Dynamics of shock induced ignition in Fickett’s model with chain-branching kinetics: influence of χ J.Tang&M.I.Radulescu DepartmentofMechanicalEngineering,UniversityofOttawa,OttawaCanadaK1N6N5 Abstract 2 The problem of shock induced ignition by a piston is addressed in the framework of Fickett’s model for reactive 1 compressible flows, i.e., the reactive form of Burgers’ equation. An induction-reaction two-step chain-branching 0 modelisusedtostudythecouplingbetweentheenergyreleaseandthecompressiblehydrodynamicsoccurringduring 2 the shock ignition transient leading to a detonation. Owing to the model’s simplicity, the ignition and acceleration n mechanismisexplainedusingthetwofamiliesofcharacteristicsadmittedbythemodel. Theenergyreleasealongthe a particlepathsprovidestheamplificationofforward-travellingpressurewaves.Thesewavespre-compressthemedium J intheinductionlayeraheadofthereactionzone,thereforechangingtheinductiondelaysofsuccessiveparticles. The 3 variationoftheinductiondelayprovidesthemodulationoftheamplificationoftheforwardtravellingpressurewaves 1 by controlling the residence time of the pressure waves in the reaction zone. A closed form analytical solution is ] obtained by the method of characteristics and high activation energy asymptotics. The acceleration of the reaction h zonewasfoundtobeproportionaltotheproductoftheactivationenergy,theratiooftheinductiontoreactiontimeand p - theheatrelease. Thisfindingprovidesatheoreticaljustificationfortheprevioususeofthisnon-dimensionalnumber h tocharacterizetheignitionregimesobservedexperimentallyindetonationsandshockinducedignitionphenomena. t a Numericalsimulationsarepresentedandanalysed. Bothsubsonicandsupersonicinternalflamepropagationregimes m areobserved,consistentwithexperimentandpreviousreactiveEulermodels. [ Keywords: Shockinducedignition,Fickettmodel,methodofcharacteristics,activationenergyasymptotics, 1 amplificationmechanism,coherentpressurewaveamplification,Clarkeequations v 2 1 9 1. Introduction 2 . The present study focuses on the problem of shock induced ignition by a piston suddenly accelerated into a 1 reactive medium. This problem has attracted significant interest in recent years due to its universality in capturing 0 2 thecanonicalprocessesoccurringinreactivemediainthepresenceofgas-dynamicdisturbances,i.e. pressurewaves 1 [1,2,3,4,5,6,7,8,9,10]. Theproblemisalsoequivalenttoshockinducedignitionbyareflectedshock[11]. : Of particular interest to us is to determine the parameter that controls the different one-dimensional ignition v i regimes that can be realized experimentally [11]. For example, Meyer and Oppenheim first suggested that the sen- X sitivityoftheinductiontimetotemperaturefluctuations,withrespecttothedurationoftheexothermicpowerpulse r controlstheignitionprocess[12]. Mathematically,thiscanbewrittenastheproductofthereducedactivationenergy a controllingtheinductionreactionsandtheratioofinductiontoreactiontimes[13],namely, t E χ= ind a (1) t RT reac s Thesameparameterwasalsoidentifiedinthestabilityanalysesofself-propagatingdetonationwaves[14,15,16]and has also been used for correlating the ignition regimes and stability of cellular detonations [13]. Typically, a value ofχ ≈ 10correspondstotheonsetofstrongpressurewavesdrivenduringignitionbehindtheshocksandthelossof stabilityofdetonationwaves. However,thephysicalmechanismresponsibleforchangesoftheshock-ignitionregime whenthisparameterisvariedremainunclear. PreprintsubmittedtoProceedingsoftheCombustionInstitute January16,2012 Toaddresstherelativeimportanceoftheinductionzonesensitivityandthedurationoftheexothermicstage,the presentstudyassumesthemedium’sdecompositionisviaatwostepchainbranchingmodel,withdistinctinduction andreactionstages. Thisistypicalofmostreactivegasesandcanbeshowntorationallyderivefromagenericthree stepchainbranchingmodel[17,18]. TheinvestigationthusbuildsuponthestudiesofDoldandKapila[6], Sharpe [10]andBlytheetal.