E SSM vs MSSM gluino phenomenology 6 PatrikSvantessonab,AlexanderBelyaev,JonathanP.Hall,andStephenF.King UniversityofSouthampton Abstract. TheE SSMisapromisingmodelbasedonthegroupE ,assumedtobebrokenattheGUTscale, 6 6 2 leadingtothegroupSU(3) SU(2) U(1) U(1) attheTeVscale.ItgivesasolutiontotheMSSMµ-problem ′ 1 withoutintroducingmassles×saxions,×gauge×anomaliesorcosmologicaldomainwalls.Themodelcontainsthree 0 familiesofcomplete27sofE ,givingaricherphenomenologythantheMSSM.TheE SSMgenericallypredicts 6 6 2 gluinocascadedecaychainswhichareabout2stepslongerthantheMSSM’sduetothepresenceofseverallight n neutralinostates.Thisimplieslessmissing(andmorevisible)transversemomentumincolliderexperimentsand a kinematicaldistributionssuchasM aredifferent.ScansofparameterspaceandMCanalysissuggestthatcurrent eff J SUSYsearchstrategiesandexclusionlimitshavetobereconsidered. 4 2 1 Introduction – Inthe NMSSM a cubicterm S3 is addedto breakthe ] global U(1) to a descrete Z symmetry. The breaking h 3 p Supersymmetry(SUSY)isapopulartheoryofphysicsbe- ofthisZ3 couldhoweverleadtocosmologicaldomain - yondthe StandardModel(SM) because by extendingthe wallswhichwouldoverclosetheuniverse. p – IntheUSSMtheU(1)isgaugedandamassiveZ bo- e Lorentzsymmetryintheonlypossiblywayyoufind ′ sonappearinsteadbutthetheoryisnotanomalyfree. h [ – AsolutiontotheSMhierarchyproblem, – In the E6SSM the gauged U(1) is a remnant of the – Adarkmatter(DM)candidate, breaking of a larger gauge group at the GUT scale - 1 – Anindicationofagrandunificationtheory(GUT) E . Anomaliesare cancellednaturallysince the parti- 6 v – AsupportforStringTheory cleslieincomplete27sofE . 1 6 4 Thesimplest,moststudiedmodel,theconstrainedversion The E6 is broken down to the standard model with one 1 of the minimalsupersymmetricstandardmodel(MSSM), extrasurvivingU(1): 5 isalreadylargelyexcluded.Bothconstraintsfromexperi- 1. mentsandtheoreticalmotivations,e.g.theµ-problem,forces E6 SO(10) U(1)ψ → × 0 us to look beyond the MSSM. To test more complicated SU(5) U(1)χ U(1)ψ 2 → × × SUSYmodelsthantheconstrainedMSSMorMSSMone SU(3) SU(2) U(1) U(1) 1 needs to change current search strategies to make them → C× W × Y × N : v flexibleenoughtobesensitivetoextensionsoftheMSSM. EachSMgenerationiscontainedina27anditisthesin- i The study presented here investigates the differences of glet, S, and the two Higgs doublets, H and H , of the X u d gluinodecaysinMSSMandtheE inspiredsupersymmet- third 27 that are assumed to acquire VEVs. The particle 6 r a ricstandardmodel(E6SSM)[1]. content is much bigger in the E6SSM than in the MSSM or USSM because of these three 27s. Contained in these 2 E SSM 27sthere are, forexample,righthandedneutrinos,which 6 areneutralundertheextraU(1)andcanthusbeheavyand provideasee-sawmechanism.Furthermore,sixmore,nat- IntheMSSMthereisabilinearHiggscoupling,µ,which urallylight,neutralinostatesareintroducedinadditionto needstobeoftheorder1TeVtogiveanacceptableelec- thesixneutralinosoftheUSSM.Theseneutralinosprovide troweaksymmetrybreaking.NothingpreventsthisSUSY a new