ebook img

Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. PDF

0.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application.

Furqanetal.BiomarkerResearch2013,1:5 http://www.biomarkerres.org/content/1/1/5 REVIEW Open Access Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application Muhammad Furqan1, Nikhil Mukhi1, Byung Lee2 and Delong Liu1* Abstract JAK-STAT (Janus associated kinase-signal transducer and activator of transcription) pathway plays a critical rolein transduction of extracellular signals from cytokines and growth factors involved in hematopoiesis, immune regulation, fertility,lactation, growthand embryogenesis.JAK family contains four cytoplasmic tyrosine kinases, JAK1-3 and Tyk2. SevenSTAT proteins have been identified inhuman cells, STAT1-6,including STAT5a and STAT5b. Negative regulators of JAK–STAT pathways includetyrosine phosphatases (SHP1 and 2, CD45), protein inhibitors of activated STATs (PIAS), suppressors of cytokine signaling (SOCS) proteins,and cytokine-inducible SH2-containing protein (CIS). Dysregulation of JAK-STAT pathway have been found to be key events in a variety of hematological malignancies. JAK inhibitors are among thefirst successful agents reaching clinical application. Ruxolitinib (Jakafi), a non-selective inhibitor of JAK1 & 2, has been approvedby FDA for patients with intermediate to high risk primary or secondary myelofibrosis.This review will also summarize early data onselective JAK inhibitors, including SAR302503 (TG101348), lestaurtinib (CEP701), CYT387, SB1518 (pacritinib), LY2784544,XL019, BMS-911543, NS-018, and AZD1480. Introduction activity. Subsequently activated JAKs phosphorylate cy- JAK-STAT (Janus associated kinase-signal transducer toplasmic domain of the receptor [9]. Activated JAK- and activator of transcription) pathway is one of the cri- cytokine receptor complex recruits and phosphorylates tical intracellular signaling cascades in transduction of specific cytoplasmic transcription factors called STAT extracellularsignalstothenucleustocontrolgeneexpres- proteins [10]. Seven STAT proteins have been identified sion. A variety of cytokines and growth factors complete inhuman cells, STAT1-6,including STAT5aand STAT5b their physiological tasks through JAK-STAT pathway, in- [7]. Phosphorylation of specific STAT proteins results in cluding hematopoiesis, immune-regulation, fertility, lacta- their dimerization and subsequent translocation into the tion,growthandembryogenesis[1-6]. nucleus to interact with various regulatory elements for JAK family contains four cytoplasmic tyrosine kinases, geneexpression(Figure1)[11,12]. JAK1-3 and Tyk2 [7]. These kinases bind to the juxta- membraneregionofcytokinereceptors[8].Eachmolecule Regulation of JAK-STAT pathway contains seven JAK homology domains (JH1-7). The car- Three major mechanisms have been implicated to ne- boxyl JH1 domain contains the catalytic activity, whereas gatively regulate the JAK-STAT pathway [11]. Figure 1 N-terminal JH7 domain is responsible for receptor bind- depicts the positive and negative regulation of the JAK- ing.JH2domainhassignificanthomologytoJH1butlacks STATpathway. enzymatic activity and therefore is a pseudo-kinase do- main. Binding of a ligand to its receptor results in recep- tor dimerization, leading to activation of the JAK kinase Tyrosinephosphatases Src homology-2 (SH2) containing tyrosine phosphatase *Correspondence:[email protected] andCD45tyrosinephosphataseplayamajorroleinmodu- 1DepartmentofMedicine,NewYorkMedicalCollegeandWestchester lating JAK-STAT pathway. SH2 containing tyrosine phos- MedicalCenter,Valhalla,NY10595,USA Fulllistofauthorinformationisavailableattheendofthearticle phatases include SHP1 and SHP2 (shatterproof 1 & 2). ©2013Furqanetal.;licenseeBioMedCentralLtd.ThisisanOpenAccessarticledistributedunderthetermsoftheCreative CommonsAttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycited. Furqanetal.BiomarkerResearch2013,1:5 Page2of10 http://www.biomarkerres.org/content/1/1/5 Figure1SignalingcascadeofJAK-STATpathway.Bindingoftheligandtocytokinereceptorinducesreceptordimerizationandactivationof receptorassociatedJAKkinase,whichinturnphosphorylatesSTATproteins.Afterformingahomodimer,STATproteinstranslocatetothenucleus tocontrolgeneexpression.NegativeregulationoftheJAK-STATpathwayisprovidedbyphospho-tyrosinephosphatases(PTP),memberforSOCS familyproteinsandPIASproteins(showninred). Their SH2 domains allow attachment to the phospho- SH2-containing protein (CIS). SOCS proteins are cyto- tyrosine residues present on activated receptors, JAKs or kine-induced negative feedback-loop regulators of JAK- STAT proteins, leading to dephosphorylation of the sub- STATsignaling. Each member protein in this family has strates. SHP1 is mainly expressed in hematopoietic cells, a central SH2 domain, variable amino-terminal domain epithelial and smooth muscle cells whereas SHP2 is ubi- and a carboxy-terminal of 40 amino acids module known quitous. The expression of SHP1 gene was found to be as SOCS box. The central SH2 domain directs the target silencedbypromoterhypermethylationinvarioushemato- binding of each CIS/SOCS protein [18]. Three mecha- logical malignancies [10]. CD45 transmembrane tyrosine nisms have been proposed by which a SOCS protein phosphatase is the second type of tyrosine phosphatase providesnegativemodulation.First,SOCSbindsthephos- that negatively regulates JAK-STAT pathway. CD45, the pho-tyrosine residues on the receptors and physically leukocyte common antigen, is expressed in hematopoietic blocks the STATs from binding to its receptors. Second, cells. It has two phosphatase domains in its intracellular SOCS proteins can bind directly to its specific JAKs or to region,thoughonlyoneisactive.MicedeficientforCD45 the receptors and inhibit the corresponding JAK kinase showhyper-activationofJAK1andJAK3[10]. activity. Third, SOCS associate with the elongin BC com- plex and cullin 2, accelerating the ubiquination of JAKs ProteininhibitorsofactivatedSTATs(PIAS) andpresumablythereceptors[19]. PIASfamilyconsists of PIAS1, PIAS3, PIASx and PIASy. EndosomaldegradationofJAK/receptorcomplexthrough Biochemicalassays haveshown thatPIAS3and PIASxin- receptor mediated endocytosis appears to be another me- teract with STAT3 and STAT4 respectively, while PIAS1 chanisminvolvedintheregulationofthepathway.STAT5ß and