ebook img

Dynamics of Planetary Systems PDF

641 Pages·2023·17.287 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of Planetary Systems

Dynamics of Planetary Systems PRINCETONSERIESINASTROPHYSICS EDITEDBYDAVIDN.SPERGEL TheoryofRotatingStars,byJean-LouisTassoul TheoryofStellarPulsation,byJohnP.Cox GalacticDynamics,SecondEdition,byJamesBinneyandScottTremaine DynamicalEvolutionofGlobularClusters,byLymanS.Spitzer,Jr. SupernovaeandNucleosynthesis:AnInvestigationoftheHistoryofMatter, fromtheBigBangtothePresent,byDavidArnett UnsolvedProblemsinAstrophysics,editedbyJohnN.Bahcalland JeremiahP.Ostriker GalacticAstronomy,byJamesBinneyandMichaelMerrifield ActiveGalacticNuclei:FromtheCentralBlackHoletotheGalacticEnvironment, byJulianH.Krolik PlasmaPhysicsforAstrophysics,byRussellM.Kulsrud ElectromagneticProcesses,byRobertJ.Gould ConversationsonElectricandMagneticFieldsintheCosmos,byEugeneN.Parker High-EnergyAstrophysics,byFulvioMelia StellarSpectralClassification,byRichardO.GrayandChristopherJ.Corbally ExoplanetAtmospheres:PhysicalProcesses,bySaraSeager PhysicsoftheInterstellarandIntergalacticMedium,byBruceT.Draine TheFirstGalaxiesintheUniverse,byAbrahamLoebandStevenR.Furlanetto ExoplanetaryAtmospheres:TheoreticalConceptsandFoundations,byKevinHeng MagneticReconnection:AModernSynthesisofTheory,Experiment,and Observations,byMasaakiYamada PhysicsofBinaryStarEvolution:FromStarstoX-rayBinariesandGravitational WaveSources,byThomasM.TaurisandEdwardP.J.vandenHeuvel DynamicsofPlanetarySystems,byScottTremaine Dynamics of Planetary Systems Scott Tremaine PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright(cid:2)c 2023byPrincetonUniversityPress PrincetonUniversityPressiscommittedtotheprotectionofcopyright andtheintellectualpropertyourauthorsentrusttous.Copyright promotestheprogressandintegrityofknowledge.Thankyoufor supportingfreespeechandtheglobalexchangeofideasbypurchasing anauthorizededitionofthisbook.Ifyouwishtoreproduceordistribute anypartofitinanyform,pleaseobtainpermission. Requestsforpermissiontoreproducematerialfromthiswork [email protected] PublishedbyPrincetonUniversityPress 41WilliamStreet,Princeton,NewJersey08540 99BanburyRoad,OxfordOX26JX press.princeton.edu AllRightsReserved ISBN9780691207124 ISBN(pbk.)9780691207117 ISBN(e-book)9780691244228 BritishLibraryCataloging-in-PublicationDataisavailable Editorial:IngridGnerlich&WhitneyRauenhorst ProductionEditorial:AliParrington Jacket/CoverDesign:WandaEspaña Production:JacquelinePoirier Publicity:MatthewTaylor&CharlotteCoyne Coverimage:TheinnermostGalileansatellite,Io,castsitsshadowonto theclouddecksofJupiterinthisVoyager1mosaic,taken4March1979, ataplanet-spacecraftdistanceof1millionkm.PhotographbyIanRegan (sourceimagescourtesyofNASA/JPL,viathePDSRing-MoonSystems Node’sOPUSservice). ThisbookhasbeencomposedinLATEX.Thepublisherwouldliketo acknowledgetheauthorofthisvolumeforprovidingtheprint-ready filesfromwhichthisbookwasprinted. Printedonacid-freepaper.∞ PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 frontmatter August 25, 2022 6.125x9.25 Contents Preface xi 1 The two-body problem 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The shape of the Kepler orbit . . . . . . . . . . . . . . . . . . . . 5 1.3 Motion in the Kepler orbit . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Orbit averages . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2 Motion in three dimensions . . . . . . . . . . . . . . . . . 17 1.3.3 Gauss’s f and g functions . . . . . . . . . . . . . . . . . . 20 1.4 Canonical orbital elements . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Units and reference frames. . . . . . . . . . . . . . . . . . . . . . 28 1.5.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.2 Units for the solar system . . . . . . . . . . . . . . . . . . 30 1.5.3 The solar system reference frame . . . . . . . . . . . . . . 32 1.6 Orbital elements for exoplanets . . . . . . . . . . . . . . . . . . . 