ebook img

Dynamics of Dew in a Cold Desert-Shrub Ecosystem and Its Abiotic Controls PDF

15 Pages·2016·1.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of Dew in a Cold Desert-Shrub Ecosystem and Its Abiotic Controls

atmosphere Article Dynamics of Dew in a Cold Desert-Shrub Ecosystem and Its Abiotic Controls XiaonanGuo1,2,TianshanZha1,2,*,XinJia1,2,3,BinWu1,2,WeiFeng1,2,JingXie1,2, JinnanGong3,YuqingZhang1,2andHeliPeltola3 1 YanchiResearchStation,SchoolofSoilandWaterConservation,BeijingForestryUniversity, Beijing100083,China 2 KeyLaboratoryofSoilandWaterConservationandDesertificationCombating,BeijingForestryUniversity, MinistryofEducation,Beijing100083,China;[email protected](X.G.);[email protected](X.J.); [email protected](B.W.);[email protected](W.F.);[email protected](J.X.);[email protected](Y.Z.) 3 FacultyofScienceandForestry,SchoolofForestSciences,UniversityofEasternFinland, JoensuuFI-80101,Finland;jinnan.gong@uef.fi(J.G.);heli.peltola@uef.fi(H.P.) * Correspondence:[email protected];Tel.:+86-136-0108-7481;Fax:+86-10-6233-7130 AcademicEditor:RobertW.Talbot Received:18December2015;Accepted:13February2016;Published:25February2016 Abstract: Thetemporaldynamicsofdewformationincolddesert-shrubecosystemsarestillpoorly understood. WeexamineddewanditsabioticcontrolsinashrublandinnorthwesternChinawith continuouseddy-covariancemeasurementsoflatentheatfluxesgatheredoverthegrowing-seasonof 2012. Thedewamountwaslargerinmid-summerthaninspringandautumn,butthedewduration wasshorterinsummer(from~10:00p.m. to~6:30a.m.) thaninspringandautumn(from~8:30p.m. to~7:30a.m.).Dewoccurredon85%(166days)ofgrowing-seasondays,withmonthlymeansranging from0.09to0.16mmday´1. DewwasdominantlyandpositivelycontrolledbyRelativeHumidity (RH),whichexplained89%ofitsvariation. Soilheatflux(G),airtemperature(T ),windspeed(W ), a s SoilWaterContent(SWC)andVaporPressureDeficit(VPD)alsoinfluenceddewformation. Themost favorableconditionsfordewformationwereatT <17˝CandRH>75%. ThePenman–Monteith a equationpredictedactualdewreasonablywell.Thepredictedgrowing-seasondewamount(21.3mm) wasequivalentto7.2%and8.9%ofcorrespondingrainfallandevapotranspiration,respectively. Itis suggestedthatdewcouldbeastableandcontinuoussourceofwaterthathelpsdesertplantssurvive duringwarmsummers. Keywords: dew;eddycovariance;abioticcontrols;Penman–Monteithequation 1. Introduction Dewoccurswhenmoistaircondensesonasubstrate[1,2],asitssurfacetemperaturefallsbelow the dew point temperature. Dew can originate from three separate sources: air (dewfall), plant (guttation),andsoil(dewrise)[3]. Sufficientmoistureintheairandintensiveradiativecoolingofthe surfacearetwobasicrequirementsfortheformationofdew[4]. Relativehumiditydirectlyaffects atmosphericvisibilityandtheformationofclouds,fog,anddew[3,5,6]. Inaddition,theformation of dew is also indirectly affected by cloudiness [7], wind speeds, which may dampen the effect of radiative cooling by mechanically mixing the lower nocturnal boundary layer [1,8], soil water content[9],andthesoilheatflux[6]. Likewise,soiltexture[10],soilcrusts[9],plantcharacteristics such as leaf area index [11], soil salinity [12], and elevation [13] all play a role in influencing the productionofdew. However,therehavebeenrelativelyfewstudiesontheabioticcontrolsofdewin colddesert-shrubecosystems. Atmosphere2016,7,32;doi:10.3390/atmos7030032 www.mdpi.com/journal/atmosphere