Lecture Notes in Applied and Computational Mechanics Volume 38 Series Editors Prof. Dr.-Ing. Friedrich Pfeiffer Prof. Dr.-Ing. Peter Wriggers Lecture Notes in Applied and Computational Mechanics Edited by F. Pfeiffer and P. Wriggers Furthervolumesofthisseriesfoundonourhomepage:springer.com Vol.38:MarynowskiK. Vol.10:HutterK.,BaaserH.(Eds.) DynamicsoftheAxiallyMovingOrthotropicWeb DeformationandFailureinMetallicMaterials 149p.2008[978-3-540-78988-8] 409p.2003[3-540-00848-9] Vol.20:ZohdiT.I.,WriggersP. Vol.9:SkrzypekJ.,GanczarskiA.W.(Eds.) IntroductiontoComputationalMicromechanics AnisotropicBehaviourofDamagedMaterials 196p.2005[978-3-540-22820-2] 366p.2003[3-540-00437-8] Vol.19:McCallenR.,BrowandF.,RossJ.(Eds.) Vol.8:Kowalski,S.J. TheAerodynamicsofHeavyVehicles: ThermomechanicsofDryingProcesses Trucks,Buses,andTrains 365p.2003[3-540-00412-2] 567p.2004[3-540-22088-7] Vol.7:Shlyannikov,V.N. Vol.18:Leine,R.I.,Nijmeijer,H. Elastic-PlasticMixed-ModeFractureCriteriaandParameters DynamicsandBifurcations 246p.2002[3-540-44316-9] ofNon-SmoothMechanicalSystems Vol.6:PoppK.,SchiehlenW.(Eds.) 236p.2004[3-540-21987-0] SystemDynamicsandLong-TermBehaviour Vol.17:Hurtado,J.E. ofRailwayVehicles,TrackandSubgrade StructuralReliability:StatisticalLearningPerspectives 488p.2002[3-540-43892-0] 257p.2004[3-540-21963-3] Vol.5:Duddeck,F.M.E. Vol.16:KienzlerR.,AltenbachH.,OttI.(Eds.) FourierBEM:Generalization TheoriesofPlatesandShells: ofBoundaryElementMethodbyFourierTransform CriticalReviewandNewApplications 181p.2002[3-540-43138-1] 238p.2004[3-540-20997-2] Vol.4:Yuan,H. Vol.15:Dyszlewicz,J. NumericalAssessmentsofCracksinElastic-PlasticMaterials MicropolarTheoryofElasticity 311p.2002[3-540-43336-8] 356p.2004[3-540-41835-0] Vol.3:Sextro,W. Vol.14:FrémondM.,MaceriF.(Eds.) DynamicalContactProblemswithFriction: NovelApproachesinCivilEngineering Models,ExperimentsandApplications 400p.2003[3-540-41836-9] 159p.2002[3-540-43023-7] Vol.13:KolymbasD.(Eds.) Vol.2:Schanz,M. AdvancedMathematicalandComputational WavePropagationinViscoelastic Geomechanics andPoroelasticContinua 315p.2003[3-540-40547-X] 170p.2001[3-540-41632-3] Vol.12:WendlandW.,EfendievM.(Eds.) Vol.1:Glocker,C. AnalysisandSimulationofMulti¡eldProblems Set-ValuedForceLaws: 381p.2003[3-540-00696-6] DynamicsofNon-SmoothSystems Vol.11:HutterK.,KirchnerN.(Eds.) 222p.2001[3-540-41436-3] DynamicResponseofGranularandPorousMaterials underLargeandCatastrophicDeformations 426p.2003[3-540-00849-7] Dynamics of the Axially Moving Orthotropic Web Krzysztof Marynowski With 127 Figures and 13 Tables Dr. Krzysztof Marynowski Technical University of Lódz Department of Dynamics of Machines 90-924 Lódz ul. Stefanowskiego 1/15 Poland [email protected] ISBN: 978-3-540-78988-8 e-ISBN: 978-3-540-78989-5 Lecture Notes in Applied and Computational Mechanics ISSN 1613-7736 LibraryofCongressControlNumber:2008926862 ©FirstEdition2005.CorrectedSecondPrinting2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherways,andstorageindatabanks.Duplicationof this publication or parts thereof is permitted only under the provisions of the German Copyright LawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtained fromSpringer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH Printedonacid-freepaper 9 8 7 8 6 5 4 3 2 1 0 springer.com Contents 1 Introduction............................................. 1 1.1 IdentificationofRheologicalParametersofthePaperWeb ... 2 1.1.1 IdentificationMethod........................... 3 1.1.2 ResultsoftheExperimentalIdentification ........... 5 1.2 IdentificationoftheCorrugatedBoardasaComposite ...... 6 1.2.1 HomogenizationMethod ........................ 7 1.2.2 IdentificationResults............................ 9 2 StateofKnowledgeonDynamicsofAxiallyMovingSystems....... 11 2.1 StringSystems ...................................... 11 2.1.1 LinearModels................................. 11 2.1.2 NonlinearStringSystems ........................ 13 2.2 BeamSystems....................................... 17 2.2.1 LinearModels................................. 17 2.2.2 NonlinearBeamSystems......................... 19 2.3 PlateSystems ....................................... 25 2.3.1 NumericalInvestigations......................... 25 2.3.2 ExperimentalInvestigationsofAxiallyMoving PlateSystems.................................. 31 2.4 Finalremarks....................................... 38 3 DynamicalAnalysisoftheUndampedAxiallyMovingWebSystem .. 43 3.1 One-LayeredOrthotropicWeb ......................... 43 3.1.1 FormulationofNonlinearEquationsoftheWebMotion 43 3.1.2 SolutiontotheMathematicalModel ............... 47 3.1.3 ResultsofComparativeStudies ................... 