32 1.6.1 Radial-velocity planets . . . . . . . . . . . . . . . . . . . . 33 1.6.2 Transiting planets . . . . . . . . . . . . . . . . . . . . . . 35 1.6.3 Astrometric planets . . . . . . . . . . . . . . . . . . . . . 40 1.6.4 Imaged planets . . . . . . . . . . . . . . . . . . . . . . . . 43 1.7 Multipole expansion of a potential . . . . . . . . . . . . . . . . . 44 1.7.1 The gravitational potential of rotating fluid bodies . . . . 46 1.8 Nearly circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.8.1 Expansions for small eccentricity . . . . . . . . . . . . . . 50 1.8.2 The epicycle approximation . . . . . . . . . . . . . . . . . 53 1.8.3 Orbits and the multipole expansion. . . . . . . . . . . . . 58 1.9 Response of an orbit to an external force . . . . . . . . . . . . . . 60 1.9.1 Lagrange’s equations . . . . . . . . . . . . . . . . . . . . . 61 1.9.2 Gauss’s equations . . . . . . . . . . . . . . . . . . . . . . 65 2 Numerical orbit integration 71 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 frontmatter August 25, 2022 6.125x9.25 vi Contents 2.1.1 Order of an integrator . . . . . . . . . . . . . . . . . . . . 75 2.1.2 The Euler method . . . . . . . . . . . . . . . . . . . . . . 76 2.1.3 The modified Euler method . . . . . . . . . . . . . . . . . 81 2.1.4 Leapfrog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.2 Geometric integration methods . . . . . . . . . . . . . . . . . . . 84 2.2.1 Reversible integrators . . . . . . . . . . . . . . . . . . . . 86 2.2.2 Symplectic integrators . . . . . . . . . . . . . . . . . . . . 90 2.2.3 Variable timestep . . . . . . . . . . . . . . . . . . . . . . . 93 2.3 Runge–Kutta and collocation integrators . . . . . . . . . . . . . . 96 2.3.1 Runge–Kutta methods . . . . . . . . . . . . . . . . . . . . 96 2.3.2 Collocation methods . . . . . . . . . . . . . . . . . . . . . 101 2.4 Multistep integrators . . . . . . . . . . . . . . . . . . . . . . . . . 104 2.4.1 Multistep methods for first-order differential equations . . 104 2.4.2 Multistep methods for Newtonian differential equations . 109 2.4.3 Geometric multistep methods . . . . . . . . . . . . . . . . 113 2.5 Operator splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.5.1 Operator splitting for Hamiltonian systems . . . . . . . . 116 2.5.2 Composition methods . . . . . . . . . . . . . . . . . . . . 119 2.5.3 Wisdom–Holman integrators . . . . . . . . . . . . . . . . 120 2.6 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.6.1 Time regularization . . . . . . . . . . . . . . . . . . . . . 122 2.6.2 Kustaanheimo–Stiefel regularization . . . . . . . . . . . . 125 2.7 Roundoff error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2.7.1 Floating-point numbers . . . . . . . . . . . . . . . . . . . 129 2.7.2 Floating-point arithmetic . . . . . . . . . . . . . . . . . . 129 2.7.3 Good and bad roundoff behavior . . . . . . . . . . . . . . 132 3 The three-body problem 137 3.1 The circular restricted three-body problem . . . . . . . . . . . . 138 3.1.1 The Lagrange points . . . . . . . . . . . . . . . . . . . . . 141 3.1.2 Stability of the Lagrange points . . . . . . . . . . . . . . . 147 3.1.3 Surface of section . . . . . . . . . . . . . . . . . . . . . . . 151 3.2 Co-orbital dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.2.1 Quasi-satellites . . . . . . . . . . . . . . . . . . . . . . . . 164 3.3 The hierarchical three-body problem . . . . . . . . . . . . . . . . 168 3.3.1 Lunar theory . . . . . . . . . . . . . . . . . . . . . . . . . 171 3.4 Hill’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 3.4.1 Periodic orbits in Hill’s problem . . . . . . . . . . . . . . 185 3.4.2 Unbound orbits in Hill’s problem . . . . . . . . . . . . . . 194 3.5 Stability of two-planet systems . . . . . . . . . . . . . . . . . . . 197 3.6 Disk-driven migration . . . . . . . . . . . . . . . . . . . . . . . . 204 4 The N-body problem 209 4.1 Reference frames and coordinate systems . . . . . . . . . . . . . 