Dynamicsofthequantumsearchandquench-inducedfirst-orderphasetransitions Ivan B. Coulamy,∗ Andreia Saguia,† and Marcelo S. Sarandy‡ Instituto de F´ısica, Universidade Federal Fluminense, Av. Gal. MiltonTavaresdeSouzas/n,Gragoata´,24210-346Nitero´i,RiodeJaneiro,Brazil We investigate the excitation dynamics at a first-order quantum phase transition (QPT). More specifically, 7 we consider the quench-induced QPT in the quantum search algorithm, which aims at finding out a marked 1 element in an unstructured list. We begin by deriving the exact dynamics of the model, which is shown to 0 obeyaRiccatidifferentialequation. Then,wediscusstheprobabilitiesofsuccessbyadoptingeitherglobalor 2 localadiabaticitystrategies. Moreover, wedeterminethedisturbanceofthequantumcriticalityasafunction n ofthesystemsize. Inparticular,weshowthatthecriticalpointexponentiallyconvergestoitsthermodynamic a limit even in a fast evolution regime, which is characterized by both entanglement QPT estimators and the J Schmidtgap. Theexcitationpatternismanifestedintermsofquantumdomainswallsseparatedbykinks. The 8 kinkdensityisthenshowntofollowanexponentialscalingasafunctionoftheevolutionspeed,whichcanbe 1 interpretedasaKibble-Zurekmechanismforfirst-orderQPTs. ] PACSnumbers:64.60.Ht,75.60.Ch,03.67.-a,03.67.Ac h c e I. INTRODUCTION In AQC, the ground state of H(t) adiabatically m evolves from an initial simple state to a final state - containing the solution of the problem. If the pro- t The implementation of quantum technologies is a cessisperformedslowlyenough,theadiabaticthe- fundamentally based on a precise control of quan- t s tum systems. This requires the ability of keep- orem ensures that the system stays close to the t. ingtrackofthequantumdynamicsalongadesired ground state of H(t) throughout the evolution. At a the final time T, measuring the state will give the m path in Hilbert space. In this direction, a success- solution of the original problem with high proba- fulstrategyisprovidedbytheadiabatictheoremof - bility. However, the presence of a quantum phase d quantum mechanics [1–3]. It states that a system transition(QPT)[15]willimplyintheslowdownof n that isinitially preparedin an eigenstateof atime- o dependentHamiltonian H(t)willevolvetothecor- the adiabatic evolution, leading to the appearance c of excitations during the quantum dynamics. This responding instantaneous eigenstate at a later time [ phenomenoniswelldescribedbytheKibble-Zurek T,providedthat H(t)variessmoothlyandthatT is 1 muchlargerthan(somepowerof)therelevantmin- mechanism(KZM)[16,17]. Inthequantumrealm, v imalinverseenergygap(see,e.g.,Ref.[4–6]). The a cornerstone lattice model in statistical mechan- 7 icsillustratingtheKZMisthetransverse-fieldIsing adiabatic theorem is the basis for the paradigm of 6 spin-1/2chain[18–20]. Insuchacase,theramping adiabatic quantum computation (AQC) [7]. Adia- 1 fromtheparamagneticregimetotheferromagnetic batic optimization has been currently implemented 5 ordering does not asymptotically end up in a fully 0 and commercially manufactured through quantum ferromagneticstate. Instead,thesystemwillbede- . annealing (QA) devices [8, 9], which are based on 1 scribedbyamosaicofordereddomainswhosefinite quantum tunnelling due to interactions with a low 0 sizedependsontherateofthetransition.Inparticu- 7 temperaturebath[10]. SuchQAdevicesconstitute lar,inthecaseofsecond-orderQPTs,KZMpredicts 1 apromisingapproachforquantuminformationpro- thatthesizeoftheordereddomainsscaleswiththe : cessing(see,e.g. Refs.