PIASy with STAT1 [13,14]. PIAS1 and PIAS3 exert dimerizes with the full-length, wild-type protein, STAT5α, negative regulation by blocking the DNA binding of upon activation. This leads to negative regulation of the STAT1 and STAT3, respectively [15,16]. On the other JAK-STATsignaling cascade in addition to the major me- hand, PIASx and PIASy repress the transcriptional ac- chanismsdescribedabove[20]. tivity of STAT1 and STAT4 by recruiting co-repressor molecules such as histone deacetylases [17]. JAK-STAT pathway and hematological Suppressorsofcytokinesignaling(SOCS)proteins malignancies The suppressor of cytokine signaling (SOCS) family is Dysregulation in JAK-STAT pathway have been described composed of SOCS-1 to SOCS-7 and cytokine-inducible in a variety of hematological malignancies, especially in Furqanetal.BiomarkerResearch2013,1:5 Page3of10 http://www.biomarkerres.org/content/1/1/5 myeloiddisorders.Theseeventsmayplaykeyrolesinini- Lymphomaandlymphoidleukemia tiationandprogressionofrespectivediseases. T-celllymphomaandleukemia JAK1 gene plays a unique role in lymphohematopoiesis. Flex et al., showed several acquired JAK1 missense Myeloproliferative Neoplasms (MPN) mutations in adult lymphoblastic leukemia, especially in PhnegativeMPNs T-cell precursor type where it accounted for 18% of the Short interfering RNA and JAK2 inhibitor (AG490) have cases. It was associated with advanced age and poor beenusedtostudytheactivityofJAK2.JAK2wasshown prognosis[34-36]. to be central to the erythropoietin-independent eryth- Translocation between short-arm of chromosome 9 roid proliferation in polycythemia vera (PV). A common (harboring JAK2 gene) and 12, t(9;12)(p24;p13) results mutation (V617F) in the JH2 pseudo-kinase domain of in the formation of a fusion protein, TEL-JAK2. This JAK2 wasshownin80% ofthe patients [21].Thisresults results in constitutive JAK2 activation. It was found in a in constitutive activation of STAT5 and a malignant case of childhood T-cell acute lymphoblastic leukemia phenotype [22]. Other investigators confirmed the fact [37]andinacasewithpre-B-cellALL[33]. and showedthat30-50% ofpatients withessential throm- bocythemia (ET) and primary myelofibrosis (PMF) also AdultT-cellLeukemia(HTLV-1positive) harborthesamemutation[23-25]. HumanT-celllymphotropic virus-1encodedTaxprotein AllelicburdenofJAK2V617Fwasfound toplayanim- suppresses apoptosis through constitutive activation of portant role in determining a distinct clinico-pathologic the NFκB pathway. This is sufficient for immortalization phenotype from the same mutation [22,26]. It is sug- of CD4+ lymphocytes. HTLV-1 infected T-cells over-ex- gested by the fact that homozygous JAK2V617F mu- press IL-2, IL-15 as well as IL-2 and IL-15 receptors by tation is 30% in PV compared to 2-4% in ET [22,26]. Tax-induced NFκB activation. These in turn activate Transgenic mouse models and clinical cases support JAK3-STAT5 pathway leading to lymphocyte prolifera- the gene-dosage model for MPN pathogenesis. It was tion andadultT-celllymphoma/leukemia[38]. observed that high allele burden leads to PV pheno- type, whereas reduction in allelic burden leads to ET T-cellLargeGranularLymphocyticLeukemia,Anaplastic [22,27-29]. LargecellLymphoma,AngioimmunoblasticLymphomaand In patients with PV who are negative for JAK2V617F, SezarySyndrome Scott et al., used a candidate gene approach to search Dysregulation of STAT proteins also contributes to the for alleles that can activate JAK signaling. Their work pathogenesis of various types of lymphoid malignancies. demonstratedatleast8distinctmutations involvingresi- Schade et al., reported increase activity of STAT3 in T- dues538to543inexon12regionofJAK2[29]. cell large granular lymphocytic leukemia [39]. Constitu- Irrespective of JAK2V617F status, patients with PV tive activation of STAT3 & 5 was also found to be an exhibits high STAT3 and 5 activities, patients with ET important event in the pathogenesis of anaplastic large have high STAT3 activity, whereas patients with PMF cell lymphoma, T-cell angioimmunoblastic lymphoma showed low activities of both STAT3 and 5. It is evident andSezarysyndrome[40,41]. that preferential activation of JAK2–STAT5 or JAK2– STAT3 signaling determines PV, ET and PMF pheno- B-Cell lymphoma and leukemia type. However patients with JAK2V617F-negative ET or Acutelymphoblasticleukemia PMF may harbor mutations in other genes in JAK– Kearney et al., performed sequencing of exon 14 of STATpathway[30]. JAK2 gene in patients with Down syndrome associated ALL.Anacquired somaticpointmutationinvovling resi- due R683 was found in 28% of cases [42]. A different AtypicalMPNs mutation in JAK2 gene in a patient with Down syn- Rare JAK2 gene rearrangement can result in atypical drome associated precursor B-cell lymphoblastic form of chronic myeloid leukemia (aCML). These gene leukemia was reported by Malinge et al., This mutation rearrangements include PCM1-JAK2, TEL-JAK2 and was in-frame deletion of five-amino acid residues from BCR-JAK2 [31-33].Rarely,JAK2V617F mutationcanpre- position 682 to 686, named as IREED mutation, in the sent phenotypically as chronic myelomonocytic leuke- pseudokinase domain of JAK2. This IREED mutant mia /aCML. remains constitutively active and induces cytokine in- PCM1-JAK2 gene rearrangement was discovered in dependence in Ba/F3 cells [43]. the translocation, t(8;9)(p22;p24). It is reported in few Another JAK2 mutation involves fusion with SSBP2 in cases with atypical CML, chronic eosinophilic leukemia, t(5;9)(q14.1;p24.1) translocation. It was detected in a pa- AML(M2, M6), preB-ALL andT-celllymphoma. tient withpre B-cell ALL[44]. Furqanetal.BiomarkerResearch2013,1:5 Page4of10 http://www.biomarkerres.org/content/1/1/5 Chroniclymphocyticleukemia sideroblast associated with marked thrombocytosis Constitutive activation of STAT1 & 3 was noticed in (RARS-t). These patients have features of both MDS and transformed B-cells in patients with chronic lymphocytic MPN.Itwasrecentlyshownthat6outof9(67%)patients leukemia (CLL). Activated STAT1 & 3 proteins in ma- withRARS-thaveJAK2V617Fmutation[54]. lignant B-cells were phosporylated at serine instead of tyrosineresidue.Itremaineduncertainwhetheractivated Multiple myeloma STAT involved directly in the pathophysiology of this Constitutive expression of STAT3 has been seen