[4],whohaveaddressedthisprobleminthepastusingthereactiveEulerequationscoupledwith twoandthree-stepchain-branchingmodels. Althoughsignificantinsighthasbeengainedinthesepaststudies,thepresentworkfocusesonthemuchsimpler Fickettmodelforcompressiblereactivemedia[19,20].ThismodelisanextensionofBurgers’equation,aprototypical model for inert compressible hydrodynamics, to a reactive medium. Due to its simplicity, this model can serve to studythebasicmechanismwithoutthecomplicationsofthehighlynon-linearreactiveEulerequations. Forexample, this simple model has allowed us in the past to clarify the instability mechanism of pulsating detonations and has reproducedtheuniversalperioddoublingroutetochaosintravellingdetonations[21]. Usingthismodel,weattempt todetermineinthesimplestformpossiblehowtheχparametercontrolsthedynamicsoftheignitionprocessfollowing shockcompression. 2. Fickett’sreactionmodel Fickett’sanaloguemodeltoone-dimensionalinviscidreactivecompressibleflowisgivenby[20,21]: ∂ρ+∂ p=0 (2) t x The model is formulated in Lagrangian coordinates, x denotes a material coordinate and t represents time [19, 20]. Thevariableρhasthemeaningofdensityinthemodel. Theterm pin(2)hasthemeaningofpressure,see[20]. For simplicity,wechoosethegenericequationofstateproposedbyFickett,thatis 1(cid:16) (cid:17) p= ρ2+λ Q (3) r 2 where λ is a reaction progress variable ranging from 0 (unreacted) to 1 (reacted). The model has the property that r pressureincreaseswithincreasingdensity,orreleaseofenergyatconstantdensity. Notethatonerecoverstheinviscid Burgers’equationbysettingQ=0. AsimilarsimplifiedreactiveflowmodelwasalsoproposedbyMajda[22],with slightdifferencesinformulation. In the present work, we adopt the two step reaction model proposed by Radulescu and Tang [21] in order to capture the main features of chain-branching reactions [23]. Following the leading shock, we assume the existence of a thermally neutral induction zone, whose duration depends on the medium’s local compression. Following the inductionstage, weassumeanexothermicreactionthatproceedsatastate-independentconstantrate. Theresulting genericinduction-reactionmodelweproposeisthus: ∂tλi =−H(λi)e(cid:16)ρ−(cid:15)1(cid:17) (4) ∂λ ≡r= K(1−H(λ))(1−λ )ν (5) t r i r The variables have been non-dimensionalized by the characteristic state behind the initial shock. Time is thus non-dimensionalizedbytheinductiondelaybehindtheinitialshock. Theparameter(cid:15)istheinverseactivationdensity of the induction reactions. The parameter K, through our non-dimensionalization, is the ratio of the induction and reactiontimes. TheHeavisidefunctionH(·)controlsthetimingoftheonsetofthesecondexothermicreaction,which startswhentheinductionvariableλ reaches0. Aheadoftheshock,λ =1andλ =0. Wearealsoassumingthatthe i i r inductionreactionisactivatedbythepassageoftheinertleadingshock. Thesystemtobesolvedisthus(2),(4)and (5)withtheequationofstategivenby(3). Forthepistoninitiationproblemofinterest,thepistonpathcorrespondsto x = 0(seeFig. 1). Inordertomodel a steady piston, we set ρ(x = 0,t) = 1. Without loss of generality, we assume the strong shock limit and take the quiescent gas ahead of the shock as ρ(x,t = 0) = 0, λ(x,t = 0) = 1 and λ (x,t = 0) = 0. For a non-reactive i r medium, Burgers’ equation with the prescribed initial and boundary conditions result in a constant strength shock, 2 Figure1:Characteristict−xplotofshockinitiationforK=0.2,(cid:15)=0.2;theredlinerepresentsthemainshockfrontts(x),thegreenlinerepresents thefiretrajectoryt∗(x);thesolidlinesareC+characteristics;thebrokenlineistheanalyticalpredictionforthefiretrajectorygivenby(26)for t=O(1). propagating with speed 1/2, followed by a constant state ρ = 1 [24]. When the medium is exothermic, the energy which is deposited in the medium alters the medium’s mechanical response; we wish to analyse this mechanical responsebelow. 