[11–14]). v transition time as a universal power law, which is i X providedintermsofacombinationofcriticalexpo- nents. Thisapproachalsorevealsmany-bodycriti- r a calfeaturesclosetoQPTsthroughthedynamicsof ∗[email protected]ff.br †[email protected]ff.br theentanglementspectrum[21,22]. ‡[email protected]ff.br Theaimofthisworkistoinvestigatetheexcita- 2 tiondynamicsatafirst-orderQPT.Inthisdirection, can be taken here as spin-1/2 degrees of freedom we will consider the quench-induced QPT in the arranged in a chain. We denote the computational quantumsearchHamiltonian[23,24],whichimple- basis by the set {|i(cid:105)}, with 0 ≤ i ≤ N −1. With- ments a quantum algorithm whose target is to find out loss of generality, we can assume an oracular out a marked element in an unstructured list [25]. modelsuchthatthemarkedelementisthestate|0(cid:105). Asafirstcontribution,wewillprovidetheexactdy- So the implementation of the quantum search can namicsofthemodelintermsofasingleRiccatidif- beachievedthroughtheprojectiveHamiltonian ferentialequation[26]. Wewillthenapplythisex- H(s)= f(s)(1−|ψ (cid:105)(cid:104)ψ |)+g(s)(1−|0(cid:105)(cid:104)0|), (1) actsolutioninthecharacterizationofthefirst-order 0 0 √ QPT as well as its associated excitation dynamics. where |ψ (cid:105) = (1/ N)(cid:80)N−1|i(cid:105) and s denotes the 0 i=0 Forafirst-orderclassicalphasetransition,KZMhas normalized time s = t/T (0 ≤ s ≤ 1), with T the beenrecentlyconsideredinthespecificcaseofthe totaltimeofevolution. TheGroversearchhasmo- two-dimensional Potts model [27]. In that case, it tivated a number of small scale experimental real- has been shown that an important role is played izationsindifferentphysicalarchitectures[31–39]. by the boundary conditions adopted, which imply Theadiabaticsearchalgorithmstartsin s = 0with intodifferentscalinglawsfortheordereddomains. thequantumsystempreparedintheuniformsuper- ThesearchHamiltonianistranslationallyinvariant, positionprovidedby|ψ(0)(cid:105)=|ψ (cid:105). Thisinitialstate 0 whichleadstoscalinglawsthatwillbeshowntobe canbesplitupintheform compatible with those for periodic boundary con- ditions appearing in the classical case. In partic- (cid:88)N−1 ular, we will also discuss the probabilities of suc- |ψ(0)(cid:105)=a(0)|0(cid:105)+p(0) |i(cid:105), (2) cess of determining the marked element along the i=1 √ quantum evolution by adopting either global or lo- with a(0) = p(0) = 1/ N. The system dynamics caladiabaticitystrategies. Moreover,wewilldeter- isthengovernedbySchro¨dingerequationwhich,in minethedisturbanceofthequantumcriticalityasa termsofthenormalizedtimes,canbewrittenas functionofthesystemsize. Wewillthenshowthat thecriticalpointexponentiallyconvergestoitsther- H(s)|ψ(s)(cid:105)= i |ψ(cid:48)(s)(cid:105), (3) modynamic limit even in a fast evolution regime. T This will be characterized by both entanglement with (cid:126) = 1 and the prime symbol denoting deriva- QPT estimators [28] (see also Ref. [29]) and the tive with respect to s. Since the Hamiltonian pre- Schmidt gap [30]. As in the transverse-field Ising servestheformoftheinitialstategiveninEq.(2), spin-1/2 chain, the excitation pattern will be man- with|0(cid:105)asaprivilegedstate,thequantumevolution ifested in terms of quantum domains separated by of|ψ(0)(cid:105)impliesin kinks. However, instead of a power law, the kink densitywillthenbeshowntofollowanexponential (cid:88)N−1 scalingasafunctionoftheevolutionspeed, which |ψ(s)(cid:105)=a(s)|0(cid:105)+p(s) |i(cid:105), (4) canbeinterpretedasaKZMforfirst-orderQPTs. i=1 witha(s)and p(s)tobedeterminedbythesolution of Eq. (3). In order to solve Schro¨dinger equation, II. DYNAMICSOFTHEQUANTUMSEARCH wefirstnoticethat,bydefining|ψ(s)(cid:105) ≡ a(s)|χ(s)(cid:105), Eq.