ebook img

Dynamics of Freezing-Thawing Soil around Subway Shield Tunnels PDF

199 Pages·2020·8.574 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of Freezing-Thawing Soil around Subway Shield Tunnels

Zhen-Dong Cui · Zhong-Liang Zhang · Zhi-Xiang Zhan · Peng-Peng He · Chen-Yu Hou · Yan-Kun Zhang Dynamics of Freezing-Thawing Soil around Subway Shield Tunnels Dynamics of Freezing-Thawing Soil around Subway Shield Tunnels Zhen-Dong Cui Zhong-Liang Zhang (cid:129) (cid:129) Zhi-Xiang Zhan Peng-Peng He (cid:129) (cid:129) Chen-Yu Hou Yan-Kun Zhang (cid:129) Dynamics of Freezing-Thawing Soil around Subway Shield Tunnels 123 Zhen-DongCui Zhong-LiangZhang State Key Laboratoryfor Geomechanics State Key Laboratoryfor Geomechanics andDeepUndergroundEngineering,School andDeepUndergroundEngineering,School of MechanicsandCivil Engineering of MechanicsandCivil Engineering ChinaUniversityofMiningandTechnology ChinaUniversityofMiningandTechnology Xuzhou,China Xuzhou,China Zhi-Xiang Zhan Peng-Peng He State Key Laboratoryfor Geomechanics State Key Laboratoryfor Geomechanics andDeepUndergroundEngineering,School andDeepUndergroundEngineering,School of MechanicsandCivil Engineering of MechanicsandCivil Engineering ChinaUniversityofMiningandTechnology ChinaUniversityofMiningandTechnology Xuzhou,China Xuzhou,China Chen-YuHou Yan-KunZhang State Key Laboratoryfor Geomechanics State Key Laboratoryfor Geomechanics andDeepUndergroundEngineering,School andDeepUndergroundEngineering,School of MechanicsandCivil Engineering of MechanicsandCivil Engineering ChinaUniversityofMiningandTechnology ChinaUniversityofMiningandTechnology Xuzhou,China Xuzhou,China FundedbytheFundamentalResearchFundsfortheCentralUniversities(GrantNo.2018ZZCX04) andtheNationalKeyResearchandDevelopmentProgram(GrantNo.2017YFC1500702). ISBN978-981-15-4341-8 ISBN978-981-15-4342-5 (eBook) https://doi.org/10.1007/978-981-15-4342-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface During the operation of the subway, the vibration caused by the subway cyclic loading exists for a long time, which will reduce the strength of the soft soil foundation, generate different degrees of settlement and deformation, affect the deformationofthetunnelaxis,andcausegroundsubsidence.Thetrafficfacilitiesof many subway constructionprojects are usuallybuilt on soft soil foundation. Inthe initialstageofoperationaftertheconstructionoffreezingmethod,duetotheaction of cyclic loading, consolidation deformation settlement often occurs, which has great safety problems. Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018ZZCX04) and the National Key Research and Development Program (Grant No. 2017YFC1500702), this monograph studies the dynamic characteristics of soil around subway shield tunnel by artificial freezing method, which can provide theoretical basis and guidance for the effective control of long-term subway settlement and maintaining the safety of subway operation. Chapter 1 is Introduction. It introduces the progresses of the mechanical prop- erties of soft clay under cyclic loading, the physical and mechanical properties of soft clay under freeze-thaw cycle and the macroscopic and microstructural char- acteristics of soft clay. Chapter2isArtificialfreezingforby-passofsubwaytunnel.Inthischapter,the artificial freezing method used in the construction of the by-pass in the silty clay stratumisintroduced.Thedesignoffreezingparameters,constructiontechnologies, monitoring of the temperature field and deformation are introduced systematically. Chapter 3 is Axial strain of silty clay before and after freezing and thawing. In this chapter, a series of cyclic triaxial tests have been carried out to investigate the dynamic behavior of soft clays before and after freezing-thawing. The stress-strain backbone loop, axial strain and excess pore pressure of the grey muck clay are evaluated and compared under different frequencies and cyclic stress ratios. Chapter 4 is Freezing-thawing on dynamic characteristics of silty clay. In this chapter, 12 cyclic triaxial tests have been carried out to investigate the dynamic characteristics of the silty clay before and after freezing-thawing, including the v vi Preface dynamicmodulus,thedampingratio,thedynamicstrainandtheexcessporewater pressure,etc. Chapter 5 is Microscopic pore structures of silty clay before and after