3. Amplificationmechanism WefirstsolvedtheabovesystemnumericallybyafinitevolumetechniquedescribedbyRadulescu&Tang[21]. Inthepresentstudy,agridresolutionof1600gridpointsperunitlengthwasused. WealsosetQ=1. Figure1showsanexampleofthesolutionobtainednumericallyfor K = 0.2and(cid:15) = 0.2. Thevariationofρis shown in the accompanying Video 1, but can be deduced directly, as it is given by the slope of the pressure waves (seebelow). Thetrajectoriesoftheleadingshock(theredlineinthefigure), theonsetofenergyrelease, whichwe willhenceforthcallfire(greenline),andtheinternalpressurewaves(blacklines)areshowninthet-xdiagram. The pressurewaveemittedattheonsetofreactionsat(x = 0,t = 1)markstheendoftheinertsolution. Thesubsequent solutionconsistsofanacceleratingshockandfire,whicheventuallyformadetonationwave. ThephysicalmechanismresponsiblefortheamplificationshowninFig. 1isbestexplainedbyfirsttransforming thegoverningequationsincharacteristicformandintegrating(4)fromthetimeaparticlecrossestheshockatt=t (x) s tothetimeatwhichtheexothermicreactionsbeginatthefiret=t∗(x). Weobtain: dp 1 dx = rQ along =ρ (6) dt 2 dt (cid:90) t∗ (cid:32)ρ−1(cid:33) 1= exp (7) (cid:15) ts dλ dx r =r along =0 (8) dt dt By inspection of (6), we deduce that the pressure waves propagating forward with acoustic speed dx/dt = ρ amplifywhenevertheytravelthroughareactivefield. ThisisthecaseofthepressurewavesinFig. 1originatingat 3 Figure2:Space-timediagramillustratingtherun-awayprocessatearlytimes.AC+pressurewaveoriginatingatthepiston(x=0)amplifieswhile travellingthroughthereactionzone(R).Itsemergenceintotheinductionzonemodifiesthepostshockstatefrom(S)toa(D).Thisshortensthe ignitiondelay(t∗−ts).TheshorterignitiondelayinturnprovidesamorecoherentamplificationofC+pressurewavesinthereactionzone.Zones OandPdenotetheinitialandproductstates,respectively. thepistononcethereactionshavebegunatt=1. Therateofchangeofthepressurewave’samplitudevarieswiththe heatadditionQattherater.Indeed,Figure1showsthesecharacteristicsacceleratingforward.Foraconstantreaction rate,thepressurewavesamplificationisproportionaltotheirresidencetimeinthereactionzone. Oncethesewaves exitthereactionzone,theypropagateintotheinductionzone,compressingtheunreactedmaterialandstrengthening theleadingshock. Theotherkeyelementintheamplificationstageisthedependenceoftheinductiondelayonthispre-compression, via(7).Forlow(cid:15)(i.e.,highactivationenergy),theinductiondelaycanbesignificantlyreduced.Thetendencytowards loweringtheignitiondelaypermitsthepressurewavestoremaininthereactionzoneforlongertimes,ascanbeseen from Fig. (1). This provides a more coherent amplification of these pressure waves, which in turn enhances the compressionintheinductionzoneandthatoftheshock. Thefeedbackmechanismisthusbetweenthepressurewaves propagatingforwardandthemodificationoftheonsetofreaction, whichmodulatestheamplificationamount. This mechanismwasalsofoundcentralincontrollingthedetonationwavestabilitybyRadulescuandTang[21]. 