(3)becomes Thesearchproblemaimsatfindingoutamarked (cid:34) i a(cid:48)(s) (cid:35) i element in an unstructured list of N items. In H(s)− 1 |χ(s)(cid:105)= |χ(cid:48)(s)(cid:105), (5) T a(s) T a quantum setting, it can be solved with scaling √ N, as proven by Grover [25]. Here, we consider where a Hamiltonian implementation through a quantum (cid:88)N−1 systemcomposedofnquantumbits(qubits),whose |χ(s)(cid:105)=|0(cid:105)+k(s) |i(cid:105), (6) Hilbert space has dimension N = 2n. The qubits i=1 3 withk(s)= p(s)/a(s). Now,observethat todefinetheinterpolationschemeforthefunctions f(s)andg(s).Asafirststep,letusconsiderthelow- H(s)|χ(s)(cid:105)= f(s)N[1−k(s)]|0(cid:105) esteigenvaluesoftheeigenspectrumofH(s),which (cid:34) f(s) (cid:35)(cid:88)N−1 areprovidedby + − (1−k(s))+g(s)k(s) |i(cid:105), (7) N i=1 (cid:113) 1± 1−4f(s)g(s)N with N = 1−1/N. Then, byinsertingEq.(7)into E±(s)= , (12) 2 Eq.(5),weobtain whereE (s)denotesthegroundstateenergy,while α(s) − f(s)N[1−k(s)]− =0, (8) E+(s)istheenergyassociatedwiththefirstexcited T state. Theircorrespondingeigenstatesread f(s) α(s) i − [1−k(s)]+g(s)k(s)− k(s)= k(cid:48)(s),(9) N T T withα(s)=ia(cid:48)(s)/a(s). FromEq.(8),wecansolve |E±(s)(cid:105)=N±(s)|0(cid:105)+b±(s)(cid:88)N−1|i(cid:105), (13) thedynamicsfora(s),yielding i=1 a(s)= √1 exp(cid:40)−iT(cid:90) s f(s(cid:48))N(cid:2)1−k(s(cid:48))(cid:3)ds(cid:48)(cid:41). where N 0 E (s) (10) b (s)=1− ± , (14) ± Noticethat,inEq.(10),wehavetheexponentialof Nf(s) acomplexnumber,sincek(s)mayingeneralexhibit (cid:112) real and imaginary parts. Indeed, the norm of a(s) and N (s) = 1/ 1+(N−1)b (s)2. This implies ± ± varies with s, since the algorithm targets on maxi- intoagapgivenby mizing this probability amplitude at the end of the (cid:113) evolution. WecanalsouseEq.(8)toeliminateα(s) inEq.(9). Itthenfollowsthatk(s)canbeobtained ∆E(s)= E+(s)−E−(s)= 1−4f(s)g(s)N. (15) bysolving InordertostayclosetothegroundstateofH(s),we i k(cid:48)(s)= f(s)Nk2(s)+(cid:104)g(s)+ f(s)−2f(s)N(cid:105)k(s) willimposetheadiabaticcondition[3] T −f(s)(1−N), (11) D(s) T (cid:29)max , (16) s ∆E2(s) which is a Riccati equation, i.e. a first-order ordi- nary differential equation for k(s) that is quadratic where D(s) = |(cid:104)E+(s)|H(cid:48)(s)|E−(s)(cid:105)|. In order to in k(s) [26]. Provided the solution of Eq. (11), we evaluate the adiabatic time condition and then an- are able to exactly describe the dynamics of the alyzethesuccessprobabilitiesofthealgorithm,we quantumsearchforanarbitrarynumbernofqubits. willconsiderbothglobalandlocaladiabaticstrate- Eq. (11) is rather general, holding for any interpo- gies. Inbothcases,thesystemexhibitsafirst-order lation defined by the functions f(s) and g(s). The QPT at s = 1/2, with the energy gap from the c choiceofsuchfunctionsaffectstheenergygapfrom ground state to the first excited state exponentially thegroundstatetothefirstexcitedstate,whichde- shrinking as a function of the input size n. This terminesthetimescaleofthealgorithm. implies that, no matter how slowly the system is dynamicallydriven,itsevolutioncannotfollowthe time-dependent ground state close to the quantum III. SUCCESSPROBABILITIES criticalpoint. Morespecifically,thesystemwillex- hibitexcitationsmanifestedthroughthepresenceof Inordertoinvestigatethesuccessprobabilitiesof kinksseparatingdomainwallsastheinstantaneous theadiabaticquantumsearchviaEq.(11),wehave vectorstateundergoestheQPT. 