possible source of dark matter [2] and interesting preservingcouplingtobeoftheorderofthePlanckscale. Higgs[3]andgluinophenomenology[9]. To naturally get a µ of order 1 TeV one may extend the MSSM with a scalar field S, which couples to the Higgs fields through an interaction λSH H and then let S get 3 Parameterspaces u d a VEV, S s . This provides a µ-term with µ = λs. h i ≡ √2 √2 A consequenceofthisisthata globalU(1)Peccei-Quinn The recent XENON100 experiment [4] puts a bound on symmetry is introducedand broken. The breaking of this thedirectdetectioncrosssectionfortheLSPandWMAP U(1)impliestheexistenceofamasslessaxion,whichhas [5]putsaboundonitsrelicdensity.Theseconstraintsex- notbeenobserved.Therearevariousproposedsolutionsto cludes large portions of the parameter space for SUSY avoidtheappearanceoftheaxion: models.WehaveusedCalcHEP[6]andMicrOMEGAs[7] whenscanningtheparameterspacesofMSSMandE SSM 6 a PresenteroftheprojectatHCP-2011 topickoutbenchmarkswhichsatisfytheseconstraintson b e-mail:[email protected] the LSP as well as constraintsfrom colliderexperiments. EPJWebofConferences MSSM E6SSM MSSM E6SSM MSSME6SSM parameter min max min max tanβ 39.2 1.77 χ˜0 149.9 151.2 M1 tanβ 2 60 1.4 2 λ - -0.462 χ˜0 302.8 303.7 M2 |λ| - - 0.3 0.7 s - 5418 χ˜0M3 1580 1766 [G s - - 3.7 8 µ 1578 (-1770) [G χ˜0M4 1581 1771 eV µ -2 2 - - [T A -566.1 476.2 eV χ˜±M1 302.8 300.9 ] A -3 3 -3 3 eV MA 302.5 2074 ] χ˜±M2 1582 1771 MA 0.1 2 1 5 ] M1 150 150 χ˜0U1 - 1909 [G M2 285 300 χ˜0U2 - 2062 eV Table1:Tobeabletocomparethemodelsonacommonbasis M - 151 χ˜0 - 45.2 ] thegauginomasseswerefixedsothatagluinomassof800GeV, m1′ 800.2 800.0 χ˜0E1 - 53.2 g˜ E2 awinomassaround300GeVandabinomassaround150GeV P(l=1) 0.188 <10−5 χ˜0E3 - 141.6 were provided. A common squark and slepton mass scale was P(l=2) 0.812 0.1723 χ˜0E4 - 187.4 [G fixedtoMS =2TeV.FortheE6SSMalargenumberofYukawa P(l=3) 0 0.7986 χ˜0E5 - 227.8 eV couplingswerescannedoverwhichisomittedfromthistable. P(l=4) 0 0.02915 χ˜0E6 - 265.6 ] P(l=5) 0 0 χ˜±E1 - 122.7 χ˜ - 225.1 Ωh2 0.00816 0.0006937 ±E2 Tinhcelusdcianngnbinegncrhemgiaornkss,aarreepprleostetendteidnitnheTapbla.n1eaonfdthpeoLinStsP, σSI 0.38×10−8 16.35×10−8 [pb] t˜h1 111999.20 121064.23 [GeV] relic density andthe directdetectioncross section in Fig. Table2:Propertiesoftwochosenbenchmarks.Inthenotationfor 2.Thegluinodecaychainlength,l,relevanthereisdefined neutralinoandcharginostatesthesubscriptMdenotesaMSSM- asthenumberofstepsinthegluinodecaychainafterthe likestate,UaUSSM-likestateandEanE SSM-likestate.This firstsquarkandillustratedinFig.1. 6 distinctionisreasonablesincethesesectorsareveryweaklycou- pled.Thefollowingnumberordersthestatesbymass. g˜ MSSM: q q′ W±(h) (Primary Decaychainlength: 1 2 3 4 chain) Fig.1:Thedefinitionofthegluinodecaychainlength,l. g˜ q˜ χ˜±M1(χ˜0M2) χ˜0M1 MSSM: q q¯ (Secondary b102 chain) p -80 g˜ q˜ χ˜0M1 /1SI10 E6SSM: q q′ W±(h) Z σ ΓZ→χχ(cid:1)0.0015 GeV (Primary 1 mh(cid:2)114.4 GeV chain) 0.5(cid:1) (cid:1)1.5 1.5(cid:1) (cid:1)2.5 g˜ q˜ χ˜±M1(χ˜0M2) χ˜0M1 χ˜0E1 10-1 2.5(cid:1) (cid:1)3.5 