fre- diseaseorrepresentedapureepi-phenomenon [45]. quentlyinpatientswithmultiplemyelomaandlymphoma [55]. However, overexpression of anti-apoptotic proteins PrimarymediastinalB-celllymphoma ofBcl-2,Bcl-XLandMcl-1maynotrelyonSTAT3activa- A bi-allelic mutation in SOCS-1 has been reported in tion.Theroleofthispathwayinpathogenesisofmyeloma primary mediastinal B-cell lymphoma. This results in remainstobedetermined[56]. delayed turnover of phosphorylated JAK2 and increased activity of STAT5, which may explain the uncontrolled Novel inhibitors of JAK-STAT pathway growth ofmalignantcells [46]. The specific and profound involvement of JAK-STAT pathway in various hematological malignancies, espe- Hodgkinlymphoma cially Bcr-Abl negative MPNs, makes them ideal targets Gene rearrangement by translocation involving JAK2, for pharmacological intervention [57]. Several strategies t(4;9)(q21;p24), has been reported in 2 cases of classic have been proposed to inhibit or modulate this pathway Hodgkin lymphoma by a group from Belgium [47]. This [58,59]. JAK inhibitors are among the first successful gene re-arrangement creates a novel fusion product, agentsreachingclinicalapplication[60,61]. SEC31A-JAK2. This oncogenic SEC31A-JAK2 has consti- tutivelyactivetyrosinekinaseactivity.MutationsofSOCS- JAK inhibitors 1havealsobeenidentifiedinHodgkinlymphoma[48]. There are at least 10 different JAK inhibitors undergoing various phases of clinical trials (Table 1). Ruxolitinib Myeloid leukemia (Jakafi manufactured by Incyte, Inc) has been approved Acutemyeloidleukemia by FDA for patients with intermediate- to high- risk pri- Increased activity of STAT3 has been reported in 20-50% maryorsecondarymyelofibrosis. of AML patients while STAT5 and STAT1 activation is uncommon [49,50]. The pathologic value of activated STAT3inAMLisunclear.Itwasalsofoundinacutepro- Ruxolitinib myelocytic leukemia (APL). An interstitial deletion within Ruxolitinib (INCB018424) is a non-selective JAK1 & chromosome 17 has been described to result in STAT5b- 2 inhibitor. Multiple phase I/II studies in various he- RARα fusion protein. This was implied to serve as a key matological malignancies are underway. Among these, pathogenic event in a patient with APL [51]. Transfor- results are most mature for PMF and post –ET /PV mation from severe congenital neutropenia due to trun- myelofibrosis. catedG-CSFreceptortoAML alsoinvolvesdysregulation of STAT proteins. Truncated G-CSF receptor lacks a PhaseI/IIstudies crucial binding site for SOCS-3, thus relieving inhibition A total of 153 patients with myelofibrosis were recrui- of STAT5, but not of STAT3. This favors myeloid pro- ted in a phase I/II study. Dose limiting toxicity was liferation over differentiation. These truncated receptors thrombocytopenia with maximum tolerated dose of are also resistant to down modulation through ubiqui- 25 mg twice daily. Effect on JAK2V617F allele burden nation [52]. or bone marrow fibrosis was insignificant [62]. After a Rare point mutations, one in JAK2 (T875N) and three longer follow up, it was described that abrupt discon- in JAK3 (A572V, V722I, P132T), have been described in tinuation can lead to serious adverse events like acute patients withacutemegakaryocyticluekemia[52].PCM1- relapse of constitutional symptoms, rapid and painful JAK2 gene rearrangement mentioned above was found in enlargement of spleen and shock. By the time of last re- M2andM6AML[36]. port on the follow up of these patients 35% of patient diedand10%transformedtoleukemia[63,64]. Myelodysplastic syndrome (MDS) Eghtedar et al., reported a phase I/II study of ruxoli- Perturbation inJAK-STATpathway israreinMDS.Only tinib in patients with relapsed /refractory AML. This 4.2%patientswithMDSwerefoundtoharborJAK2V617F study has shown 7% complete remission rate. It was no- mutation in a large screening series [53]. Of interest is a ticed that patients who achieved complete remission disease entity called refractory anemia with ringed were those withpost-MPNAML[65]. Furqanetal.BiomarkerResearch2013,1:5 Page5of10 http://www.biomarkerres.org/content/1/1/5 Table1JAKinhibitorsinclinicaltrials Drugs JAK Non-JAKTarget Trials:status Diseaseunderstudy Target (Ref) INCB018424(Ruxolitinib) JAK1&2 NR III:Reported PMF,PostET/PVMF, III:recruiting PV(intolerantorresistanttoHU) FDAApproved II:Recruiting PV,ET [62-67] I/II:Recruiting AML/ALL(Relapse/Refractory) II:Completed MM(Relapse/Refractory) II:Recruiting DLBCL/T-CellLymphoma II:Active AdvancedHemMalignancies SAR302503 JAK2 FLT3 III:Recruiting PMF (TG101348) RET II:Recruiting PV,ET [70] CEP-701 JAK2 FLT3 II:Completed ET,PV (Lestaurtinib) JAK3 VEGFR2 II:Completed AML(FLT3) [71,72] TRKA III:Recruiting ALL(children) RET II:Recruiting PMF CYT387 JAK1,2 PKD3,PRKD1,CDK2,ROCK2,JNK1 II:Recruiting PMF,PostPV/ETMF [77,78] Tyk2 SB1518 JAK2 FLT3 II:Completed PMF [83,84] II:Completed AdvMyeloidmalignancies II:Completed AdvLymphoidmalignancies II:Recruiting MDS LY2784544 JAK2V617F NA I/II:Recruiting PMF,ET,PV [85] XL019 JAK2 NA I:Terminated PMF [86] AZD1480 JAK1-3 FGFR1,FLT4,ARK5,ALK4,Aurora-A I/II:Active PMF,PostET/PVMF [91] BMS-911543 JAK2 Noinformation I/II:active PMF [90] NS018 JAK2 SrcKinases I/II:active PMF,PostET/PVMF [89] Ref,references;NR,nonereported;HU,hydroxyurea;AML,acutemyeloidleukemia;ALL,acutelymphoidleukemia;MM,multipleMyeloma;DLBCL,diffuselarge B-celllymphoma. PhaseIIIstudies of these trials and major outcomes are summarized in Ruxolitinib has undergone 2 separate randomized con- Table2. trolled trials, referred to as the COntrolled MyeloFibrosis These trials support the palliative role of ruxolitinib study with ORal JAK inhibitor Treatment (COMFORT) I which significantly reduced spleen volume and consti- & II (Table 2) [66,67]. Patients were randomized between tutional symptoms. The responses were not specific for ruxolitinib vs placebo (COMFORT I) or best available JAK2 mutation. therapy (COMFORT II). Patients with PMF or post –ET /PV myelofibrosis must have high or intermediate inter- SAR302503(TG101348) national prognostic scores, palpable spleen ≥5 cm below SAR302503 is a selective JAK2 inhibitor with activity the left costal margin, and platelet count equal or greater on both wild type and mutant JAK2 [68,69]. Fifty nine than 100 × 109 /L. Patients were recruited irrespective patients were enrolled in a multi-center phase I/II trial of JAK2 gene