209 4.1.1 Barycentric coordinates . . . . . . . . . . . . . . . . . . . 210 frontmatter August 25, 2022 6.125x9.25 Contents vii 4.1.2 Astrocentric coordinates . . . . . . . . . . . . . . . . . . . 211 4.1.3 Jacobi coordinates . . . . . . . . . . . . . . . . . . . . . . 217 4.2 Hamiltonian perturbation theory . . . . . . . . . . . . . . . . . . 221 4.2.1 First-order perturbation theory . . . . . . . . . . . . . . . 223 4.2.2 The Poincar´e–von Zeipel method . . . . . . . . . . . . . . 226 4.2.3 Lie operator perturbation theory . . . . . . . . . . . . . . 228 4.3 The disturbing function . . . . . . . . . . . . . . . . . . . . . . . 234 4.4 Laplace coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 241 4.4.1 Recursion relations . . . . . . . . . . . . . . . . . . . . . . 243 4.4.2 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . 245 4.4.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 246 4.5 The stability of the solar system . . . . . . . . . . . . . . . . . . 247 4.5.1 Analytic results . . . . . . . . . . . . . . . . . . . . . . . . 248 4.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 252 4.6 The stability of planetary systems . . . . . . . . . . . . . . . . . 256 5 Secular dynamics 261 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.2 Lagrange–Laplace theory . . . . . . . . . . . . . . . . . . . . . . 267 5.3 The Milankovich equations . . . . . . . . . . . . . . . . . . . . . 276 5.3.1 The Laplace surface . . . . . . . . . . . . . . . . . . . . . 281 5.3.2 Stellar flybys . . . . . . . . . . . . . . . . . . . . . . . . . 287 5.4 ZLK oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 5.4.1 Beyond the quadrupole approximation . . . . . . . . . . . 297 5.4.2 High-eccentricity migration . . . . . . . . . . . . . . . . . 301 6 Resonances 303 6.1 The pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 6.1.1 The torqued pendulum . . . . . . . . . . . . . . . . . . . 311 6.1.2 Resonances in Hamiltonian systems . . . . . . . . . . . . 312 6.2 Resonance for circular orbits . . . . . . . . . . . . . . . . . . . . 316 6.2.1 The resonance-overlap criterion for nearly circular orbits . 323 6.3 Resonance capture . . . . . . . . . . . . . . . . . . . . . . . . . . 325 6.3.1 Resonance capture in the pendulum Hamiltonian . . . . . 331 6.3.2 Resonance capture for nearly circular orbits . . . . . . . . 332 6.4 The Neptune–Pluto resonance . . . . . . . . . . . . . . . . . . . . 335 6.5 Transit timing variations . . . . . . . . . . . . . . . . . . . . . . . 342 6.6 Secular resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 6.6.1 Resonance sweeping . . . . . . . . . . . . . . . . . . . . . 349 7 Planetary spins 355 7.1 Precession of planetary spins . . . . . . . . . . . . . . . . . . . . 355 7.1.1 Precession and satellites . . . . . . . . . . . . . . . . . . . 360 7.1.2 The chaotic obliquity of Mars . . . . . . . . . . . . . . . . 365 7.2 Spin-orbit resonance . . . . . . . . . . . . . . . . . . . . . . . . . 368 frontmatter August 25, 2022 6.125x9.25 viii Contents 7.2.1 The chaotic rotation of Hyperion . . . . . . . . . . . . . . 372 7.3 Andoyer variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 374 7.4 Colombo’s top and Cassini states . . . . . . . . . . . . . . . . . . 379 7.5 Radiative forces on small bodies . . . . . . . . . . . . . . . . . . 388 7.5.1 Yarkovsky effect . . . . . . . . . . . . . . . . . . . . . . . 388 7.5.2 YORP effect . . . . . . . . . . . . . . . . . . . . . . . . . 391 8 Tides 397 8.1 The minimum-energy state . . . . . . . . . . . . . . . . . . . . . 398 8.2 The equilibrium tide . . . . . . . . . . . . . . . . . . . . . . . . . 402 8.2.1 Love numbers . . . . . . . . . . . . . . . . . . . . . . . . . 404 8.3 Tidal friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 8.4 Spin and orbit evolution . . . . . . . . . . . . . . . . . . . . . . . 411 8.4.1 Semimajor axis migration . . . . . . . . . . . . . . . . . . 