3.5(cid:1) (cid:1)4.5 -2 4.5(cid:1) (cid:1)5.5 Fig.3:Feynmandiagramsfortheleadinggluinodecaychainsfor 10 10-5 10-4 10-3 10-2 10-1 10-5 10-4 10-3 10-2 10-1 1 eachbenchmark. Ω h2 Ω h2 χ χ Fig. 2: The scanned regions of the parameter spaces projected 5 Event analysis onto the plane spanned by the spin independent cross section, σ , and the relic density, Ωh2. The area right of the solid line SI is excluded by XENON100 [4] and WMAP [5]. The colouring representstheeffectivegluinodecaychainlengthl =P l P(l) for each point, where P(l) is the probability for aeffchainlle·ngth SincetheE6SSMintroducesnewneutralinos,naturallylig- ofl,asdefinedinFig.1.ThechosenbenchmarksofMSSMand hterthantheMSSMLSP,thegluinodecaychainswillbe E SSMareencircled. longerthantheMSSM’singeneral.Thisisconfirmedand 6 illustrated by the parameter scans in Fig. 2 and bench- marks in Tab. 2. An effect of longer decay chains is that 4 Benchmarks therewillbelessmissingmomentaincolliderexperiments. This affects the conventionalSUSY jets plus missing en- ergysearches,e.g.[10]and[11],wheretheE SSMisdis- 6 ThebenchmarksconsideredforMCeventanalysisaresum- favouredcomparedtotheMSSM.ThiscanbeseeninTab. marizedinTab.2,wheretheneutralinospectrumislisted, 3 and Figs. 6 and 7. Another important feature is the in- andencircledinFig.2.Thesebenchmarksdonotprovidea creaseinleptonaswellasjetmultiplicity,asshowninFig. sufficientamountofdarkmatterandanothersourceofdark 4. Effective variables for distinguishing models with dif- matterisassumed.Otherscenarios,whereE6SSMgivethe ferentgluinodecaychainlengths,liketheMSSMandthe rthigehstaammeoaunnatlyosfisda[9rk],mbuatttaerre[n8o],tphraevseenbteeednhceoren.sidered in Ew6hSeSreMth,earsem/paTllearn/pdT/paTn/dMlaeffr,gwerhMicehff oarfeEp6SloSttMedpiunshFitgh.es5e, distributionstolowervalues. HadronCollierPhysicsSymposium2011,Paris,France -1-1-15 fb5 fb5 fb 10 EM6SSSSMM -1-1-15 fb5 fb5 fb 10 EM6SSSSMM -1-1-1-1-1-1-1-1-1-1-1-1bbbbbbbbbbbb 10 Events @ Events @ Events @ 101-1 Events @ Events @ Events @ 101-1 V @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 fV @ 5 f 1 ttttVVttttVWejVejW 10-2 10-2 GeGeGeGeGeGeGeGeGeGeGeGe WME6SWSSWSMMW 10-3 10-3 20 20 20 20 20 20 20 20 20 20 20 20 111111111111 -1 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 14 16 //////////// 10 NNNuuummmbbbeeerrr ooofff llleeeppptttooonnnsss NNNuuummmbbbeeerrr ooofff jjjeeetttsss ssssssssssss tttttttttttt nnnnnnnnnnnn Fig.4:Leptonmultiplicity,requiringp >10GeVand η <2.5, eeeeeeeeeeee T | | vvvvvvvvvvvv andjetmultiplicity,requiring p >20GeVand η <4.5. EEEEEEEEEEEE T | | 10-2 0 500 1000 1500 2000 2500 3000 -1-1-1-1vents/20 GeV @ 5 fbvents/20 GeV @ 5 fbvents/20 GeV @ 5 fbvents/20 GeV @ 5 fb 123456 EM6SSSSMM -1-1Events/0.02 @ 5 fbEvents/0.02 @ 5 fb 123456 EM6SSSSMM No01. FAigT.L7A:TS/phCeU>e1Tff3Se0cntolGiivmceeuVimtt ass00E..a01fffM09t.eSrS9FM10CMMMMMMMMMMMMr..aM08ceeeeeeeeeeee01.Sffffffffffffffffffffffffs((((((((((((tGGGGGGGGGGGGy00El..04eeeeeeeeeeeeeffE00c.VVVVVVVVVVVV6uS))))))))))))tSsFM10r..a06c00. EEEE T 2 pjet1 >130GeV 0.04 0.77 0.03 0.59 0 0 10020030040050060pppp0TTTT7mmmm00iiiissss8ssss00((((GGGG90eeee01VVVV00))))0 00.050.10.150.20.250.30pp.3TT5mm0.ii4ss0ss.