4 A. Globaladiabaticevolution 1.0 ▲ ▼ ▲ ▼ ▲ 0.8 Thesimplestevolutionstrategyistoadoptglobal ● τGA=1.0×10-1 adiabaticitythroughalinearinterpolation,namely, (s)00.6 ◆■ ττGGAA==21..50××1100-01 ◆ ◆ f(s)=1−s, P 0.4 ▲ τGA=0.4×101 g(s)= s. 0.2 ▼ τGA=1.0×101 ■ ■ ◆ ● ● Therefore, we can directly obtain the running time 0.0● ■ ◆ ▲ ▼ ● ■ ◆ ▲ ▼ ● ■ of the algorithm as T (cid:29) T , with T denoting 0.0 0.2 0.4 0.6 0.8 1.0 GA GA thecharacteristictimescaleforglobaladiabaticity, s whichreads FIG.1. ProbabilityofsuccessP (s)asafunctionofthe 0 D(s) normalized time s for n = 10 qubits for several dimen- TGA =msax∆E2(s) =O(N), (17) sionless running rates τGA, under a global adiabaticity strategy. with O(N) denoting asymptotic upper bound N on the growth rate of T . Notice then that T pro- GA GA isminimizedforthepath(see,e.g. Ref.[42]) videstheadiabaticscalefortherunningtimeofthe algorithm as a function of the size of the list. In f(s)=1−g(s), the particular case of the global adiabaticity strat- √ (cid:104) (cid:16)√ (cid:17) (cid:105) N−1−tan arctan N−1 (1−2s) egy, weobtainalinearscaling N, whichisequiva- g(s)= √ . lenttotheexpectedscalinginaclassicalsearchap- 2 N−1 proach[40].Inthequantumsetting,wecannowan- Thisresultsinaquadraticspeedupovertheclassical alyzetheprobabilityossuccess P0(s) = |(cid:104)0|ψ(s)(cid:105)|2 search, i.e., we obtain the time complexity T = √ LA as a function of time. The results are displayed in O( N)expectedbytheGroverquantumsearch[23, Fig. 1, where we consider the dimensionless run- 24]. ningratioτ =T/T asameasureofadiabaticity. GA GA For fast evolutions compared to T , the adiabatic GA 1.0 ▼ ▼ theorem is far from satisfied, which implies into a ▲ ▲ ▲ lowprobabilityofsuccessP0(s).Ontheotherhand, 0.8 P (s) improves as the total time gets much greater ● τLA=1.0×10-1 0 cthuarnclToGsAe.toNtohteicceriatilcsaoltphoaitnsttrsocn=g o1s/c2i,llawtihoinchs oacre- P(s)00.6 ◆■ ττLLAA==21..50××1100-01 reduced at the end of the evolution. This is a con- 0.4 ▲ τLA=0.4×101 sequenceofthestiffnessoftheordinarydifferential 0.2 ▼ τLA=1.0×101 ◆ ◆ equation(ODE)system[41]. 0.0● ■ ◆ ▲ ▼ ● ■ ◆ ▲ ▼ ● ■ ◆ ● ■ ● ■ 0.0 0.2 0.4 0.6 0.8 1.0 s B. Localadiabaticevolution FIG.2. ProbabilityofsuccessP (s)asafunctionofthe 0 We can improve the time scaling by imposing normalizedtimesforn=10qubitsforseveraldimension- a local adiabaticity strategy [23, 24], i.e. by di- lessrunningratesτLA,underalocaladiabaticitystrategy. viding the total time into infinitesimal time inter- vals and applying the adiabaticity condition given We can now analyze the probability os success byEq.(16)locallytoeachoftheseintervals.Byus- P (s) = |(cid:104)0|ψ(s)(cid:105)|2 as a function of time for the 0 ingthisprocedure,itcanbeshownthattheruntime local strategy. The results are displayed in Fig. 2, 5 whereweconsiderthedimensionlessrunningratio QPT estimator for n = 8 for several dimensionless τ = T/T as a measure of adiabaticity. Notice timesτ . AsoriginallyobservedinRefs.[28,43], LA LA LA that the local adiabatic dynamics are more stable, ∆(n)(s) locates a first-order QPT through a peak at E with the success probability converging faster af- the quantum critical point for finite sizes lattices, ter the critical point s = 1/2 to its final value at with the peak tending to shrink as the system size s = 1. Be√aring in mind the improved asymptotic is increased. Here, Fig. 3 exhibits this peak for scalingO( N)ofthelocaladiabaticitystrategy,the τ >1,whichmeansatotalevolutiontimeT larger LA √ absence of stiffness in the ODE system, and the than the Grover scaling O( N). For short times smoothness of its probability of success as a func- τ , thepeakdisappear. Remarkably, theQPTcan LA tionofs,wewilladoptthisinterpolationinthesub- still be located through the change of concavity in sequentanalysisoftheQPTdynamicsandquantum ∆(n)(s). E domainsformation. IV. QUENCH-INDUCEDFIRST-ORDERQPT 14 12 ◆ ◆ A. QPTEstimator 10 ● τLA=1.0×10-1 2 -10 8 ■ τLA=2.5×10-1 The characterization of quantum criticality via x ◆ τLA=1.0×100 