freezing-thawingbySEM.Theparametersofmicroscopicporestructureofthesilty clay, including the pore shape coefficient, the pore orientation anisotropy, the pore sizedistributionandthefractaldimension,areevaluatedwithdifferentfrequencies, cyclic stress ratios and freezing temperatures. Chapter 6 is Microscopic pore structures of silty clay before and after freezing-thawingbyMIP.Inthischapter,14MIPtestsfollowingthecyclictriaxial tests of the silty clay of layer No. 5 in Shanghai were conducted to investigate the variation of the PSD of the silty clay. The effects of freezing-thawing and cyclic loadings on the PSD of the silty clay were evaluated and the MIP derived water retention curves of the silty clay were predicted with the van Genuchten model. Chapter7isDynamicsofsiltyclayaroundsubwayshieldtunnelbeforeandafter freezingandthawingbynumericalsimulation.Inthischapter,thethree-dimensional governingequationswerederivedandthesolving methodwasgiven.Thematerial parameters of the thawing soil and the undisturbed soil used in the numerical sim- ulationswereobtainedbydynamictriaxialtests.Thedynamicresponseofthawing soilandundisturbedsoilinthesameenvironmentalconditionswerecomparedand analyzed. Chapter8isConclusionsandProspects.Thispartcomprehensivelysummarizes the research conclusions. Several controversial issues are discussed and then the further research work and prospects are simply described. Thismonographhasbeenpreparedwiththecombinedeffortofallresearchersin the group under Prof. Zhen-Dong Cui’s leading, in which Zhong-Liang Zhang, Zhi-Xiang Zhan, Chen-Yu Hou, Yan-Kun Zhang andsome other students all have involved in this comprehensive research work in this monograph. Xuzhou, People’s Republic of China Prof. Zhen-Dong Cui February 2020 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Mechanical Properties of Soft Clay Under Cyclic Loading . . . . . . 2 1.3 Physical and Mechanical Properties of Soft Clay Under Freeze-Thaw Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Macroscopic and Microstructural Characteristics of Soft Clay . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Artificial Freezing for by-Pass of Subway Tunnel. . . . . . . . . . . . . . . 13 2.1 Artificial Freezing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Design of Freezing Parameters of by-Pass . . . . . . . . . . . . . . . . . . 14 2.2.1 Project Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Design of Thickness of the Freezing Wall. . . . . . . . . . . . . 17 2.2.3 Design of Freezing Holes. . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.4 Design of Average Temperature of Freezing Wall . . . . . . . 28 2.2.5 Design of Brine Temperature and Flow Rate. . . . . . . . . . . 30 2.3 Construction Technology of the Artificial Freezing Method. . . . . . 31 2.3.1 Procedures of the Freezing Construction . . . . . . . . . . . . . . 31 2.3.2 Technical Parameters of the Freezing Construction . . . . . . 31 2.3.3 Design and Construction of the Emergency Door . . . . . . . 34 2.3.4 Attentions for Freezing Construction. . . . . . . . . . . . . . . . . 41 2.4 Monitoring of the Freezing Engineering. . . . . . . . . . . . . . . . . . . . 43 2.4.1 Construction Monitoring of Freezing Holes and Freezing Pipes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.2 Monitoring of the Frost Heave Pressure . . . . . . . . . . . . . . 44 2.4.3 Monitoring of the Temperature Field . . . . . . . . . . . . . . . . 44 2.4.4 Monitoring of the Deformation. . . . . . . . . . . . . . . . . . . . . 45 2.4.5 Monitoring of the Freezing Equipment . . . . . . . . . . . . . . . 49 vii viii Contents 2.5 In-Site Monitoring of the Temperature Field . . . . . . . . . . . . . . . . 51 2.5.1 Analysis of the Brine Temperature . . . . . . . . . . . . . . . . . . 51 2.5.2 Analysis of the Frozen Soil Temperature. . . . . . . . . . . . . . 53 2.5.3 Calculation of Thickness and Average Temperature of Freezing Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.4 Vertical Displacement of Ground Surface During Active Freezing Period. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.5 Vertical Displacement of Ground Surface Perpendicular to Axial Direction of by-Pass . . . . . . . . . . . . . . . . . . . . . . 