mutation status. Differences in the design with high-or- intermediate-risk primary or post-PV/ET Furqanetal.BiomarkerResearch2013,1:5 Page6of10 http://www.biomarkerres.org/content/1/1/5 Table2COMFORT-I&IItrialsonruxolitinib Methodology COMFORT-I COMFORT-II Design 1:1randomization,vs.placebo 2:1randomization,vs.bestavailabletherapy Numberofpatients 155(ruxolitib)vs.154(placebo) 146(ruxolitinib)vs.73(BAT) Doseofruxolitinib 15-20mgtwicedailybasedonplateletcount 15-20mgtwicedailybasedonplateletcount Primaryendpoint reductioninspleensize>35%at24week reductionofspleensize>35%at48week Results 35%reductioninspleensize 42%vs.0.7%at24week 28%vs.0%at48week Durationofspleenresponse* 67%patientmaintainedthespleenresponsefor48weeks 80%maintainedtheresponseat12monthfollowup MajorAdverseevents: Anemia(45%),Thrombocytopenia(13%),headache,pyrexia Anemia,Diarrhea,Arthralgia,fatigue,abdominalpain DiscontinuationRate 11%vs.10.6% 8%vs.5% BAT,bestavailabletherapy;*,secondaryend-points;QOL,qualityoflife;ns,nonsignificant. myelofibrosis. Patients with platelet count equal or grea- CYT387 has significantly less activity against other ki- ter than 50 x 109 /L were eligible. Reversible increase in nases,includingJAK3 (IC50=0.16μM). serum amylase was the dose limiting toxicity. Serious One hundred sixty three patients with high- or in- adverse events included mainly myelosuppression and termediate- risk myelofibrosis were enrolled in a phase gastrointestinal toxicity. A spleen response of 47% was I/II trial of CYT387. The median duration of treatment seenafteroneyearoftreatment.JAK2V617Falleleburden was 6.6 months. Dose limiting toxicities included hyper- was significantly decreased at 6 months in mutation- lipasemia and headaches. Maximum tolerated dose was positive patients (n = 51; P = .04). The response was 300 mg/day. The response rates for reduction of spleen higher in patients with allele burden greater than 20% size, anemia, and constitutional symptom were 45%, (n = 23; P < .01) [70]. A multinational, randomized, pla- 50%, and more than 50%, respectively. It is interesting to cebo controlled phase III trial has been launched recently note that responses were also seen in patients who had forpatientswithhighriskmyelofibrosis. previously failed ruxolitinib or SAR302503. Surprisingly, 58%oftransfusion-dependentpatientsbecametransfusion- independent. Transient light headedness and hypotension Lestaurtinib(CEP701) werethecommonadverseevents.Treatment-relatedsevere Lestaurtinib is an orally available indolocarbazole deriva- anemia was infrequent (< 1%). This property separates it tive. It was originally identified as an inhibitor of the fromruxolitinibandSAR302503[77,78]. neurotropin receptor TrkA. It was found to also inhibit FLT3, JAK2 and JAK3. Due to its strong activity against FLT3, it is under investigation in patients with acute SB1518(pacritinib) leukemia. A phase I/II study of lestaurtinib was done Pacritinib is another orally bioavailable ATP-competi- in 22 patients with JAK2-mutated myelofibrosis. The tive small molecule inhibitor of JAK2 and the mutant patients received 80 mg twice-daily. The response rate JAK2V617F [79-82]. It inhibitis JAK-STAT signaling was 27%. The median duration of response was mo- pathway through caspase-dependent apoptosis. In a re than 14 months. However, bone marrow fibrosis phase I/II trial, 34 patients with primary or post PV/ET or JAK2V617F allele burden was not significantly al- myelofibrosis were enrolled. The median time on study tered [71]. was 8.2 months. Patients with low blood counts were In another phase 2 study, lestaurtinib was given to 39 not excluded. Most common adverse events were diar- high-risk patients with JAK2V617F-positive PV (n=27) rhea, nausea and vomiting. The primary end point was or ET (n=12). After 18 weeks of treatment, a significant spleen response, which was 32%. The median duration decrease in spleen size was reported in 83% of the of spleen response has not been reached at the recent patients. Six patient developed thrombosis. The increase update [83]. in the thrombotic events remains a concern for this In another phase I trial, 30 patients with relapsed/ agent[72]. refractory lymphoma were enrolled. The dose was es- calated from 200–600 mg/day. Severe adverse events in- CYT387 cluded cytopenia, internal hemorrhage, various infections CYT387 is an ATP-competitive small molecule JAK1/ and abdominal distention. No patient achieved complete JAK2 inhibitor [73-76]. It has an IC50 of 11 and 18 nM remission. Three patients had partial remission and 13 for JAK1 and JAK2, respectively. Unlike lestaurtinib, patientshadstabledisease[84].PhaseIItrialisongoing. Furqanetal.BiomarkerResearch2013,1:5 Page7of10 http://www.biomarkerres.org/content/1/1/5 LY2784544 approaches are still at early stage and only supported by LY2784544 is a selective mutant JAK2 kinase inhibitor pre-clinical data [13,100-107]. Further advancement in with an IC50 of 68 nM. This molecule selectively inhib- understanding the molecular events and refining the tar- ited the JAK2 V617F-STAT5signaling at aconcentration gets can potentially lead to further clinical benefit. Si- thatwas41-foldlowerthanthatneededforthewildtype multaneousinterventionatmultiplelevelsofthesignaling (WT) JAK2 signaling (IC50 = 55 nM for V617F vs. 2260 cascadeby combiningdifferent targeting agents mayoffer nM for WT ) [60]. A phase I/II trial recruited 19 pa- additionaladvantagesandisworthwhilestudying. tients with Ph negative MPN. Maximum tolerated dose was 120 mg/day. Spleen response was 22% for patients Competinginterest Theauthorshavenorelevantconflictsofinterest. with MF. JAK2V617F allele burden was not significantly decreased. Main adverse events included diarrhea, nau- Authors’contributions sea,anemia andelectrolyte imbalance[85]. Allauthorshavecontributedtodatapreparation,draftingandrevisingthe manuscripts.Allauthorshavereadandapprovedthefinalmanuscript. XL019 XL019 represents another oral selective JAK2 inhibitor Acknowledgment ThisstudywaspartlysupportedbyNewYorkMedicalCollegeBlood (IC50= 2nM for JAK2, 130 nM for JAK1, 250 nM for DiseasesFund. JAK3, 340 nM for TYK2) [86,87]. A phase I study recruited 21 patients with myelofibrosis. 