ednettaenctgiloenmoefntqeusatnimtuamtorcsrit[i2c8a,l 2p9o]initss bbayseedxpolnoritnhge n()ΔE 46 ▲▼ ττLLAA==01..40××110011 ◆ ▲ ▲ ▲ the distinct behavior of the entanglement entropy 2 ■ ■ ▼ in critical and noncritical systems. To begin with, 0 ■ ◆ ▲ ▼ ● ■ ◆ ▲ ▼ ● ■ ● ▼ ● ▼ we consider the instantaneous evolved state |ψ(s)(cid:105) 0.0 0.2 0.4 0.6 0.8 1.0 as given by Eq. (4). By defining a bipartition s AB in the quantum system, the density operator of the composite system can be written as ρAB(s) = FIG.3. QPTestimator∆(En)(s)forn = 8underlocaladi- |ψ(s)(cid:105)(cid:104)ψ(s)|. Then,theentanglemententropyforthe abatic evolution for several dimensionless running rates τ . subsystemAreads LA (cid:88) E(ρ )=− λ[ρ ]log(λ[ρ ]), (18) A i A i A i We now analyse the scaling behavior of ∆(n)(s) E for different system sizes n. We take the local adi- whereλ[ρ ]denotestheeigenvaluesofthereduced density iopeArator ρ = tr ρ . The entropy E(ρ ) abaticstrategyinthefastevolutionregime. There- A B AB A sultsareshowninFig.4.Noticethatthereisajump itselfcould,inprinciple,beusedtocharacterizethe in∆(n)(s)asafunctionofsaroundthecriticalpoint quantum criticality. However, it usually requires E s = 1/2, with the plateau after the critical point much larger lattices to achieve the same precision c decreasingasthesizengetslarger. Intheupperin- ascomparedwiththeQPTestimatorapproach[28]. Inthisscenario,weconsiderthedifferencebetween set, weshowtheplateauheightobeysanexponen- tialscalinglawasafunctionofn.Inthelowerinset, entanglement entropies for two subsystems with different sizes. Here, we will choose continuous weshowthatthatthefinitesizeprecursor sm ofthe criticalpointexponentiallyconvergestoitsthermo- blocksofqubits withsizes n/2and n/4. Then, the QPTestimator∆(n)(s)isdefinedas dynamic limit sc, with sm defined as the time s for E which ∆(n)(s) exhibits an inflection point. This re- E ∆(n)(s)= E(ρ )−E(ρ ). (19) sultisremarkableinthesensethatthecriticalpoint E n/2 n/4 canbepreciselydetectedbytheQPTestimatoreven By adopting the local adiabatic interpolation, we in the fast evolution regime, with exponential con- provideinFig.3thebehaviorofthequench-induced vergenceofs towardsthecriticalpoints . m c 6 n()-4Δx10E112230505005 ---------211111■050420586◆ss11lnlns1[-][Δ(=)]00mcE▲▼2200○□3300◇nn●4400■◆5500▲▼66○00□◇●■◆▲▼○◆●■▲□nnnn◇====●8123642■◆○◇▼□▲▼nnnn====○4456□0864◇ n()ΔG000001......999990999990567890●----2110505■●ss1ln[-]◆0mc●▲20▼●○30●□n4●◇0 ●●50■●◆60▲● ▼ ○ □ ◇◆●■▲●nnnn■====8123◆642▲○◇▼□▼ ○nnnn====□44560864◇ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 s s FIG. 5. Schmidt gap ∆(n)(s) for n ∈ [8,64] and dimen- FIG.4. Estimatorforn∈[8,64]anddimensionlesstime sionless time τ = 0.G1 in the local adiabatic regime τ =0.1inthelocaladiabaticregimeasafunctionofthe LA LA as a function of the normalized time s. The precur- normalizedtime s. Thefinalplateauheightat s = 1can sor s ofthecriticalpoint s exponentiallyconvergesas befitasln[∆(En)(s=1)]=−0.18n−3.5−6.7/n. Thepre- ln[s m−s ]=−0.34n−1.96c cursor s ofthecriticalpoint s exponentiallyconverges m c m c asln[s −s ]=−0.35n−0.95 m c . The initial state for the Hamiltonian in Eq. (1) is √ |ψ(0)(cid:105) = (1/ N)(cid:80)N−1|i(cid:105), which corresponds to a i=0 completelypolarizedstateinthePauliσ eigenba- B. SchmidtGap x sis. Thefinalexpectedstate,afteranidealadiabatic evolution, is the ferromagnetic state |ψ(s = 1)(cid:105) = The Schmidt gap ∆(n)(s) is defined as the differ- G |0(cid:105), which is completely polarized in the Pauli σ encebetweenthetwohighesteigenvaluesofthere- z eigenbasis. However, for a quench-induced QPT duceddensitymatrixρ inacompositesystem AB A driven by a finite-time