4. Asymptoticanalysis The early transient dynamics illustrated in Fig. 1 and discussed above have been summarized in Figure 2. The arguments presented can now be posed mathematically in an asymptotic analysis, which assumes that the inverse activationenergyissmall(i.e.,(cid:15) << 1). TheframeworkissimilartothatusedbySharpe[10]forthereactiveEuler equations. Theanalysisaimstocapturethecouplingbetweentheamplificationofforwardtravellingpressurewaves andtheresultingshorteningoftheignitiondelaydiscussedabove. Weassumethattheenergyreleaserateisslow,i.e. K ζ ≡ =O(1) (9) (cid:15) 4 Thismakesthesolutionaccurateontimescalesoforderunity(i.e. inductiontimescales). Theanalysisisalsovalid forfastheatrelease, whichcanbeobtainedby rescalingthetimevariableforfastertimescales[10], restrictingthe resulttoearliertimes. Inbothcases,whatweareinterestedinistheaccelerationofthefire. Wewillalsorestrictour analysistotheearlyamplificationoccurringbeforetheleadshockhasbeenmodifiedbythearrivalofapressurewave originatinginthereactionzone. Weexpandthedensityandreactionprogressvariableintheform ρ(x,t)=ρ (x,t)+(cid:15)ρ (x,t)+O((cid:15)2) (10) 1 2 λ (x,t)=λ (x,t)+(cid:15)λ (x,t)+O((cid:15)2) (11) r r1 r2 t∗(x)=t∗(x)+O((cid:15)) (12) 1 Replacing(10),(11)and(12)inthegoverningequationsandboundaryconditions,weobtaintoleadingorder: ρ (x,t)=1 (13) 1 λ (x,t)=0 (14) r1 t∗(x)=1+2x (15) 1 Thiscorrespondstotheinertsolutionofapistondrivenshockwave. WiththeO(1)solutionobtained,theO((cid:15))problemtobesolvedis: d (cid:18) Q(cid:19) 1 dx ρ +λ = ζQ along =1 (16) dt 2 r22 2 dt dλ dx r2 =ζ along =0 (17) dt dt ρ (x=0,t)=0 (18) 2 λ (x,t<t∗)=0 (19) r2 (cid:90) t∗(x) eρ2dt=1 (20) ts(x) The resulting problem is one of linear acoustics, which is very similar in form to what is obtained for the reactive Eulercase,i.e.,theClarkeequations[5,10]. Accordingto(16),theforwardfacingpressurewavesallpropagateatthe constantspeed(ofunity),butamplifyatconstantrateinthereactionzoneduetoenergyrelease. Thesolutioncanbe obtainedbythemethodofcharacteristics. Inthereactionzone,fort > t∗ (zoneRinFigure2),thereactionprogress variablecanbeimmediatelyobtained. λ (x,t>t∗)=ζ(t−t∗(x)) (21) r2 Substituting(21)into(16)andusingtheboundarycondition(18), weobtainthevariationofdensityinthereaction zone: ζQ ρ = (t∗(x)−1) (22) 2 2 Oncethedensityisknowninthereactionzone,thevalueofdensityinthedisturbedregionD(seeFigure2)canbe foundbyextendingtheC+ characteristicsintothisregion. InregionD,λ =0andtheC+ characteristicrelation(16) 2 requiresthatdensityisconstantalongacharacteristic. Theconstantisevaluatedusing(22)attheintersectionofthe C+characteristicwiththepatht=t∗(x). Denotingthisreferencepositionx (x,t)(seeFigure2),weget: ref ζQ(cid:16) (cid:17) ρ (x,t)= t∗(x (x,t)−1 (23) 2 ref 2 withx givenimplicitlyfromthetrajectoryoftheC+characteristic,i.e., ref x−x ref =1 (24) t−t∗(x ) ref 5 Region S is bounded by the shock t (x) = 2x and the first C+ disturbance originating at (x = 0,t = 1), given by s t = 1+ x. In this region, using the method of characteristics, we get ρ (x,t) = λ (x,t) = 0. The solution is now 2 2 complete,andtheintegralrelation(20)cannowbewrittenas (cid:90) t∗(x) eQ2ζ(t∗(xref(x,t)−1)dt−x=0 (25) 1+x Thisexpression,alongwith(24),givethetrajectoryt∗(x)implicitly. AdoptingSharpe’siterativestrategy[10]tofind t∗(x), we substitute the first order approximation t∗(x) in the integrand and solve for the correction appearing in the 1 integral’supperbound. Fromthefirstiteration,wefindthefollowingapproximation: 1 t∗(x)≈1+x+ log(1+Qζx) (26) Qζ ThisexpressionisshowninFigure1;itreproducesquiteaccuratelytheaccelerationofthereactionpath. Evaluating theaccelerationattheorigin,weobtain: Qζ 1K 1 a= = Q= χQ (27) 8 8 (cid:15) 8 Thisconcludesouranalysis, whichshowsquantitativelythefeedbackmechanismdiscussedintheprevioussection. Moreimportantly,however,itshowsexplicitlythattheaccelerationofthereactionzoneisgivenastheproductofχ andtheheatreleaseQ. 