Atmosphere2016,7,32 2of15 Dewcanbeastableandcontinuoussourceofwatertoplantsthroughfoliaruptakeofmoisture, aswellasconservingsoilwaterbyreducingtranspirationratesinearlymorninghours[14,15]. Dew iscrucialtomaintainingthewaterbalanceinsomeecosystemsandcanefficientlyreducewaterloss causedbysoilevaporation[3,6,16]. Thisisparticularlythecasefordesertecosystems[17,18],where rainfallislimitedandsoilmoistureisoftenlow. Despiteitsecologicalimportance,thedynamicsofdewincolddesertecosystemsarestillpoorly understood,mainlyduetothelackoflong-termmeasurements. Dryland(aridandsemi-arid)accounts for53%ofChina’sterritory. Shrublanddominatesthisareabylargeandisanimportantecosystem[19]. Understandingthedynamicsofdewofdesertecosystemanditsenvironmentalcontrolis,therefore, crucialtosustainablymanagingdesertecosystems. Manyattemptshavebeenmadetoquantifydewindesertenvironments,usingfieldmeasurements andmodels.Bothhavedrawbacks.Fieldmethodsbasedoncondensingsurfaces[1],absorbentmaterial orclothplates[20],Duvdevanigauges[21]ordewharvesting[22]areusedtoquantifydewamount. Otherfieldmethodsbasedonsoilorairmoisturesensors[23–25],leafWetnessSensors(WS)[17,26] or electricalimpedance grids [27–29] are used toquantify the dew duration. Microlysimetersand Hiltner balances or electronic balances can be used for estimating both the duration and amount ofdew[30,31]. Mostofthesefield-basedmethodsarelaborintensiveandthuslimitedintheiruse to acquire long-term continuous data. Furthermore, many devices either under- or over-estimate dewamount, becausetheirreactivesurfacesarecomposedofmaterialswhichresponddifferently thanplantcanopies. Theoreticalmethodstoestimatedewcanbebroadlyclassifiedasempiricalor analytical [22]. Empirical models are based on simple relationships with meteorological variables and are easy to use but can be highly site specific [32]. Conversely, analytical models based upon physicalprinciples,suchastheprocess-basedPenman–Monteithequation[26,30],thecloud-based energymodel[33],andasimpleanalyticalformulabasedonafewmeteorologicaldata[34],canbe appliedindifferentenvironmentsbutaremorecomplexandoftenrequiredatathatarenotreadily available. ThePenman–Monteithequationhastheadvantageofconsideringboththephysiological andphysicalregulatorsofdew. TheEddy-Covariancemethod(EC)hasbeenappliedintheexaminationofdewdynamicsinmany differentecosystems[6,26,35].TheECmethodmeasuresthelatentheatflux(LE)betweenthebiosphere andtheatmosphereatthefieldscale[36–38],allowingforcontinuouslong-termmeasurements[6,26]. However,ECmeasurementsunderestimatethefluxduringnighttimeperiodswithlowturbulence[39], andmaythusunderestimatedew. Using the EC technique, we measured LE and the corresponding atmospheric water vapor contentinacolddesert-shrubecosystemdominatedbyArtemisiaordosicaduringthegrowing-season of2012(6Aprilto18October). Ourprimaryobjectiveswere: (1)tounderstandthedynamicsofdew (duration, and amount); (2) to explore its abiotic controlling mechanisms; and (3) to evaluate the Penman–Monteith(P–M)equationforpredictingdew. 