ramping, KZM implies into of n qubits described by the density operator ρ . AB afinalstatecomposedbyamosaicofquantumdo- Here,wewillcomputetheSchmidtgapbysplitting mainsseparatedbykinks. Aquantitativediscussion upthesystemintotwocontinuouspartswithequal hasbeenprovidedindetailsforasecond-orderQPT, sizen/2andusingthereduceddensitymatrixafter withthekinkdensityfollowingatypicalpower-law tracing out one of the parts. When approaching a behavior[18–20]. Letusnowdiscussthekinkden- quantumphasetransition,∆(n)(s)hasbeenshownto G sity behavior for the case of first-order QPTs. We signal the critical point and to scale with universal begin by defining the number of kinks through the critical exponents [30]. For the first-order QPT of followingobservable: thequantumsearchHamiltonian,wecanalsoshow that ∆(n)(s) is able to detect the critical point with (cid:88)n−1 G N =1/2 (1−σzσz ). (20) exponentialconvergence,asinthecaseoftheQPT k i i+1 estimator. ThisresultisillustratedinFig.5,where i=0 weplot∆(n)(s)asafunctionofthenormalizedtime Itsexpectationvalueasafunctionofthenormalized G sforseveralsystemsizesn. Asnincreases,∆(n)(s) timesisthen G showsabehaviorclosertoaladderfunction. n (s)=(cid:104)ψ(s)|N |ψ(s)(cid:105)=|a(s)|2(cid:104)χ(s)|N |χ(s)(cid:105), k k k (21) where we have used that |ψ(s)(cid:105) = a(s)|χ(s)(cid:105). V. QUANTUMDOMAINSANDKINK Fromthenormalizationofthestatevector|ψ(s)(cid:105)in DYNAMICS Eq.(4),weobtain In this Section, we will analyze the forma- 1 |a(s)|2 = , (22) tion of defects in the quantum search dynamics. 1+(N−1) |k(s)|2 7 with k(s) = p(s)/a(s). Moreover, by using |χ(s)(cid:105) 0.5● ■ ◆ ▲ ▼ ○ ● ■ ◆ ▲ ▼ ○ ● ▲ ● ▲ asgiveninEq.(6),weobservethattheoperatorσz will act on the state |χ(s)(cid:105) by changing the sign ofi 0.4 ● n=8,τLA=1.0×10-1 ■ ▼ ■ ▼ N/2vectorelementsfromk(s)to−k(s). Then )0.3 ■ n=8,τLA=1.0×100 (cid:104)χ(s)|σziσzi+1|χ(s)(cid:105)=1−|k(s)|2. (23) d(sK0.2 ◆▲ nn==648,,ττLLAA==11..00××1100-11 In order to investigate the domain formation in 0.1 ▼ n=64,τLA=1.0×100 termsoftheevolutionspeed, wedefinethedensity ○ n=64,τLA=1.0×101 ofkinksas 0.0 ◆ ○ ◆ ○ 0.0 0.2 0.4 0.6 0.8 1.0 1 d (s)= N (s). (24) s k n k FIG.6.Kinkdensityd (s)asafunctionofthenormalized ByusingEqs.(22)and(23)intoEq.(21),weobtain k time sforn = 8andn = 64qubits,wherefastandslow 2n−1|k(s)|2 speedregimesintermsofthedimensionlesstimeτLAare d (s)= , (25) considered. k 1+(2n−1)|k(s)|2 Observethatthekinkdensityiscompletelycharac- terizedbytheamplitudek(s),asgivenbyEq.(25). 0.5 Thisishighlyunusualincomparisonwiththeusual KZM.Itisaconsequenceofboththeinitialsuper- 0.4 pEpsEtooqqass.t.iee(t(ssi24o)a)|ni]](cid:105).uarfnneMoiqdfruootiirrhrmeee(cid:44)odvHs0eubarpym,tehtrtirhhlpoteeooursnegqiihtuaiiosonaunnnsttoyuotmmhfoeamnlaeelel-vgtctoroooyl-rmu,oittwnphioeumhntiaacs[[thiaasoossinmciiainn--l d(s=1)K00..23 dln[(s=1)]K---115050 ation between the energy cost of a domain config- 0.1 0 2 4 6 8 10 urationandtheexcitationdensity, duetothetower 0.0 1/τLA 0 2 4 6 8 10 ofdegenerateexcitedstatesarisingfromtheprojec- torstructureoftheGroverHamiltonian,asgivenby 1/τLA Eq.(1). FIG. 7. Kink density d for s = 1 as a function of the k Thebehaviorofthekinkdensityasafunctionof dimensionless speed 1/τ for n = 64 qubits. The plot LA thenormalizedtime sforfastandslowrampsisil- can be fit by the curve dk = 1/2(1−exp[−a/τLA])bτLA, lustratedinFig.6,wherethelocaladiabaticstrategy witha = 0.73andb = 0.37. Intheinset,weseealog- is adopted. Notice that, as we increase the dimen- plotanditsbestlinearfit,whichshowsthatapowerlaw sionlesstimeτ ,thekinkdensitytendstodecrease cannotdescribethekinkdensitybehavior. LA ats=1,yieldingafinalstateclosertotheferromag- netic state. On