412 8.4.2 Spinup and spindown . . . . . . . . . . . . . . . . . . . . 416 8.4.3 Eccentricity damping. . . . . . . . . . . . . . . . . . . . . 418 8.5 Non-equilibrium tides . . . . . . . . . . . . . . . . . . . . . . . . 422 8.5.1 Planets on high-eccentricity orbits . . . . . . . . . . . . . 423 8.5.2 Resonance locking . . . . . . . . . . . . . . . . . . . . . . 425 8.6 Tidal disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 8.6.1 The Roche limit . . . . . . . . . . . . . . . . . . . . . . . 426 8.6.2 Tidal disruption of regolith . . . . . . . . . . . . . . . . . 428 8.6.3 Tidal disruption of rigid bodies . . . . . . . . . . . . . . . 429 9 Planet-crossing orbits 433 9.1 Local structure of a planetesimal disk . . . . . . . . . . . . . . . 434 9.2 Disk-planet interactions . . . . . . . . . . . . . . . . . . . . . . . 440 9.2.1 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 9.2.2 Gravitational stirring . . . . . . . . . . . . . . . . . . . . 444 9.3 Evolution of high-eccentricity orbits . . . . . . . . . . . . . . . . 451 9.4 The Galactic tidal field. . . . . . . . . . . . . . . . . . . . . . . . 460 9.5 The Oort cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 9.6 The trans-Neptunian belt . . . . . . . . . . . . . . . . . . . . . . 475 9.7 Earth-crossing asteroids . . . . . . . . . . . . . . . . . . . . . . . 480 A Physical, astronomical and solar-system constants 483 B Mathematical background 491 B.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 B.2 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . 493 B.3 Vector calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 B.4 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 B.5 Spherical trigonometry . . . . . . . . . . . . . . . . . . . . . . . . 499 B.6 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 B.7 Calculus of variations . . . . . . . . . . . . . . . . . . . . . . . . 504 frontmatter August 25, 2022 6.125x9.25 Contents ix C Special functions 505 C.1 Kronecker delta and permutation symbol . . . . . . . . . . . . . 505 C.2 Delta function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 C.3 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 C.4 Elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 C.5 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 C.6 Legendre functions . . . . . . . . . . . . . . . . . . . . . . . . . . 511 C.7 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 512 C.8 Vector spherical harmonics . . . . . . . . . . . . . . . . . . . . . 514 D Lagrangian and Hamiltonian dynamics 517 D.1 Hamilton’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 519 D.2 Rotating reference frame . . . . . . . . . . . . . . . . . . . . . . . 520 D.3 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 D.4 The propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 D.5 Symplectic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 D.6 Canonical transformations and coordinates . . . . . . . . . . . . 526 D.7 Angle-action variables . . . . . . . . . . . . . . . . . . . . . . . . 530 D.8 Integrable and non-integrable systems . . . . . . . . . . . . . . . 531 D.9 The averaging principle . . . . . . . . . . . . . . . . . . . . . . . 535 D.10Adiabatic invariants . . . . . . . . . . . . . . . . . . . . . . . . . 536 D.11Rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 E Hill and Delaunay variables 541 E.1 Hill variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 E.2 Delaunay variables . . . . . . . . . . . . . . . . . . . . . . . . . . 542 F The standard map 545 F.1 Resonance overlap . . . . . . . . . . . . . . . . . . . . . . . . . . 546 G Hill stability 549 H The Yarkovsky effect 555 I Tidal response of rigid bodies 561 I.1 Tidal disruption of a rigid body . . . . . . . . . . . . . . . . . . . 566 J Relativistic effects 569 J.1 The Einstein–Infeld–Hoffmann equations . . . . . . . . . . . . . . 573 Problems 575 References 599 Index 613

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.