Dynamics of Planetary Systems PRINCETONSERIESINASTROPHYSICS EDITEDBYDAVIDN.SPERGEL TheoryofRotatingStars,byJean-LouisTassoul TheoryofStellarPulsation,byJohnP.Cox GalacticDynamics,SecondEdition,byJamesBinneyandScottTremaine DynamicalEvolutionofGlobularClusters,byLymanS.Spitzer,Jr. SupernovaeandNucleosynthesis:AnInvestigationoftheHistoryofMatter, fromtheBigBangtothePresent,byDavidArnett UnsolvedProblemsinAstrophysics,editedbyJohnN.Bahcalland JeremiahP.Ostriker GalacticAstronomy,byJamesBinneyandMichaelMerrifield ActiveGalacticNuclei:FromtheCentralBlackHoletotheGalacticEnvironment, byJulianH.Krolik PlasmaPhysicsforAstrophysics,byRussellM.Kulsrud ElectromagneticProcesses,byRobertJ.Gould ConversationsonElectricandMagneticFieldsintheCosmos,byEugeneN.Parker High-EnergyAstrophysics,byFulvioMelia StellarSpectralClassification,byRichardO.GrayandChristopherJ.Corbally ExoplanetAtmospheres:PhysicalProcesses,bySaraSeager PhysicsoftheInterstellarandIntergalacticMedium,byBruceT.Draine TheFirstGalaxiesintheUniverse,byAbrahamLoebandStevenR.Furlanetto ExoplanetaryAtmospheres:TheoreticalConceptsandFoundations,byKevinHeng MagneticReconnection:AModernSynthesisofTheory,Experiment,and Observations,byMasaakiYamada PhysicsofBinaryStarEvolution:FromStarstoX-rayBinariesandGravitational WaveSources,byThomasM.TaurisandEdwardP.J.vandenHeuvel DynamicsofPlanetarySystems,byScottTremaine Dynamics of Planetary Systems Scott Tremaine PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright(cid:2)c 2023byPrincetonUniversityPress PrincetonUniversityPressiscommittedtotheprotectionofcopyright andtheintellectualpropertyourauthorsentrusttous.Copyright promotestheprogressandintegrityofknowledge.Thankyoufor supportingfreespeechandtheglobalexchangeofideasbypurchasing anauthorizededitionofthisbook.Ifyouwishtoreproduceordistribute anypartofitinanyform,pleaseobtainpermission. Requestsforpermissiontoreproducematerialfromthiswork [email protected] PublishedbyPrincetonUniversityPress 41WilliamStreet,Princeton,NewJersey08540 99BanburyRoad,OxfordOX26JX press.princeton.edu AllRightsReserved ISBN9780691207124 ISBN(pbk.)9780691207117 ISBN(e-book)9780691244228 BritishLibraryCataloging-in-PublicationDataisavailable Editorial:IngridGnerlich&WhitneyRauenhorst ProductionEditorial:AliParrington Jacket/CoverDesign:WandaEspaña Production:JacquelinePoirier Publicity:MatthewTaylor&CharlotteCoyne Coverimage:TheinnermostGalileansatellite,Io,castsitsshadowonto theclouddecksofJupiterinthisVoyager1mosaic,taken4March1979, ataplanet-spacecraftdistanceof1millionkm.PhotographbyIanRegan (sourceimagescourtesyofNASA/JPL,viathePDSRing-MoonSystems Node’sOPUSservice). ThisbookhasbeencomposedinLATEX.Thepublisherwouldliketo acknowledgetheauthorofthisvolumeforprovidingtheprint-ready filesfromwhichthisbookwasprinted. Printedonacid-freepaper.∞ PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 frontmatter August 25, 2022 6.125x9.25 Contents Preface xi 1 The two-body problem 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The shape of the Kepler orbit . . . . . . . . . . . . . . . . . . . . 5 1.3 Motion in the Kepler orbit . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Orbit averages . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2 Motion in three dimensions . . . . . . . . . . . . . . . . . 17 1.3.3 Gauss’s f and g functions . . . . . . . . . . . . . . . . . . 20 1.4 Canonical orbital elements . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Units and reference frames. . . . . . . . . . . . . . . . . . . . . . 28 1.5.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.2 Units for the solar system . . . . . . . . . . . . . . . . . . 30 1.5.3 The solar system reference frame . . . . . . . . . . . . . . 32 1.6 Orbital elements for exoplanets . . . . . . . . . . . . . . . . . . . 32 1.6.1 Radial-velocity planets . . . . . . . . . . . . . . . . . . . . 33 1.6.2 Transiting planets . . . . . . . . . . . . . . . . . . . . . . 