54 3.1.4 ResultsofDynamicInvestigationsoftheMovingPaper Web......................................... 56 3.2 Multi-LayeredCompositeWeb ......................... 65 3.2.1 MathematicalModeloftheAxiallyMoving Multi-LayeredWeb............................. 65 3.2.2 SolutionoftheMathematicalModel ............... 70 3.2.3 ResultsoftheComparativeStudies ................ 73 vi Contents 3.2.4 ResultsoftheDynamicInvestigationsoftheAxially MovingCorrugatedBoardWeb................... 75 3.3 FinalRemarks ...................................... 82 4 DisplacementsoftheWebinEquilibriumStatesoftheLinearized System................................................. 85 4.1 MathematicalModelsoftheAxiallyMovingOrthotropicWeb 85 4.2 SolutiontotheMathematicalModeloftheWebLoadedwith ConstantLongitudinalForce........................... 87 4.3 DisplacementsoftheWebLoadedwithConstantLongitudinal Force.............................................. 90 4.4 WebLoadedwithaNon-UniformLongitudinalForce....... 94 4.5 WrinklingoftheWebLoadedwithaNon-Uniformly DistributedLongitudinalForce......................... 98 4.6 FinalRemarks ...................................... 101 5 DynamicsoftheAxiallyMovingViscoelasticWeb ............... 103 5.1 Two-DimensionalRheologicalModelforViscoelasticMaterials 104 5.2 MathematicalModeloftheMovingViscoelasticWeb ....... 106 5.3 SolutiontotheProblem............................... 109 5.4 ResultsoftheNumericalInvestigations................... 110 5.5 FinalRemarks ...................................... 114 6 BeamModeloftheMovingViscoelasticWeb ................... 117 6.1 NonlinearBeamModeloftheViscoelasticWeb............ 118 6.1.1 Kelvin-VoigtModelofMaterial................... 119 6.1.2 Poynting-ThompsonModelofMaterial............. 120 6.1.3 SolutiontotheProblems......................... 122 6.2 InvestigationsResultsoftheModelwiththeK-VElement.... 123 6.2.1 LinearizedSystem .............................. 123 6.2.2 Non-LinearSystem............................. 124 6.3 InvestigationsResultsoftheModelwithaP-TElement...... 129 6.3.1 LinearizedSystem .............................. 129 6.3.2 NonlinearSystem .............................. 130 6.4 FinalRemarks ...................................... 135 7 ConcludingRemarks ...................................... 137 AppendixA ................................................ 141 AppendixB ................................................ 143 AppendixC ................................................ 147 Index..................................................... 151 Fundamental Notations A cross-sectionareaoftheweb, b widthoftheweb, b dimensionlesscoefficientofinternaldamping, in c transportspeedoftheweb, c wavespeed, w D flexuralstiffnessoftheplate, E=E Young’smoduluswithrespecttothelongitudinaldirection, x E Young’smoduluswithrespecttothetransversedirection, y F dimensionlessAirystressfunction, G Kirchhoff’smodulus, h thicknessoftheweb, J inertialmomentofthecross-section, l lengthoftheweb, M ,M sectionalflexuralmomentswithrespecttothexaxisandtheyaxis, x y correspondingly, M sectionaltorsionmoment, xy N ,N sectionalmembraneforces, x y N sectionalshearforce, xy q generalizedcoordinate, i s dimensionlesstransportspeedoftheweb, t time, u,v,w componentsofdisplacementofthesurfacealongthedirectionsx,y,z, x,y,z Cartesiancoordinates, (cid:2) coefficientofinternaldamping, (cid:3) dimensionlessplatestiffness, (cid:4) orthotropycoefficient, (cid:5) dimensionlesslongitudinaldisplacementoftheweb, (cid:6) =(cid:6) Poisson’snumberwithrespecttothelongitudinaldirection, xy (cid:6) Poisson’s number with respect to the transverse direction (the first yx index denotes the transverse direction, the second one – the long- itudinaldirection), (cid:7) densityofthewebmaterial, (cid:8) realpartoftheeigenvalue, viii FundamentalNotations (cid:8) ,(cid:8) componentsofnormalstressesalongthedirectionx,y,respectively, x y (cid:9) dimensionlesstime, (cid:9) shearstressesinthex–yplane, xy ’ dimensionlesstransversedisplacementoftheweb, (cid:2) Airystressfunction, ! imaginarypartoftheeigenvalue. Chapter 1 Introduction A material continuum moving axially at high speed can be met in numerous differenttechnicalapplications.Thesecomprisebandsaws,webpapersduring manufacturing,processingandprintingprocesses,textilebandsduringmanu- facturingandprocessing,pipestransportingfluids,transmissionbeltsaswellas flat objects moving at high speeds in space. In all these so varied technical applications, the maximum transport speed or the transportation speed is aimed at in order to increase ‘efficiency and optimize investment and perfor- mance costs of sometimes very