16 patients had Authordetails 1DepartmentofMedicine,NewYorkMedicalCollegeandWestchester JAK2V617F, one had MPL W515F. Dose ranged from 25 MedicalCenter,Valhalla,NY10595,USA.2CaliforniaCancerCenter,7257N. to 300 mg. Surprisingly, there was no hematological ad- FresnoSt.,Fresno,CA93720-2950,USA. verse events. Improvement in clinical outcome observed Received:12September2012Accepted:14September2012 in all patients with JAK2V617F or MPL activating muta- Published:16January2013 tions [86]. Despite these results, further development of clinical trials using XL019 was aborted out of the con- References cernsfor neurologic toxicities [88]. 1. FerrajoliA,FaderlS,RavandiF,EstrovZ:TheJAK-STATpathway:a therapeutictargetinhematologicalmalignancies.CurrCancerDrug Targets2006,6(8):671–679. NS-018,BMS-911543andAZD1480 2. MorigglR,SexlV,PiekorzR,TophamD,IhleJN:Stat5activationisuniquely These JAK inhibitors are also selective JAK inhibitors at associatedwithcytokinesignalinginperipheralTcells.Immunity1999, 11(2):225–230. very early stage of drug development [48,89-91]. NS-018 3. FriedrichK,KammerW,ErhardtI,BrandleinS,SebaldW,MorigglR: was shown to be highly selective against JAK2 with IC50 ActivationofSTAT5byIL-4reliesonJanuskinasefunctionbutnoton <1 nM [89]. It had 30–50 fold greater selectivity for receptortyrosinephosphorylation,andcancontributetobothcell proliferationandgeneregulation.IntImmunol1999,11(8):1283–1294. JAK2 over other JAK-family kinases, such as JAK1, JAK3 4. MorigglR,TophamDJ,TeglundS,SexlV,McKayC,WangD,HoffmeyerA, and Tyk2. BMS-911543 is a functionally selective JAK2 vanDeursenJ,SangsterMY,BuntingKD,etal:Stat5isrequiredforIL-2- inhibitor [90]. AZD1480 has been shown both in vitro inducedcellcycleprogressionofperipheralTcells.Immunity1999, 10(2):249–259. and in vivo to inhibit the growth of multiple malignan- 5. BradleyHL,HawleyTS,BuntingKD:Cellintrinsicdefectsincytokine cies by inhibiting phosphorylation of JAK2, STAT3 and responsivenessofSTAT5-deficienthematopoieticstemcells.Blood2002, MAPK signaling proteins [91-99]. Clinical investigations 100(12):3983–3989. 6. BuntingKD,BradleyHL,HawleyTS,MorigglR,SorrentinoBP,IhleJN: ontheseagentsareunderway. Reducedlymphomyeloidrepopulatingactivityfromadultbonemarrow andfetalliverofmicelackingexpressionofSTAT5.Blood2002, Conclusion and future directions 99(2):479–487. 7. WardAC,TouwI,YoshimuraA:TheJak-Statpathwayinnormaland Currently the benefits of therapy with JAK inhibitors in perturbedhematopoiesis.Blood2000,95(1):19–29. MPNs are palliative in nature. This is suggested by in- 8. WellsJA,deVosAM:Hematopoieticreceptorcomplexes.AnnuRev ability of ruxolitinib to influence the natural history of Biochem1996,65:609–634. 9. Carter-SuC,SmitLS:SignalingviaJAKtyrosinekinases:growthhormone the diseases and by the fact that the responses are unre- receptorasamodelsystem.RecentProgHormRes1998,53:61–82. lated to JAK mutation status. JAK2V617F mutation may discussion82–63. be a key event but not necessarily a primary factor driv- 10. ValentinoL,PierreJ:JAK/STATsignaltransduction:regulatorsand implicationinhematologicalmalignancies.BiochemPharmacol2006, ing the tumorigenesis of MPNs. Other molecular events 71(6):713–721. may precede the acquisition of JAK2V617F mutation in 11. VeraJ,RateitschakK,LangeF,KossowC,WolkenhauerO,JasterR:Systems these disorders. Novel selective JAK2 inhibitors are the biologyofJAK-STATsignallinginhumanmalignancies.ProgBiophysMol Biol2011,106(2):426–434. active focus forfurtherclinicalinvestigations[60,61,88]. 12. LevyDE,DarnellJEJr:Stats:transcriptionalcontrolandbiologicalimpact. In addition to JAK inhibitors, targeting STATsignaling NatRevMolCellBiol2002,3(9):651–662. is emerging as an attractive approach to inhibit tumo- 13. ShuaiK,LiuB:RegulationofJAK-STATsignallingintheimmunesystem. NatRevImmunol2003,3(11):900–911. rigenesis. Various strategies have been employed to in- 14. ShuaiK,LiuB:Regulationofgene-activationpathwaysbyPIASproteins fluence STAT signaling at multiple levels, though these intheimmunesystem.NatRevImmunol2005,5(8):593–605. Furqanetal.BiomarkerResearch2013,1:5 Page8of10 http://www.biomarkerres.org/content/1/1/5 15. ChungCD,LiaoJ,LiuB,RaoX,JayP,BertaP,ShuaiK:Specificinhibitionof 35. Murati A, Gelsi-Boyer V, Adelaide J, Perot C, Talmant P, Giraudier S, Stat3signaltransductionbyPIAS3.Science1997,278(5344):1803–1805. Lode L, Letessier A, Delaval B, Brunel V, et al: PCM1-JAK2fusion in 16. LiuB,LiaoJ,RaoX,KushnerSA,ChungCD,ChangDD,ShuaiK:Inhibitionof myeloproliferative disorders and acute erythroid leukemia with t Stat1-mediatedgeneactivationbyPIAS1.ProcNatlAcadSciUSA1998, (8;9) translocation. Leukemia: official journal of the Leukemia Society of 95(18):10626–10631. America, Leukemia ResearchFund, UK 2005, 19(9):1692–1696. 17. AroraT,LiuB,HeH,KimJ,MurphyTL,MurphyKM,ModlinRL,ShuaiK: 36. Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B, PIASxisatranscriptionalco-repressorofsignaltransducerandactivator Berger U, Telford N, Aruliah S, Yin JA, et al: The t(8;9)(p22;p24) is a oftranscription4.JBiolChem2003,278(24):21327–21330. recurrent abnormality in chronic and acute leukemiathat fuses 18. TamiyaT,KashiwagiI,TakahashiR,YasukawaH,YoshimuraA:Suppressors PCM1 to JAK2. Cancer Res 2005, 65(7):2662–2667. ofcytokinesignaling(SOCS)proteinsandJAK/STATpathways: 37. Lacronique V, Boureux A, Valle VD, PoirelH, Quang CT, Mauchauffe M, regulationofT-cellinflammationbySOCS1andSOCS3.Arterioscler Berthou C, Lessard M, Berger R, Ghysdael J, et al: A TEL-JAK2fusion ThrombVascBiol2011,31(5):980–985. protein with constitutive kinase activity in human leukemia. Science 19. RawlingsJS,RoslerKM,HarrisonDA:TheJAK/STATsignalingpathway. 1997, 278(5341):1309–1312. JCellSci2004,117(Pt8):1281–1283. 38. RatnerL:JAKblockadeandHTLV.Blood2011,117(6):1771–1772. 20. BenekliM,BaumannH,WetzlerM:Targetingsignaltransducerandactivatorof 39. Schade AE, Wlodarski MW, Maciejewski JP: Pathophysiology defined transcriptionsignalingpathwayinleukemias.Journalofclinicaloncology:official by altered signal transduction pathways: the role of JAK-STAT and journaloftheAmericanSocietyofClinicalOncology2009,27(26):4422–4432. PI3K signaling in leukemic large granular lymphocytes.Cell Cycle 21. JamesC,UgoV,LeCouedicJP,StaerkJ,DelhommeauF,LacoutC,Garcon 2006, 5(22):2571–2574. L,RaslovaH,BergerR,Bennaceur-GriscelliA,etal:AuniqueclonalJAK2 40. Meier C, Hoeller S, Bourgau C, Hirschmann P, Schwaller J, Went P, mutationleadingtoconstitutivesignallingcausespolycythaemiavera. Pileri SA, Reiter A, Dirnhofer S, Tzankov A: Recurrent numerical Nature2005,434(7037):1144–1148. aberrations of JAK2and deregulation of the JAK2-STAT cascade in 22. LevineRL,GillilandDG:Myeloproliferativedisorders.Blood2008, lymphomas. Modernpathology: an official journal of the United States 112(6):2190–2198. and Canadian Academy of Pathology, Inc 2009, 22(3):476–487. 