35 1.6.3 Astrometric planets . . . . . . . . . . . . . . . . . . . . . 40 1.6.4 Imaged planets . . . . . . . . . . . . . . . . . . . . . . . . 43 1.7 Multipole expansion of a potential . . . . . . . . . . . . . . . . . 44 1.7.1 The gravitational potential of rotating fluid bodies . . . . 46 1.8 Nearly circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.8.1 Expansions for small eccentricity . . . . . . . . . . . . . . 50 1.8.2 The epicycle approximation . . . . . . . . . . . . . . . . . 53 1.8.3 Orbits and the multipole expansion. . . . . . . . . . . . . 58 1.9 Response of an orbit to an external force . . . . . . . . . . . . . . 60 1.9.1 Lagrange’s equations . . . . . . . . . . . . . . . . . . . . . 61 1.9.2 Gauss’s equations . . . . . . . . . . . . . . . . . . . . . . 65 2 Numerical orbit integration 71 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 frontmatter August 25, 2022 6.125x9.25 vi Contents 2.1.1 Order of an integrator . . . . . . . . . . . . . . . . . . . . 75 2.1.2 The Euler method . . . . . . . . . . . . . . . . . . . . . . 76 2.1.3 The modified Euler method . . . . . . . . . . . . . . . . . 81 2.1.4 Leapfrog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.2 Geometric integration methods . . . . . . . . . . . . . . . . . . . 84 2.2.1 Reversible integrators . . . . . . . . . . . . . . . . . . . . 86 2.2.2 Symplectic integrators . . . . . . . . . . . . . . . . . . . . 90 2.2.3 Variable timestep . . . . . . . . . . . . . . . . . . . . . . . 93 2.3 Runge–Kutta and collocation integrators . . . . . . . . . . . . . . 96 2.3.1 Runge–Kutta methods . . . . . . . . . . . . . . . . . . . . 96 2.3.2 Collocation methods . . . . . . . . . . . . . . . . . . . . . 101 2.4 Multistep integrators . . . . . . . . . . . . . . . . . . . . . . . . . 104 2.4.1 Multistep methods for first-order differential equations . . 104 2.4.2 Multistep methods for Newtonian differential equations . 109 2.4.3 Geometric multistep methods . . . . . . . . . . . . . . . . 113 2.5 Operator splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.5.1 Operator splitting for Hamiltonian systems . . . . . . . . 116 2.5.2 Composition methods . . . . . . . . . . . . . . . . . . . . 119 2.5.3 Wisdom–Holman integrators . . . . . . . . . . . . . . . . 120 2.6 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.6.1 Time regularization . . . . . . . . . . . . . . . . . . . . . 122 2.6.2 Kustaanheimo–Stiefel regularization . . . . . . . . . . . . 125 2.7 Roundoff error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2.7.1 Floating-point numbers . . . . . . . . . . . . . . . . . . . 129 2.7.2 Floating-point arithmetic . . . . . . . . . . . . . . . . . . 129 2.7.3 Good and bad roundoff behavior . . . . . . . . . . . . . . 132 3 The three-body problem 137 3.1 The circular restricted three-body problem . . . . . . . . . . . . 138 3.1.1 The Lagrange points . . . . . . . . . . . . . . . . . . . . . 141 3.1.2 Stability of the Lagrange points . . . . . . . . . . . . . . . 147 3.1.3 Surface of section . . . . . . . . . . . . . . . . . . . . . . . 151 3.2 Co-orbital dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.2.1 Quasi-satellites . . . . . . . . . . . . . . . . . . . . . . . . 164 3.3 The hierarchical three-body problem . . . . . . . . . . . . . . . . 168 3.3.1 Lunar theory . . . . . . . . . . . . . . . . . . . . . . . . . 171 3.4 Hill’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 3.4.1 Periodic orbits in Hill’s problem . . . . . . . . . . . . . . 185 3.4.2 Unbound orbits in Hill’s problem . . . . . . . . . . . . . . 194 3.5 Stability of two-planet systems . . . . . . . . . . . . . . . . . . . 197 3.6 Disk-driven migration . . . . . . . . . . . . . . . . . . . . . . . . 204 4 The N-body problem 209 4.1 Reference frames and coordinate systems . . . . . . . . . . . . . 209 4.1.1 Barycentric coordinates . . . . . . . . . . . . . . . . . . . 