5. Influenceofχandignitionregimes To illustrate the effect of varying χ on the process of ignition and detonation formation, we have conducted numericalsimulationsbyvaryingboth(cid:15) andK. Thispermitsustodeterminetheevolutionoftheflowfieldonlonger timescales,whentheanalysispresentedabovebreaksdown(i.e. χ >> 1). Keeping(cid:15) = 0.2asaboveandincreasing K toavalueof2providesamorerapidamplification, asshowninFigure3. TheaccompanyingVideo2showsthe evolutionoftheρfield. Thiscorrespondstoχ=10. Ascanbeseeninthefigure,ashockwavenowformsinsidethe inductionzonefromtheconfluenceoftheforwardtravellingpressurewaves. Thisisduetothestrongeramplification ofthepressurewavesinthereactionzone. Thissubsequentmotionoftheinternalshockandfirearenowinphase, andpropagatequasi-steadily. Themodelthusrecoverstheinternalreactionwavedynamicsobservedexperimentally [11] and for the reactive Euler equations [10], where both subsonic and supersonic waves can be established. The supersonicwavesoccurwhentheinitialaccelerationofthefireissufficientlylarge. Furtherincreaseintherateofenergyreleaserate K leadstoamorepromptamplificationofthepressurewaves. Figure4showstheevolutionoftheflowfieldwhenK =5,i.e.χ=50.TheaccompanyingVideo3showstheevolution oftheρfield. Theinternalshockwavenowformsatanearliertime. Thestrongercompressionintheinductionzone now gives rise to a significant reduction in the induction delay. The onset of energy release now becomes in phase with the internal shock motion, and the two slowly accelerate. The arrival of this internal shock to the lead shock transformstheleadshockintoadetonationwave. This interior wave takes the form of a quasi-steady weak internal detonation. It is not self-sustaining, as the expiration of the induction delay essentially sets its trajectory. For reference, a Chapman-Jouguet internal wave propagating into the induction zone medium (ρ = 1) would have a speed of 2 [20]. Instead, we find that the speed ofthisinternaldetonationwaveisapproximately1.5whenitencounterstheleadingshock. Forevenlargervaluesof K,weseethesameevolution,buttheinternalweakdetonationstakeonvelocitieshigherthanthecorrespondingCJ values. Wehavefurtherexploredtheeffectofvaryingboth(cid:15) and K inordertodetermineifauniquevalueofχcanbe used to characterize the acceleration process. While this is so for χ = O(1) through the analysis presented above, larger values of χ yield internal shock waves, invalidating the analysis once the shock has formed. Figure 5 shows threedifferentcaseswhereboth(cid:15)andKarevariedsoastokeepaconstantχ=20. Forallthreecases,weseethatthe formationoftheinternalshockandsubsequentamplificationareverysimilar,inspiteoflargedifferencesinreaction rates. Thissuggeststhatindeedtheentireaccelerationprocesscanbecharacterizedbytheuniqueparameterχ. The analysisoftheaccelerationofthefireinthepresenceoftheinternalshockisleftforfuturestudy. 6 Figure3:Characteristict−xplotofshockinitiationforK=2,(cid:15)=0.2;samelegendaswithFig.1,additionallywithbluelinerepresentingtheend ofthereactionlayer. Figure4:Characteristict−xplotofshockinitiationforK=5,(cid:15)=0.2;samelegendasforFig.3. 7 8 Figure5:Characteristict−xplotofshockinitiationforχ=20,a)K=2,(cid:15)=0.1.b)K=4,(cid:15)=0.2.c)K=8,(cid:15)=0.4. 6. Concludingremarks Modelling the shock induced ignition using Fickett’s model permitted us to clearly illustrate the mechanism of accelerationoftheinducedhotspot: theenergyreleasealongtheparticlepathsprovidesanamplificationofforward- travellingpressurewaves. Thesewavespre-compresstheinductionlayeraheadofthereactionzone,thereforechang- ing the induction delays. The variation of the induction delay then provides a modulation of the amplification of forwardtravellingpressurewaves. Themodelsimplicityalsoallowedustoobtainananalyticalsolutionfortheac- celerationofthereactionzone,whichwasfoundproportionaltotheproductoftheactivationenergy,theratioofthe