23. BaxterEJ,ScottLM,CampbellPJ,EastC,FourouclasN,SwantonS,Vassiliou 41. ZhangQ,NowakI,VonderheidEC,RookAH,KadinME,NowellPC, GS,BenchAJ,BoydEM,CurtinN,etal:Acquiredmutationofthetyrosine ShawLM,WasikMA:ActivationofJak/STATproteinsinvolvedin kinaseJAK2inhumanmyeloproliferativedisorders.Lancet2005, signaltransductionpathwaymediatedbyreceptor forinterleukin2 365(9464):1054–1061. inmalignantTlymphocytesderivedfromcutaneousanaplasticlarge 24. KralovicsR,PassamontiF,BuserAS,TeoSS,TiedtR,PasswegJR,TichelliA, T-celllymphomaandSezarysyndrome.ProcNatlAcadSci USA CazzolaM,SkodaRC:Again-of-functionmutationofJAK2in 1996,93(17):9148–9153. myeloproliferativedisorders.NEngJMed2005,352(17):1779–1790. 42. Kearney L, Gonzalez De Castro D, Yeung J, Procter J, Horsley SW, 25. LevineRL,WadleighM,CoolsJ,EbertBL,WernigG,HuntlyBJ,BoggonTJ, Eguchi-Ishimae M, Bateman CM, Anderson K, Chaplin T, Young BD, et WlodarskaI,ClarkJJ,MooreS,etal:Activatingmutationinthetyrosine al: Specific JAK2 mutation (JAK2R683) and multiple gene deletions kinaseJAK2inpolycythemiavera,essentialthrombocythemia, in Down syndrome acute lymphoblastic leukemia. Blood 2009, andmyeloidmetaplasiawithmyelofibrosis.CancerCell2005, 113(3):646–648. 7(4):387–397. 43. MalingeS,Ben-AbdelaliR,SettegranaC,Radford-WeissI,DebreM,Beldjord 26. TefferiA,LashoTL,PatnaikMM,FinkeCM,HusseinK,HoganWJ,ElliottMA, K,MacintyreEA,VillevalJL,VainchenkerW,BergerR,etal:Novelactivating LitzowMR,HansonCA,PardananiA:JAK2germlinegeneticvariation JAK2mutationinapatientwithDownsyndromeandB-cellprecursor affectsdiseasesusceptibilityinprimarymyelofibrosisregardlessof acutelymphoblasticleukemia.Blood2007,109(5):2202–2204. V617Fmutationalstatus:nullizygosityfortheJAK246/1haplotypeis 44. PoitrasJL,DalCinP,AsterJC,DeangeloDJ,MortonCC:NovelSSBP2-JAK2 associatedwithinferiorsurvival.Leukemia:officialjournaloftheLeukemia fusiongeneresultingfromat(5;9)(q14.1;p24.1)inpre-Bacute SocietyofAmerica,LeukemiaResearchFund,UK2010,24(1):105–109. lymphocyticleukemia.GenesChromosomesCancer2008,47(10):884–889. 27. PassamontiF,RumiE:ClinicalrelevanceofJAK2(V617F)mutantallele 45. FrankDA,MahajanS,RitzJ:Blymphocytesfrompatientswithchronic burden.Haematologica2009,94(1):7–10. lymphocyticleukemiacontainsignaltransducerandactivatorof 28. SpivakJL,SilverRT:TherevisedWorldHealthOrganizationdiagnostic transcription(STAT)1andSTAT3constitutivelyphosphorylatedon criteriaforpolycythemiavera,essentialthrombocytosis,andprimary serineresidues.JClinInvest1997,100(12):3140–3148. myelofibrosis:analternativeproposal.Blood2008,112(2):231–239. 46. MelznerI,BucurAJ,BruderleinS,DorschK,HaselC,BarthTF,LeithauserF, 29. ScottLM,TongW,LevineRL,ScottMA,BeerPA,StrattonMR,FutrealPA, MollerP:BiallelicmutationofSOCS-1impairsJAK2degradationand ErberWN,McMullinMF,HarrisonCN,etal:JAK2exon12mutationsin sustainsphospho-JAK2actionintheMedB-1mediastinallymphomaline. polycythemiaveraandidiopathicerythrocytosis.NEngJMed2007, Blood2005,105(6):2535–2542. 356(5):459–468. 47. VanRoosbroeckK,CoxL,TousseynT,LahortigaI,GielenO,CauwelierB, 30. TeofiliL,MartiniM,CenciT,PetrucciG,TortiL,StortiS,GuidiF,LeoneG, DePaepeP,VerhoefG,MarynenP,VandenbergheP,etal:JAK2 LaroccaLM:DifferentSTAT-3andSTAT-5phosphorylationdiscriminates rearrangements,includingthenovelSEC31A-JAK2fusion,arerecurrent amongPh-negativechronicmyeloproliferativediseasesandis inclassicalHodgkinlymphoma.Blood2011,117(15):4056–4064. independentoftheV617FJAK-2mutation.Blood2007,110(1):354–359. 48. WenigerMA,MelznerI,MenzCK,WegenerS,BucurAJ,DorschK,Mattfeldt 31. BousquetM,QuelenC,DeMasV,DuchayneE,RoquefeuilB,DelsolG, T,BarthTF,MollerP:MutationsofthetumorsuppressorgeneSOCS-1in LaurentG,DastugueN,BroussetP:Thet(8;9)(p22;p24)translocationin classicalHodgkinlymphomaarefrequentandassociatedwithnuclear atypicalchronicmyeloidleukaemiayieldsanewPCM1-JAK2fusion phospho-STAT5accumulation.Oncogene2006,25(18):2679–2684. gene.Oncogene2005,24(48):7248–7252. 49. GhoshalGuptaS,BaumannH,WetzlerM:Epigeneticregulationofsignal 32. GriesingerF,HennigH,HillmerF,PodleschnyM,SteffensR,PiesA, transducerandactivatoroftranscription3inacutemyeloidleukemia. WormannB,HaaseD,BohlanderSK:ABCR-JAK2fusiongeneasthe LeukRes2008,32(7):1005–1014. resultofat(9;22)(p24;q11.2)translocationinapatientwithaclinically 50. SteensmaDP,McClureRF,KarpJE,TefferiA,LashoTL,PowellHL,DeWald typicalchronicmyeloidleukemia.GenesChromosomesCancer2005, GW,KaufmannSH:JAK2V617Fisararefindingindenovoacutemyeloid 44(3):329–333. leukemia,butSTAT3activationiscommonandremainsunexplained. 33. PeetersP,RaynaudSD,CoolsJ,WlodarskaI,GrosgeorgeJ,PhilipP, Leukemia:officialjournaloftheLeukemiaSocietyofAmerica,Leukemia MonpouxF,VanRompaeyL,BaensM,VandenBergheH,etal:Fusionof ResearchFund,UK2006,20(6):971–978. TEL,theETS-variantgene6(ETV6),tothereceptor-associatedkinase 51. MaurerAB,WichmannC,GrossA,KunkelH,HeinzelT,RuthardtM,GronerB, JAK2asaresultoft(9;12)inalymphoidandt(9;15;12)inamyeloid GrezM:TheStat5-RARalphafusionproteinrepressestranscriptionand leukemia.Blood1997,90(7):2535–2540. differentiationthroughinteractionwithacorepressorcomplex.Blood 34. FlexE,PetrangeliV,StellaL,ChiarettiS,HornakovaT,KnoopsL,AriolaC, 2002,99(8):2647–2652. FodaleV,ClappierE,PaoloniF,etal:SomaticallyacquiredJAK1mutations 52. ConstantinescuSN,GirardotM,PecquetC:MiningforJAK-STATmutations inadultacutelymphoblasticleukemia.JExpMed2008,205(4):751–758. incancer.TrendsBiochemSci2008,33(3):122–131. Furqanetal.BiomarkerResearch2013,1:5 Page9of10 http://www.biomarkerres.org/content/1/1/5 53. LevineRL,LoriauxM,HuntlyBJ,LohML,BeranM,StoffregenE,BergerR,Clark 71. SantosFP,KantarjianHM,JainN,ManshouriT,ThomasDA,Garcia-Manero JJ,WillisSG,NguyenKT,etal:TheJAK2V617Factivatingmutationoccursin G,KennedyD,EstrovZ,CortesJ,VerstovsekS:Phase2studyofCEP-701, chronicmyelomonocyticleukemiaandacutemyeloidleukemia,butnotin anorallyavailableJAK2inhibitor,inpatientswithprimaryorpost- acutelymphoblasticleukemiaorchroniclymphocyticleukemia.Blood2005, polycythemiavera/essentialthrombocythemiamyelofibrosis.Blood2010, 106(10):3377–3379. 115(6):1131–1136. 