Pukhov,andA.Semenov, chains. Large jet and lepton multiplicity searches should micrOMEGAs,[arXiv:1005.4133] bethewayforwardformodelsliketheE6SSM. 8. J. P. Hall and S. F. King, JHEP 1106, (2011) 006, [arXiv:1104.2259v3] Acknowledgements 9. A.Belyaev,J.P.Hall,S.F.KingandP.Svantesson,(In We would like to thank Alexander Pukhov for necessary preparation) improvementsof CalcHEP and MicroMEGAs.PS thanks 10. ATLAS Collaboration, CERN-PH-EP-2011-145, theNExTinstituteandSEPnetforsupport.ABthanksthe [arXiv:1109.6572] NExTInstituteandRoyalSocietyforpartialfinancialsup- 11. CMSCollaboration,[CMS-PAS-SUS-11-004] port.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.