the other hand, in the fast regime, higher excitations are found in the final state, with akinkdensityclosertoitsvalueintheoriginalini- 1/τ . In the inset, we show that the usual power LA tial state. This result can be already observed for law behavior predicted by KZM for second-order a small lattice such as n = 8 and is shown to hold QPTscannotbeappliedhere. Instead, weobtaina forlargersizessuchasn = 64qubits. Inparticular, KZM for first-order QPTs, where the quantum do- thelargerthesize,thecloseristhekinkdensitytoa mainsappearasexpectedbyafinitespeed,butwith ladderfunction. InFig.7weconsiderthekinkden- anexponentialscalinglaw.Inparticular,theconver- sityasafunctionofthedimensionlessspeed1/τ genceofthekinkdensityisnowmuchfasterthanin LA forn = 64qubits. Aswecansee, thekinkdensity thecaseofthetraditionalKZM,whichisduetothe obeysanexponentiallawforitsscalingintermsof exponentialbehaviorofthefirst-orderQPT. 8 VI. CONCLUSION energy cost and domain sizes (due to the tower of degenerateexcitedstates),theevolutionratemainly determinesthepresenceorabsenceofdomainwalls Wehaveinvestigatedthedynamicsofafirst-order if a detection scheme (measurement) is performed QPT through the analysis of the quantum search onthesystem.Inanycase,fortheGroverdynamics, problem.Afterderivingtheexactevolutioninterms thekinkdensitystillreflectsanexponentialbehav- ofasingleRiccatiequation,weinvestigatedthedis- iorasafunctionoftheevolutionrate(asillustrated turbanceofthecriticalityduetotheevolutionrate. inFig.7). Wehaveshownthatthecriticalpointexponentially The quantum search Hamiltonian is the main converges to its thermodynamic limit as a function representative of a larger class of projector-based ofthesystemsize. Thisscalinglaw,whichisman- Hamiltonians, which can be used to implement ifested both in QPT entanglement estimators and more general quantum algorithms. We expect the in the Schmidt gap, holds even in a fast evolution pattern of excitation dynamics derived inour work regime. Thisshowsthatthecharacterizationofthe appliestothesegeneralizedmodelsaswell(includ- criticalpointisrobustagainstquench-inducedevo- ing the quench-induced QPT behavior). Naturally, lutions. Remarkably, the QPT estimator does not thesemodelsareverydifferentfromtheusualKZM show a peak in a fast regime, as it is usual for an in Ising spin glasses, e.g. in Ref. [44]. As a fu- ideal adiabatic transition. However, it indicates a tureperspective,weintendtoconsiderdecoherence characterization through an inflection point in the effects [45] in dynamical first-order QPTs. More- QPTestimatormeasure. over,wearealsointerestedintheexchangebetween Concerningtheexcitationdynamics,wehavede- power-lawandexponential-lawbehaviorsasacon- rivedaKZMforfirst-orderQPTs,indicatingtheex- sequenceofboundaryconditions[27]andHamilto- istenceofanexponentiallawforthekinkdensityin niansymmetries. termsofthedimensionlessspeed. Thissituationis ratherdifferentfromthetypical(second-orderQPT) instances of the KZM, where a polynomial scaling ACKNOWLEDGMENTS isexpected. Inparticular,thisimpliesthatthekink densitycanbeusedasausefultooltocharacterize I.B.C. is supported by CNPq-Brazil. M.S.S. theorderofaquench-inducedQPT.Moreover,itis acknowledges support from CNPq-Brazil (No. related to the disturbance in both the QPT entan- 304237/2012-4), FAPERJ (No 203036/2016), and glement estimator and Schmidt gap in the dynam- the Brazilian National Institute for Science and ical regime. Since there in no association between TechnologyofQuantumInformation(INCT-IQ). [1] M.BornandV.Fock,Z.Phys.51,165(1928). [8] M.W.Johnsonetal.,Nature473,194(2011). [2] T.Kato,J.Phys.Soc.Jap.5,435(1950). [9] A. J. Berkley et al., Phys. Rev. B 87, 020502(R) [3] A. Messiah, Quantum Mechanics (Dover Publica- (2013). tion,NewYork,1999). [10] A.Das,B.K.Chakrabarti,Rev.Mod.Phys.80,1061 [4] S. Teufel, Adiabatic perturbation theory in quan- (2008). tumdynamics,LectureNotesinMathematics1821, [11] S.Boixo,T.Albash,F.M.Spedalieri,N.Chancellor, Springer-VerlagBerlinHeidelberg,2003. D.A.Lidar,NatureComm.4,3067(2013). [5] S. Jansen, M.