expensive and complex machinesand installa- tions.Thedynamicbehaviorofaxiallymovingsystemsveryoftenhindersfrom reachingtheseaims. Thebookisdevotedtodynamicsofaxiallymovingmaterialobjectsoflow flexural stiffness that are referred to as webs. Problems connected with the dynamic behavior of such objects are clearly visible in paper manufacturing andprintingindustry.Transportspeedsatwhichthepaperwebmovesduring manufacturing and processing can reach even 50 m/s. Under certain circum- stances,suchhightransportspeedscanleadtoresonancevibrations,instability orwebflattering.Thesebehaviorscanresultinwebfoldingorbreakingduring itsmotion.Changesinwebtensionthatfollowfromvibrationscanbringabout alternationsinthicknessofthepaperbeingmanufactured. Thebasicconditiontosolvetheseproblemsistounderstandfullythedynamic behaviorofanaxiallymovingwebintheundercriticalandovercriticalrangeofits transport speed. A dynamic analysis of physical and mathematical models of axiallymovingsystemsisappliedinthisrecognition.Ononehand,thesemodels should describe accurately the phenomena under analysis, and, on the other hand,theyshouldbeassimpleaspossibletoenabletheengineerwhooperates themachinetotestquicklyaninfluenceofindividualparametersonthedynamic behaviorofthedevices.Mostoftenthesetwoaimsarecontrarytoeachother. Having computational capabilities of modern hardware at disposal, it is relatively easy to determine – for instance with the finite element method – mathematicalmodelscomposedofahugenumberofdifferentialequationsthat describe each detail of the process under analysis. However, a solution and analysis of such a model is either impossible or unprofitable. Despite the fact that theyareless accurate,simpler models aremore usefulin recognition and K.Marynowski,DynamicsoftheAxiallyMovingOrthotropicWeb, 1 DOI:10.1007/978-3-540-78989-5_1,(cid:2)Springer-VerlagBerlinHeidelberg2008 2 1Introduction analysis of the phenomena under investigation. This was the author’s convic- tionwhilewritingthisbook. A variety of axially moving systems that are met in technical applications would easily lead to scattering the reader’s attention and to an unnecessary increaseavolumeofthisbookifallofthemweresubjecttotheanalysis.Thus, to make tracing the dynamic considerations easier, a paper web is the main objectofinvestigationsinthepresentbook. Paper is a very specific material, whose physical properties depend on its structure,rawmaterialscomposition,productiontechnology,finishing,proces- sing and hydrothermal state. Different properties of paper that result from its heterogeneity are shown in many works (e.g. [6,7]). Investigation results prove that two main orthotropy directions can be distinguished in the aniso- tropic paper web, namely: parallel and perpendicular to its longitudinal axis. Thelongitudinalaxiscoincideswiththemachinedirection(MD)ofthepaper web.Inopinionofmanyresearchersofpaper(e.g.[3,5]),theorthotropicmodel is correct to describe physical properties of paper because of its fibrous structure. Thisbookisdividedintosevenchapters.Inthenextpartoftheintroduction, theresultsofidentificationofrheologicalparametersoftwopaperwebsanda corrugated board web that are subject to dynamic investigations in further sections of the book are to be presented. In Chap. 2, the state of knowledge ondynamicinvestigationsofaxiallymovingsystemswillbediscussed.Thethird chapter is devoted to the dynamic analysis of the undamped system of the axiallymovingweb.Chapter4describestheinvestigationsofwebequilibrium states.Inthefifthchapter,theresultsofdynamicanalysisofthedampedsystem of the axially moving web are shown, whereas the sixth chapter presents the dynamic analysis of the beam model of the web. The book is concluded with finalremarksintheseventhchapterandappendixes. 1.1 Identification of Rheological Parameters of the Paper Web The important problem one can encounter while considering the dynamic behaviour of an axially moving paper web is how to model the web material. Usuallypaperisconsideredasaviscoelasticmaterial.Thismaterialdonotobey theHooke’slawanditsbehaviorshouldbemodeledbyadequateconstitutive equations. In the static-type analysis, to model specific paper properties, the four- parameter Bu¨rgers model (Fig. 1.1a) is used. With this model, essential phenomena that appear in paper such as stress relaxation, strain relaxation andplasticstraincanbedescribed.However,inthedynamic-typeanalysis,all thesephenomenaarenotequallyessential.Forexample,duringpaperproduc- tionwebsaremovingathighspeed,thepaperwebsaretransportedwithlong- itudinalspeedsofupto3000m/min,andonecanassumethatduringsuchshort timedurablestrainsdonotappear.