62 2.5.6 Maximum Deformation and Change Rate of Various Monitoring Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 Axial Strain of Silty Clay Before and After Freezing and Thawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Backbone Curve Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 Cyclic Triaxial Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 Sample Preparation and Soil Properties. . . . . . . . . . . . . . . 69 3.3.2 Test Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4 Analysis of Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.1 The Stress-Strain Relationship of Soft Clay in Cyclic Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4.2 Comparison of the Axial Strain Before and After Freezing and Thawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.4.3 The Development of Excess Pore Pressure . . . . . . . . . . . . 78 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Freezing-Thawing on Dynamic Characteristics of Silty Clay . . . . . . 85 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Definition of Dynamic Modulus and Damping Ratio . . . . . . . . . . 87 4.2.1 Definition of Dynamic Modulus . . . . . . . . . . . . . . . . . . . . 87 4.2.2 Definition of Damping Ratio . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Cyclic Triaxial Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.1 The Schedule of Triaxial Tests. . . . . . . . . . . . . . . . . . . . . 90 4.3.2 The Process of Triaxial Tests . . . . . . . . . . . . . . . . . . . . . . 91 4.4 Results Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.1 Dynamic Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.2 Damping Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.3 Excess Pore Water Pressure and Axial Strain . . . . . . . . . . 99 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Contents ix 5 Microscopic Pore Structures of Silty Clay Before and After Freezing-Thawing by SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 The SEM Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3.1 Quantitative Analysis of Test Results . . . . . . . . . . . . . . . . 108 5.3.2 Effects of Magnification on Porosity from SEM Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3.3 Further Analysis of Microscopic Pore Structures . . . . . . . . 114 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6 Microscopic Pore Structures of Silty Clay Before and After Freezing-Thawing by MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 MIP Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3 Test Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3.1 Effects of Freezing-Thawing on the PSD. . . . . . . . . . . . . . 134 6.3.2 Effects of Frequency on the PSD . . . . . . . . . . . . . . . . . . . 137 6.3.3 Effects of CSR on the PSD . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.4 Prediction of Water Retention Curve. . . . . . . . . . . . . . . . . 141 6.3.5 Analysis of the PSD Using Fractal Theory . . . . . . . . . . . . 147 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7 Dynamics of Silty Clay Around Subway Shield Tunnel Before and After Freezing and Thawing by Numerical Simulation . . . . . . . 155 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.1 Formulations of the Model. . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.2 Equation Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3.1 Model Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3.2 Vibration Load of the Train . . . . . . . . . . . . . . . . . . . . . . . 160 7.3.3 Parameters of Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.3.4 Damping Parameter and Boundary Conditions. . . . . . . . . . 161 7.4 Analysis of Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.4.1 Vibration Acceleration of the Thawing Soil. . . . . . . . . . . . 163 7.4.2 Amplitude-Frequency Curves of the Displacements . . . . . . 163 7.4.3 Attenuation of the Acceleration . . . . . . . . . . . . . . . . . . . . 168 7.4.4 The Maximum Ground Acceleration and Displacement . . . 169 7.4.5 Time-History Curves of the Acceleration . . . . . . . . . . . . . 170 x Contents 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8 Conclusions and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.2 Prospects for Further Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Appendix: Major Published Works of the Book Author .... ..... .... 181 Bibliography .. .... .... .... ..... .... .... .... .... .... ..... .... 183

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.