-B. Ruskai, R. Seiler, J. Math. Phys. [12] S.Boixo, T.F.Ronnow, S.V.Isakov, Z.Wang, D. 48,(2007). Wecker,D.A.Lidar,J.M.Martinis,M.Troyer,Na- [6] M. S. Sarandy, L.-A. Wu, D. Lidar, Quantum Inf. turePhysics10,218(2014). Process.3,331(2004). [13] T. F. Ronnow, Z. H. Wang, J. Job, S. Boixo, S. V. [7] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Isakov,D.Wecker,J.M.Martinis,D.A.Lidar,M. Lundgren,D.Preda,Science292,472(2001). Troyer,Science345,420(2014). 9 [14] R.Barendsetal.,Nature534,222(2016). [34] J.Ahn, T.C.Weinacht, P.H.Bucksbaum, Science [15] S.Sachdev,QuantumPhaseTransitions,Cambridge 287,463(2000). UniversityPress,Cambridge,U.K.,2001. [35] N.Bhattacharya,H.B.vanLindenvandenHeuvell, [16] T. W. B. Kibble, J. Phys. A 9, 1387 (1976); Phys. R. J. C. Spreeuw, Phys. Rev. Lett. 88, 137901 Rep.67,183(1980). (2002). [17] W.H.Zurek,Nature(London)317,505(1985);Acta [36] M.S.Anwar,D.Blazina,H.A.Carteret,S.B.Duck- Phys.Pol.B24,1301(1993); Phys.Rep.276,177 ett,J.A.Jones,Chem.Phys.Lett.400,94(2004). (1996). [37] K.-A.Brickman,P.C.Haljan,P.J.Lee,M.Acton,L. [18] W.H.Zurek,U.Dorner,P.Zoller,Phys.Rev.Lett. Deslauriers,C.Monroe,Phys.Rev.A72,050306(R) 95,105701(2005). (2005). [19] J.Dziarmaga,Phys.Rev.Lett.95,245701(2005). [38] P.Walther,K.J.Resch,T.Rudolph,E.Schenck,H. [20] A.Polkovnikov,Phys.Rev.B72,161201(R)(2005). Weinfurter,V.Vedral,M.Aspelmeyer,A.Zeilinger, [21] E. Canovi, E. Ercolessi, P. Naldesi, L. Taddia, D. Nature434,169(2005). Vodola,Phys.Rev.B89,104303(2014). [39] L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. [22] G. Torlai, L. Tagliacozzo, G. De Chiara, J. Stat. Bishop,B.R.Johnson,D.I.Schuster,J.Majer,A. Mech.P06001(2014). Blais, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, [23] W.vanDam,M.Mosca,U.Vazirani,inProceedings Nature460,240(2009). of the 42nd Annual Symposium on Foundations of [40] M. A. Nielsen, I. L. Chuang, Quantum Computa- ComputerScience279(2001). tionandQuantumInformation,CambridgeUniver- [24] J. Roland, N. J. Cerf, Phys. Rev. A 65, 042308 sityPress,Cambridge,U.K.,2000. (2002). [41] E.Hairer,G.Wanner.SolvingOrdinaryDifferential [25] L.K.Grover,Phys.Rev.Lett.79,325(1997). EquationsII:StiffandDifferential-AlgebraicProb- [26] W. T. Reid, Riccati differential equations, Volume lems.Springer,Berlin,2nded.1996. 86(MathematicsinScienceandEngineering),Aca- [42] M.Kieferova´, N.Wiebe, NewJ.Phys.16, 123034 demicPress,NewYork,NY,1972. (2014). [27] H.Panagopoulos,E.Vicari,Phys.Rev.E92,062107 [43] B. Boechat, J. Florencio, A. Saguia, and O. F. de (2015). AlcantaraBonfim,Phys.Rev.E89,032143(2014). [28] J.C.Xavier,F.C.Alcaraz,Phys.Rev.B84,094410 [44] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Di- (2011). vakaran,T.F.Rosenbaum,D.Sen,QuantumPhase [29] A.Saguia,Phys.Lett.A377,2288(2013). TransitionsinTransverseFieldSpinModels: From [30] G. De Chiara, L. Lepori, M. Lewenstein, A. San- Statistical Physics to Quantum Information, Cam- pera,Phys.Rev.Lett.109,237208(2012). bridgeUniversityPress,Cambridge,U.K.,2015. [31] I. L. Chuang, N. Gershenfeld, M. Kubinec, Phys. [45] A. Dutta, A. Rahmani, A. del Campo, Phys. Rev. Rev.Lett.80,3408(1998). Lett.117,080402(2016). [32] J.A.Jones, M.Mosca, R.H.Hansen, Nature393, 344(1998). [33] P.G.Kwiat,J.R.Mitchell,P.D.D.Schwindt,A.G. White,J.Mod.Optics47,257(2000).