inductiontoreactiontimeandtheheatrelease. Thisfindingprovidesatheoreticaljustificationfortheprevioususeof thisnon-dimensionalnumbertocharacterizetheignitionregimesobservedexperimentallyindetonationsandshock inducedignitionphenomena. Acknowledgements We wish to thank the financial support of NSERC through a Discovery Grant to MIR and the support of the H2CANNSERCStrategicNetworkofExcellence. References [1] J.F.Clarke,R.S.Cant,Nonsteadygasdynamiceffectsintheinductiondomainbehindastrongshock,Vol.95ofProgressinAstronautics andAeronautics,AIAA,NewYork,1985,p.142. [2] P. A. Blythe, D. G. Crighton, Shock-generated ignition - the induction zone, Proceedings of the Royal Society of London Series a- MathematicalPhysicalandEngineeringSciences426(1870)(1989)189–209. [3] L.Bauwens, Ignitionbetweenashockandacontactsurface: Influenceofthedownstreamtemperature, ProceedingsoftheCombustion Institute28(2000)653–661. [4] P.A.Blythe,A.K.Kapila,M.Short,Shock-inducedchain-branchedignition,ProceedingsoftheCombustionInstitute32(2009)2371–2377. [5] J.F.Clarke,D.R.Kassoy,N.E.Meharzi,N.Riley,R.Vasantha,Ontheevolutionofplanedetonations,ProceedingsoftheRoyalSocietyof LondonSeriesa-MathematicalPhysicalandEngineeringSciences429(1877)(1990)259–283. [6] J.W.Dold,A.K.Kapila,Comparisonbetweenshockinitiationsofdetonationusingthermallysensitiveandchain-branchingchemical-models, CombustionandFlame85(1-2)(1991)185–194. [7] T.L.Jackson,A.K.Kapila,Shock-inducedthermalrunaway,SiamJournalonAppliedMathematics45(1)(1985)130–137. [8] G.J.Sharpe,M.Short,Ignitionofthermallysensitiveexplosivesbetweenacontactsurfaceandashock,PhysicsofFluids19(12). [9] G.J.Sharpe,M.Short,Shock-inducedignitionofthermallysensitiveexplosives,ImaJournalofAppliedMathematics69(5)(2004)493–520. [10] G.J.Sharpe,Shock-inducedignitionforatwo-stepchain-branchingkineticsmodel,PhysicsofFluids14(12)(2002)4372–4388. [11] R.A.Strehlow,FundamentalsofCombustion,InternationalTextbookCompany,Scranton,Pennsylvania,1968. [12] J.Meyer,A.Oppenheim,Ontheshock-inducedignitionofexplosivegases,in: ThirteenthSymposium(International)onCombustion,The CombustionInstitute,1971,pp.1153–1164. [13] M.I.Radulescu,Thepropagationandfailuremechanismofgaseousdetonations:experimentsinporous-walledtubes,Ph.D.thesis,McGill University(2003). [14] M.Short,G.J.Sharpe,Pulsatinginstabilityofdetonationswithatwo-stepchain-branchingreactionmodel:theoryandnumerics,Combustion TheoryandModelling7(2)(2003)401–416. [15] H. D. Ng, M. I. Radulescu, A. J. Higgins, N. Nikiforakis, J. H. S. Lee, Numerical investigation of the instability for one-dimensional chapman-jouguetdetonationswithchain-branchingkinetics,CombustionTheoryandModelling9(3)(2005)385–401. [16] C.Leung,M.I.Radulescu,G.J.Sharpe,Characteristicsanalysisoftheone-dimensionalpulsatingdynamicsofchain-branchingdetonations, PhysicsofFluids22(12)(2010)126101. [17] P.A.Blythe,A.K.Kapila,M.Short,Homogeneousignitionforathree-stepchain-branchingreactionmodel,JournalofEngineeringMathe- matics56(2)(2006)105–128. [18] G.J.Sharpe,N.Maflahi,Homogeneousexplosionandshockinitiationforathree-stepchain-branchingreactionmodel,JournalofFluid Mechanics566(2006)163–194. [19] W.Fickett,Detonationinminiature,AmericanJournalofPhysics47(12)(1979)1050–1059. [20] W.Fickett,IntroductiontoDetonationTheory,UniversityofCaliforniaPress,Berkeley,1985. [21] M.I.Radulescu,J.Tang,Nonlineardynamicsofself-sustainedsupersonicreactionwaves: Fickett’sdetonationanalogue,PhysicalReview Letters107(16). [22] A.Majda,Aqualitativemodelfordynamiccombustion,SIAMJournalonAppliedMathematics41(1)(1981)70–93. [23] W.Fickett,W.C.Davis,Detonation:TheoryandExperiment,DoverPublications,Mineola,N.Y.,2000. [24] G.B.Whitham,LinearandNonlinearWaves,Wiley,NewYork,1974. 9