210 frontmatter August 25, 2022 6.125x9.25 Contents vii 4.1.2 Astrocentric coordinates . . . . . . . . . . . . . . . . . . . 211 4.1.3 Jacobi coordinates . . . . . . . . . . . . . . . . . . . . . . 217 4.2 Hamiltonian perturbation theory . . . . . . . . . . . . . . . . . . 221 4.2.1 First-order perturbation theory . . . . . . . . . . . . . . . 223 4.2.2 The Poincar´e–von Zeipel method . . . . . . . . . . . . . . 226 4.2.3 Lie operator perturbation theory . . . . . . . . . . . . . . 228 4.3 The disturbing function . . . . . . . . . . . . . . . . . . . . . . . 234 4.4 Laplace coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 241 4.4.1 Recursion relations . . . . . . . . . . . . . . . . . . . . . . 243 4.4.2 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . 245 4.4.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 246 4.5 The stability of the solar system . . . . . . . . . . . . . . . . . . 247 4.5.1 Analytic results . . . . . . . . . . . . . . . . . . . . . . . . 248 4.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 252 4.6 The stability of planetary systems . . . . . . . . . . . . . . . . . 256 5 Secular dynamics 261 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.2 Lagrange–Laplace theory . . . . . . . . . . . . . . . . . . . . . . 267 5.3 The Milankovich equations . . . . . . . . . . . . . . . . . . . . . 276 5.3.1 The Laplace surface . . . . . . . . . . . . . . . . . . . . . 281 5.3.2 Stellar flybys . . . . . . . . . . . . . . . . . . . . . . . . . 287 5.4 ZLK oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 5.4.1 Beyond the quadrupole approximation . . . . . . . . . . . 297 5.4.2 High-eccentricity migration . . . . . . . . . . . . . . . . . 301 6 Resonances 303 6.1 The pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 6.1.1 The torqued pendulum . . . . . . . . . . . . . . . . . . . 311 6.1.2 Resonances in Hamiltonian systems . . . . . . . . . . . . 312 6.2 Resonance for circular orbits . . . . . . . . . . . . . . . . . . . . 316 6.2.1 The resonance-overlap criterion for nearly circular orbits . 323 6.3 Resonance capture . . . . . . . . . . . . . . . . . . . . . . . . . . 325 6.3.1 Resonance capture in the pendulum Hamiltonian . . . . . 331 6.3.2 Resonance capture for nearly circular orbits . . . . . . . . 332 6.4 The Neptune–Pluto resonance . . . . . . . . . . . . . . . . . . . . 335 6.5 Transit timing variations . . . . . . . . . . . . . . . . . . . . . . . 342 6.6 Secular resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 6.6.1 Resonance sweeping . . . . . . . . . . . . . . . . . . . . . 349 7 Planetary spins 355 7.1 Precession of planetary spins . . . . . . . . . . . . . . . . . . . . 355 7.1.1 Precession and satellites . . . . . . . . . . . . . . . . . . . 360 7.1.2 The chaotic obliquity of Mars . . . . . . . . . . . . . . . . 365 7.2 Spin-orbit resonance . . . . . . . . . . . . . . . . . . . . . . . . . 368 frontmatter August 25, 2022 6.125x9.25 viii Contents 7.2.1 The chaotic rotation of Hyperion . . . . . . . . . . . . . . 372 7.3 Andoyer variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 374 7.4 Colombo’s top and Cassini states . . . . . . . . . . . . . . . . . . 379 7.5 Radiative forces on small bodies . . . . . . . . . . . . . . . . . . 388 7.5.1 Yarkovsky effect . . . . . . . . . . . . . . . . . . . . . . . 388 7.5.2 YORP effect . . . . . . . . . . . . . . . . . . . . . . . . . 391 8 Tides 397 8.1 The minimum-energy state . . . . . . . . . . . . . . . . . . . . . 398 8.2 The equilibrium tide . . . . . . . . . . . . . . . . . . . . . . . . . 402 8.2.1 Love numbers . . . . . . . . . . . . . . . . . . . . . . . . . 404 8.3 Tidal friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 8.4 Spin and orbit evolution . . . . . . . . . . . . . . . . . . . . . . . 411 8.4.1 Semimajor axis migration . . . . . . . . . . . . . . . . . . 