54. SzpurkaH,TiuR,MurugesanG,AboudolaS,HsiED,TheilKS,SekeresMA, 72. MoliternoAR,HexnerE,RobozGJ,CarrollM,LugerS,MascarenhasJ, MaciejewskiJP:Refractoryanemiawithringedsideroblastsassociatedwith HoffmanR,Bensen-KennedyDM:AnOpen-LabelStudyofCEP-701in markedthrombocytosis(RARS-T),anothermyeloproliferativecondition PatientswithJAK2V617F-PositivePVandET:Updateof39Enrolled characterizedbyJAK2V617Fmutation.Blood2006,108(7):2173–2181. Patients.ASHAnnualMeetingAbstracts2009,114(22):753. 55. ZlW,YqS,YfS,ZhuJ:HighnuclearexpressionofSTAT3isassociated 73. SparidansRW,DurmusS,XuN,SchinkelAH,SchellensJH,BeijnenJH:Liquid withunfavorableprognosisindiffuselargeB-celllymphoma.JHematol chromatography-tandemmassspectrometricassayfortheJAK2 Oncol2011,4(1):31. inhibitorCYT387inplasma.JChromatogrBAnalytTechnolBiomedLifeSci 56. Quintanilla-MartinezL,KremerM,SpechtK,Calzada-WackJ,NathrathM, 2012,895–896:174–177. SchaichR,HoflerH,FendF:Analysisofsignaltransducerandactivatorof 74. MonaghanKA,KhongT,BurnsCJ,SpencerA:ThenovelJAKinhibitor transcription3(Stat3)pathwayinmultiplemyeloma:Stat3activation CYT387suppressesmultiplesignallingpathways,preventsproliferation andcyclinD1dysregulationaremutuallyexclusiveevents.AmJPathol andinducesapoptosisinphenotypicallydiversemyelomacells. 2003,162(5):1449–1461. Leukemia:officialjournaloftheLeukemiaSocietyofAmerica,Leukemia 57. ZhaoA,GaoR,ZhaoZ:Developmentofahighlysensitivemethodfor ResearchFund,UK2011,25(12):1891–1899. detectionofJAK2V617F.JHematolOncol2011,4(1):40. 75. TynerJW,BummTG,DeiningerJ,WoodL,AichbergerKJ,LoriauxMM, 58. TognonR,GasparottoE,NevesR,NunesN,FerreiraA,PalmaP,KashimaS, DrukerBJ,BurnsCJ,FantinoE,DeiningerMW:CYT387,anovelJAK2 CovasD,SantanaM,SoutoE,etal:Deregulationofapoptosis-related inhibitor,induceshematologicresponsesandnormalizesinflammatory genesisassociatedwithPRV1overexpressionandJAK2V617Fallele cytokinesinmurinemyeloproliferativeneoplasms.Blood2010, burdeninEssentialThrombocythemiaandMyelofibrosis.JHematolOncol 115(25):5232–5240. 2012,5(1):2. 76. PardananiA,LashoT,SmithG,BurnsCJ,FantinoE,TefferiA:CYT387,a 59. ZhaoW,DuY,HoW,FuX,ZhaoZ:JAK2V617Fandp53mutationscoexistin selectiveJAK1/JAK2inhibitor:invitroassessmentofkinaseselectivity erythroleukemiaandmegakaryoblasticleukemiccelllines.Experimental andpreclinicalstudiesusingcelllinesandprimarycellsfrom Hematology&Oncology2012,1(1):15. polycythemiaverapatients.Leukemia:officialjournaloftheLeukemia 60. PassamontiF,MaffioliM,CaramazzaD:Newgenerationsmall-molecule SocietyofAmerica,LeukemiaResearchFund,UK2009,23(8):1441–1445. inhibitorsinmyeloproliferativeneoplasms.CurrOpinHematol2012,19 77. PardananiA,GotlibJ,GuptaV,RobertsAW,WadleighM,SirhanS,Litzow (2):117–123. MR,HoganWJ,BegnaK,SmithG,etal:AnExpandedMulticenterPhaseI/ 61. RandhawaJ,OstojicA,VrhovacR,AtallahE,VerstovsekS:Splenomegalyin IIStudyofCYT387,aJAK-1/2InhibitorfortheTreatmentof myelofibrosis–newoptionsfortherapyandthetherapeuticpotentialof Myelofibrosis.ASHAnnualMeetingAbstracts2011,118(21):3849. Januskinase2inhibitors.JHematolOncol2012,5(1):43. 78. PardananiAD,CaramazzaD,GeorgeG,LashoTL,HoganWJ,LitzowMR, 62. VerstovsekS,KantarjianH,MesaRA,PardananiAD,Cortes-FrancoJ,Thomas BegnaK,HansonCA,McClureRF,BavisottoLM,etal:Safetyandefficacyof DA,EstrovZ,FridmanJS,BradleyEC,Erickson-ViitanenS,etal:Safetyand CYT387,aJAK-1/2inhibitor,forthetreatmentofmyelofibrosis.ASCO efficacyofINCB018424,aJAK1andJAK2inhibitor,inmyelofibrosis.N MeetingAbstracts2011,29(15_suppl):6514. EngJMed2010,363(12):1117–1127. 79. HartS,GohKC,Novotny-DiermayrV,TanYC,MadanB,AmaliniC,OngLC, 63. TefferiA,LitzowMR,PardananiA:Long-termoutcomeoftreatmentwith KhengB,CheongA,ZhouJ,etal:Pacritinib(SB1518),aJAK2/FLT3inhibitorfor ruxolitinibinmyelofibrosis.NEngJMed2011,365(15):1455–1457. thetreatmentofacutemyeloidleukemia.Bloodcancerjournal2011,1(11):e44. 64. VerstovsekS,KantarjianHM,EstrovZ,CortesJE,ThomasDA,KadiaT,Pierce 80. PoulsenA,WilliamA,BlanchardS,LeeA,NagarajH,WangH,TeoE,TanE, S,JabbourE,BorthakurG,RumiE,etal:Long-termoutcomesof107 GohKC,DymockB:Structure-baseddesignofoxygen-linkedmacrocyclic patientswithmyelofibrosisreceivingJAK1/JAK2inhibitorruxolitinib: kinaseinhibitors:discoveryofSB1518andSB1578,potentinhibitorsof survivaladvantageincomparisontomatchedhistoricalcontrols.Blood Januskinase2(JAK2)andFms-liketyrosinekinase-3(FLT3).JComput 2012,120(6):1202–1209. AidedMolDes2012,26(4):437–450. 65. EghtedarA,VerstovsekS,EstrovZ,BurgerJ,CortesJ,BivinsC,FaderlS, 81. HartS,GohKC,Novotny-DiermayrV,HuCY,HentzeH,TanYC,MadanB, FerrajoliA,BorthakurG,GeorgeS,etal:Phase2studyoftheJAKkinase AmaliniC,LohYK,OngLC,etal:SB1518,anovelmacrocyclicpyrimidine- inhibitorruxolitinibinpatientswithrefractoryleukemias,including basedJAK2inhibitorforthetreatmentofmyeloidandlymphoid postmyeloproliferativeneoplasmacutemyeloidleukemia.Blood2012, malignancies.Leukemia:officialjournaloftheLeukemiaSocietyofAmerica, 119(20):4614–4618. LeukemiaResearchFund,UK2011,25(11):1751–1759. 66. HarrisonC,KiladjianJJ,Al-AliHK,GisslingerH,WaltzmanR,StalbovskayaV, 82. WilliamAD,LeeAC,BlanchardS,PoulsenA,TeoEL,NagarajH,TanE,ChenD, McQuittyM,HunterDS,LevyR,KnoopsL,etal:JAKinhibitionwith WilliamsM,SunET,etal:Discoveryofthemacrocycle11-(2-pyrrolidin-1-yl- ruxolitinibversusbestavailabletherapyformyelofibrosis.NEngJMed ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa- 2012,366(9):787–798. 1(25),2(26),3,5,8,10,12(27),16,21,23-decaene(SB1518),apotentJanuskinase 67. VerstovsekS,MesaRA,GotlibJ,LevyRS,GuptaV,DiPersioJF,Catalano 2/fms-liketyrosinekinase-3(JAK2/FLT3)inhibitorforthetreatmentof JV,DeiningerM,MillerC,SilverRT,etal:Adouble-blind,placebo- myelofibrosisandlymphoma.JMedChem2011,54(13):4638–4658. controlledtrialofruxolitinibformyelofibrosis.NEngJMed2012,366 83. KomrokjiRS,WadleighM,SeymourJF,RobertsAW,ToLB,ZhuHJ,MesaRA: (9):799–807. Resultsofaphase2studyofpacritinib(SB1518),anoveloralJAK2 68. WernigG,KharasMG,OkabeR,MooreSA,LeemanDS,CullenDE,GozoM, inhibitor,inpatientswithprimary,post-polycythemiavera,andpost- McDowellEP,LevineRL,DoukasJ,etal:EfficacyofTG101348,aselective essentialthrombocythemiamyelofibrosis.ASHAnnualMeetingAbstracts JAK2inhibitor,intreatmentofamurinemodelofJAK2V617F-induced 2011,118(21):282. polycythemiavera.CancerCell2008,13(4):311–320. 