//4MM50ee.ff5ff 3 pTTjet2 >40GeV 0.01 0.76 0.00 0.58 4 pjet3 >40GeV 0.11 0.68 0.04 0.56 T Fig.5: Missingtransverse momentum anditsratiowiththeef- 5 pjet4 >40GeV 0.20 0.54 0.11 0.50 fectivemass,Meff,beforeselectioncuts. 6 ∆φ(/pT,Tjet)min>0.4 0.37 0.34 0.58 0.21 7 /p /M >0.25 0.49 0.17 0.68 0.07 T eff 111111111111 10 CMSCUTS MSSM E6SSM ------------bbbbbbbbbbbb No. limit Eff. Frac. Eff. Frac. ffffffffffff tt 5 5 5 5 5 5 5 5 5 5 5 5 ttV 0 nocut 0.00 1.00 0.00 1.00 @ @ @ @ @ @ @ @ @ @ @ @ ttVttWejeW 1 H/T >200GeV 0.34 0.66 0.47 0.53 V V V V V V V V V V V V 1 VVj 2 pjet1 >50GeV 0.00 0.66 0.00 0.53 eeeeeeeeeeee WMSWSWMW 3 pTjet2 >50GeV 0.02 0.64 0.01 0.53 GGGGGGGGGGGG E6SSM T 4 pjet3 >50GeV 0.13 0.56 0.06 0.50 000000000000 T 121212121212121212121212 -1 5 ∆φ(/pT,jet1)>0.5 0.02 0.55 0.03 0.48 s/s/s/s/s/s/s/s/s/s/s/s/ 10 6 ∆φ(/pT,jet2)>0.5 0.08 0.50 0.12 0.42 ntntntntntntntntntntntnt 7 ∆φ(/pT,jet3)>0.3 0.07 0.47 0.10 0.38 eeeeeeeeeeee 8 ∆R(jet,lep) <0.3 0.24 0.36 0.36 0.25 vvvvvvvvvvvv min EEEEEEEEEEEE 9 H >800GeV 0.49 0.18 0.38 0.15 -2 T 10 0 500 1000 1500 2000 2500 3000 MMMMMMMMMMMM ((((((((((((GGGGGGGGGGGGeeeeeeeeeeeeVVVVVVVVVVVV)))))))))))) Table 3: Efficiency of ATLAS and CMS cuts and the fraction eeeeeeeeeeeeffffffffffffffffffffffff eventsleftaftersuccessiveapplicationsofcuts. Fig.6:Theeffectivemassafter7ATLASstylecuts References 1. S. F. King, S. Moretti and R. Nevzorov,Phys. Rev. D 73,(2006)035009,[arXiv:hep-ph/0510419] 6 Conclusions 2. J. P. Hall and S. F. King, JHEP 0908, (2009) 088, [arXiv:0905.2696] 3. J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa CarefulanalysishastobemadetodistinguishSUSYmod- and M. Sher, Phys. Rev. D 83, (2011) 075013, els. The models studied here are very different but con- [arXiv:1012.5114] ventional cuts and the use of effective mass makes them 4. XENON100 Collaboration, Phys. Rev. Lett. 107, blend into each other. The E6SSM has large visible and (2011)131302,[arXiv:1104.2549] small missing pT. The effect of these features cancels in 5. WMAP Collaboration, Astrophys. J. Suppl. 192, M ,whileitisenhancedin /p /P pvisible.Hardcutson (2011)18,[arXiv:1001.4538v3] eff T visible| T | /p and /p /M orequivalents,like thoseusedbyATLAS 6. A.Pukhov,CalcHEP,[arXiv:hep-ph/0412191] T T eff andCMSinTab.3,aresevereformodelswithlongdecay 7. G.Belanger,F.Boudjema,A.Pukhov,andA.Semenov, chains. Large jet and lepton multiplicity searches should micrOMEGAs,[arXiv:1005.4133] bethewayforwardformodelsliketheE6SSM. 8. J. P. Hall and S. F. King, JHEP 1106, (2011) 006, [arXiv:1104.2259v3] Acknowledgements 9. A.Belyaev,J.P.Hall,S.F.KingandP.Svantesson,(In We would like to thank Alexander Pukhov for necessary preparation) improvementsof CalcHEP and MicroMEGAs.PS thanks 10. ATLAS Collaboration, CERN-PH-EP-2011-145, theNExTinstituteandSEPnetforsupport.ABthanksthe [arXiv:1109.6572] NExTInstituteandRoyalSocietyforpartialfinancialsup- 11. CMSCollaboration,[CMS-PAS-SUS-11-004] port.