412 8.4.2 Spinup and spindown . . . . . . . . . . . . . . . . . . . . 416 8.4.3 Eccentricity damping. . . . . . . . . . . . . . . . . . . . . 418 8.5 Non-equilibrium tides . . . . . . . . . . . . . . . . . . . . . . . . 422 8.5.1 Planets on high-eccentricity orbits . . . . . . . . . . . . . 423 8.5.2 Resonance locking . . . . . . . . . . . . . . . . . . . . . . 425 8.6 Tidal disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 8.6.1 The Roche limit . . . . . . . . . . . . . . . . . . . . . . . 426 8.6.2 Tidal disruption of regolith . . . . . . . . . . . . . . . . . 428 8.6.3 Tidal disruption of rigid bodies . . . . . . . . . . . . . . . 429 9 Planet-crossing orbits 433 9.1 Local structure of a planetesimal disk . . . . . . . . . . . . . . . 434 9.2 Disk-planet interactions . . . . . . . . . . . . . . . . . . . . . . . 440 9.2.1 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 9.2.2 Gravitational stirring . . . . . . . . . . . . . . . . . . . . 444 9.3 Evolution of high-eccentricity orbits . . . . . . . . . . . . . . . . 451 9.4 The Galactic tidal field. . . . . . . . . . . . . . . . . . . . . . . . 460 9.5 The Oort cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 9.6 The trans-Neptunian belt . . . . . . . . . . . . . . . . . . . . . . 475 9.7 Earth-crossing asteroids . . . . . . . . . . . . . . . . . . . . . . . 480 A Physical, astronomical and solar-system constants 483 B Mathematical background 491 B.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 B.2 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . 493 B.3 Vector calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 B.4 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 B.5 Spherical trigonometry . . . . . . . . . . . . . . . . . . . . . . . . 499 B.6 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 B.7 Calculus of variations . . . . . . . . . . . . . . . . . . . . . . . . 504 frontmatter August 25, 2022 6.125x9.25 Contents ix C Special functions 505 C.1 Kronecker delta and permutation symbol . . . . . . . . . . . . . 505 C.2 Delta function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 C.3 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 C.4 Elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 C.5 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 C.6 Legendre functions . . . . . . . . . . . . . . . . . . . . . . . . . . 511 C.7 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 512 C.8 Vector spherical harmonics . . . . . . . . . . . . . . . . . . . . . 514 D Lagrangian and Hamiltonian dynamics 517 D.1 Hamilton’s equations . . . . . . . . . . . . . . . . . . . . . . . . . 519 D.2 Rotating reference frame . . . . . . . . . . . . . . . . . . . . . . . 520 D.3 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . 522 D.4 The propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523 D.5 Symplectic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 D.6 Canonical transformations and coordinates . . . . . . . . . . . . 526 D.7 Angle-action variables . . . . . . . . . . . . . . . . . . . . . . . . 530 D.8 Integrable and non-integrable systems . . . . . . . . . . . . . . . 531 D.9 The averaging principle . . . . . . . . . . . . . . . . . . . . . . . 535 D.10Adiabatic invariants . . . . . . . . . . . . . . . . . . . . . . . . . 536 D.11Rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 E Hill and Delaunay variables 541 E.1 Hill variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 E.2 Delaunay variables . . . . . . . . . . . . . . . . . . . . . . . . . . 542 F The standard map 545 F.1 Resonance overlap . . . . . . . . . . . . . . . . . . . . . . . . . . 546 G Hill stability 549 H The Yarkovsky effect 555 I Tidal response of rigid bodies 561 I.1 Tidal disruption of a rigid body . . . . . . . . . . . . . . . . . . . 566 J Relativistic effects 569 J.1 The Einstein–Infeld–Hoffmann equations . . . . . . . . . . . . . . 573 Problems 575 References 599 Index 613