84. YounesA,FanaleMA,McLaughlinP,CopelandA,ZhuJ,deCastroFariaS: 69. LashoTL,TefferiA,HoodJD,VerstovsekS,GillilandDG,PardananiA: PhaseIStudyofaNovelOralJAK-2InhibitorSB1518InPatientswith TG101348,aJAK2-selectiveantagonist,inhibitsprimaryhematopoietic RelapsedLymphoma:EvidenceofClinicalandBiologicActivityIn cellsderivedfrommyeloproliferativedisorderpatientswith MultipleLymphomaSubtypes.ASHAnnualMeetingAbstracts2010, JAK2V617F,MPLW515KorJAK2exon12mutationsaswellas 116(21):2830. mutationnegativepatients.Leukemia:officialjournaloftheLeukemia 85. VerstovsekS,MesaRA,RhoadesSK,GilesJLK,PitouC,JonesE,WalgrenRA, SocietyofAmerica,LeukemiaResearchFund,UK2008,22(9):1790–1792. PrchalJT:PhaseIStudyoftheJAK2V617FInhibitor,LY2784544,in 70. PardananiA,GotlibJR,JamiesonC,CortesJE,TalpazM,StoneRM,Silverman PatientswithMyelofibrosis(MF),PolycythemiaVera(PV),andEssential MH,GillilandDG,ShorrJ,TefferiA:SafetyandefficacyofTG101348,a Thrombocythemia(ET).ASHAnnualMeetingAbstracts2011,118(21):2814. selectiveJAK2inhibitor,inmyelofibrosis.Journalofclinicaloncology:official 86. ShahNP,OlszynskiP,SokolL,VerstovsekS,HoffmanR,ListAF,CortesJ, journaloftheAmericanSocietyofClinicalOncology2011,29(7):789–796. KantarjianHM,GillilandDG,ClaryDO,etal:APhaseIStudyofXL019,a Furqanetal.BiomarkerResearch2013,1:5 Page10of10 http://www.biomarkerres.org/content/1/1/5 SelectiveJAK2Inhibitor,inPatientswithPrimaryMyelofibrosis,Post- anofficialjournaloftheAmericanAssociationforCancerResearch2011, PolycythemiaVera,orPost-EssentialThrombocythemiaMyelofibrosis. 17(10):3259–3271. ASHAnnualMeetingAbstracts2008,112(11):98. 106. TurksonJ,KimJS,ZhangS,YuanJ,HuangM,GlennM,HauraE,SebtiS, 87. PaquetteR,SokolL,ShahNP,SilverRT,ListAF,ClaryDO,BuiLA,TalpazM:A HamiltonAD,JoveR:Novelpeptidomimeticinhibitorsofsignal PhaseIStudyofXL019,aSelectiveJAK2Inhibitor,inPatientswith transducerandactivatoroftranscription3dimerizationandbiological PolycythemiaVera.ASHAnnualMeetingAbstracts2008,112(11):2810. activity.MolCancerTher2004,3(3):261–269. 88. TefferiA:JAKinhibitorsformyeloproliferativeneoplasms:clarifyingfacts 107. HayakawaF,SugimotoK,KurahashiS,SumidaT,NaoeT:ANovelSTAT3 frommyths.Blood2012,119(12):2721–2730. InhibitorOPB-31121InducesTumor-SpecificGrowthInhibitioninaWide 89. NakayaY,ShideK,NiwaT,HomanJ,SugaharaS,HorioT,KuramotoK, RangeofHematopoieticMalignancieswithoutGrowthSuppressionof KoteraT,ShibayamaH,HoriK,etal:EfficacyofNS-018,apotentand NormalHematopoieticCells.ASHAnnualMeetingAbstracts2011, selectiveJAK2/Srcinhibitor,inprimarycellsandmousemodelsof 118(21):577. myeloproliferativeneoplasms.Bloodcancerjournal2011,1(7):e29. 90. PurandareAV,McDevittTM,WanH,YouD,PenhallowB,HanX,Vuppugalla doi:10.1186/2050-7771-1-5 R,ZhangY,RueppSU,TrainorGL,etal:CharacterizationofBMS-911543,a Citethisarticleas:Furqanetal.:DysregulationofJAK-STATpathwayin functionallyselectivesmall-moleculeinhibitorofJAK2.Leukemia:official hematologicalmalignanciesandJAKinhibitorsforclinicalapplication. journaloftheLeukemiaSocietyofAmerica,LeukemiaResearchFund,UK2012, BiomarkerResearch20131:5. 26(2):280–288. 91. ScutoA,KrejciP,PopplewellL,WuJ,WangY,KujawskiM,KowolikC,XinH, ChenL,WangY,etal:ThenovelJAKinhibitorAZD1480blocksSTAT3 andFGFR3signaling,resultinginsuppressionofhumanmyelomacell growthandsurvival.Leukemia:officialjournaloftheLeukemiaSocietyof America,LeukemiaResearchFund,UK2011,25(3):538–550. 92. DerenziniE,LemoineM,BuglioD,KatayamaH,JiY,DavisRE,SenS,Younes A:TheJAKinhibitorAZD1480regulatesproliferationandimmunityin Hodgkinlymphoma.Bloodcancerjournal2011,1(12):e46. 93. LovelessME,LawsonD,CollinsM,NadellaMV,ReimerC,HuszarD,Halliday J,WatertonJC,GoreJC,YankeelovTE:Comparisonsoftheefficacyofa Jak1/2inhibitor(AZD1480)withaVEGFsignalinginhibitor(cediranib) andshamtreatmentsinmousetumorsusingDCE-MRI,DW-MRI,and histology.Neoplasia2012,14(1):54–64. 94. McFarlandBC,MaJY,LangfordCP,GillespieGY,YuH,ZhengY,NozellSE, HuszarD,BenvenisteEN:TherapeuticpotentialofAZD1480forthe treatmentofhumanglioblastoma.MolCancerTher2011,10(12):2384–2393. 95. DeshpandeA,ReddyMM,SchadeGO,RayA,ChowdaryTK,GriffinJD, SattlerM:Kinasedomainmutationsconferresistancetonovelinhibitors targetingJAK2V617Finmyeloproliferativeneoplasms.Leukemia:official journaloftheLeukemiaSocietyofAmerica,LeukemiaResearchFund,UK2012, 26(4):708–715. 96. XinH,HerrmannA,ReckampK,ZhangW,PalS,HedvatM,ZhangC,Liang W,ScutoA,WengS,etal:Antiangiogenicandantimetastaticactivityof JAKinhibitorAZD1480.CancerRes2011,71(21):6601–6610. 97. MankanAK,GretenFR:Inhibitingsignaltransducerandactivatorof transcription3:rationalityandrationaledesignofinhibitors.ExpertOpin InvestigDrugs2011,20(9):1263–1275. 98. IoannidisS,LambML,WangT,AlmeidaL,BlockMH,DaviesAM,PengB, SuM,ZhangHJ,HoffmannE,etal:Discoveryof5-chloro-N2-[(1S)-1- (5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine- 2,4-diamine(AZD1480)asanovelinhibitoroftheJak/Statpathway. JMedChem2011,54(1):262–276. 99. HedvatM,HuszarD,HerrmannA,GozgitJM,SchroederA,SheehyA, BuettnerR,ProiaD,KowolikCM,XinH,etal:TheJAK2inhibitorAZD1480 potentlyblocksStat3signalingandoncogenesisinsolidtumors.Cancer Cell2009,16(6):487–497. 100. CoppelliFM,GrandisJR:Oligonucleotidesasanticanceragents:from thebenchsidetotheclinicandbeyond.CurrPharmDes2005, 11(22):2825–2840. 101. JingN,ShaW,LiY,XiongW,TweardyDJ:RationaldrugdesignofG-quartet DNAasanti-canceragents.CurrPharmDes2005,11(22):2841–2854. Submit your next manuscript to BioMed Central 102. NelsonEA,SharmaSV,SettlemanJ,FrankDA:Achemicalbiology and take full advantage of: approachtodevelopingSTATinhibitors:molecularstrategiesfor acceleratingclinicaltranslation.Oncotarget2011,2(6):518–524. • Convenient online submission 103. PerrottiD,NevianiP:Proteinphosphatase2A(PP2A),adrugabletumor suppressorinPh1(+)leukemias.CancerMetastasisRev2008,27(2):159–168. • Thorough peer review 104. RedellMS,RuizMJ,AlonzoTA,GerbingRB,TweardyDJ:Stat3signalingin • No space constraints or color figure charges acutemyeloidleukemia:ligand-dependentand-independentactivation andinductionofapoptosisbyanovelsmall-moleculeStat3inhibitor. • Immediate publication on acceptance Blood2011,117(21):5701–5709. • Inclusion in PubMed, CAS, Scopus and Google Scholar 105. SantoL,HideshimaT,CirsteaD,BandiM,NelsonEA,GorgunG,RodigS, • Research which is freely available for redistribution ValletS,PozziS,PatelK,etal:Antimyelomaactivityofamultitargeted kinaseinhibitor,AT9283,viapotentAurorakinaseandSTAT3inhibition eitheraloneorincombinationwithlenalidomide.Clinicalcancerresearch: Submit your manuscript at www.biomedcentral.com/submit

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.