2. Experiments 2.1. SiteDescription Measurementsweremadeina10-year-oldshrublandattheYanchiResearchStation(37˝42131”N, 107˝13145”E, 1530 m above sea level (a.s.l.)), Ningxia, Northwest China. The research site is locatedatthesouthernedgeoftheMuUsdesertandischaracterizedbyamid-temperatesemiarid continental monsoon climate. The site is dominated by a mixture of deciduous shrub species includingArtemisiaordosica,Hedysarummongolicum,Hedysarumscopariumandsparselydistributed Agropyroncristatum. Thecanopyheightwasabout1.4mandthemaximumLeafAreaIndex(LAI)was 1.20m2¨m´2duringthestudyperiod. Mean annual temperature (1954–2004) is 8.1 ˝C in the research area and the frost-free season periodis165days.Meanannualprecipitationis292mm,62%ofwhichfallsfromJulytoSeptember[40]. Atmosphere2016,7,32 3of15 Meanannualpanevaporationis2024mm. Thesoilissandyandthebulkdensityintheupper10cmis 1.54˘0.08g¨cm´3(mean˘StandardDeviation(SD),n=16,wherenisthenumberofsoilsamples collectedusingasoilcorer). 2.2. Measurements ThesensibleheatfluxH (W¨m´2)andlatentheatfluxLE(W¨m´2)weremeasuredusingthe Eddy-Covariancemethod(EC).Themeasurementsystemconsistedofa3-Dultrasonicanemometer (CSAT3,CampbellScientificInc.,Logan,UT,USA)andafastresponseinfraredgasanalyzer(LI-7200, LI-CORInc.,Lincoln,NE,USA).TheECinstrumentsweremountedataheightof6.2monascaffold towerandorientedintheprevailingwinddirection(northwest). Adatalogger(LI-7550,LI-CORInc., USA)wasusedtostore10Hzdata. Thefieldsitewasflatanduniformforover250minalldirections fromthefluxtower. FootprintanalysisusingtheFluxSourceAreaModel(FASM)showedthat>90% ofthefluxesoriginatedfromwithin200mofthetower[41]. DaytimeandnighttimewasdistinguishedbyPARatthethresholdof5µmol¨m´2W¨s´1[42–44]. TherateofnighttimedewwasobtaineddirectlyfromtheECmeasurementsofnegativeLEatnight (PAR<5µmol¨m´2¨s´1). DaytimedewwasderivedfromthenegativeLEstartingfromdawnor sunrise(i.e.,PARě5µmol¨m´2¨s´1). ThedewrateE(mm¨period´1)wasthenestimatedas: E“ LE{L (1) whereListhelatentheatofvaporization(2450J¨kg´1). PositiveLEduringnighttimeanddaytime (PARě5µmol¨m´2¨s´1)wasconsideredasevapotranspiration(ET). IncidentphotosyntheticallyactiveradiationPAR(µmol¨m´2¨s´1)wasmeasuredusingaquantum sensor(PAR-LITE,KippandZonen,Delft,theNetherlands). NetradiationR (W¨m´2)wasmeasured n using a four-component radiometer (CNR-4, Kipp and Zonen, the Netherlands). Air temperature T (˝C)andrelativehumidityRH(%)weremeasuredwithathermohydrometer(HMP155A,Vaisala, a Finland). SurfacetemperatureT (˝C)wasmeasuredwithaninfraredradiometer(SI-111,Campbell s Scientific, Inc. Logan, UT, USA). Wind speed W (m¨s´1) was measured using a wind speed and s directionsensor(034B,MetOneInstrumentsInc.,GrantsPass,OR,USA).Allthesemeteorological sensorsweremountedonthetowerat6maboveground. SoiltemperatureT (˝C)andsoilwater 10cm content SWC (m3¨m´3) at 10 cm depth were monitored adjacent to the tower using ECH2O-5TE sensors(DecagonDevices,USA).SoilheatfluxG(W¨m´2)wascomputedasthesumofthefluxes measuredat10cmdepthbyfivesoilheatplates(HFP01,HuksefluxThermalSensors,theNetherlands) andtherateofchangeinheatstorageabovetheheatfluxplates. Theheatfluxplateswereinstalledat adistanceof5mfromthefluxtower. Rainfall measurements started from 15 May 2012. The measurements were done with a manual rain bucket before 22 July, and thereafter with a tipping bucket rain gauges (TE525WS, Campbell Scientific Inc., Logan, UT, USA) at distances of about 50 m around the tower. All micrometeorologicalvariableswererecordedevery30-minbydataloggers(CR200XforPPT,CR3000 forallothers,CampbellScientificInc.,USA)from6Aprilto18October,2012. LAIwasmeasuredby destructivesamplingatroughlyweeklyintervalswithina100mˆ100mplotcenteredontheflux tower[44]. 2.3. Post-ProcessingofData Half-hourlyfluxesthatsufferedfrominaccuraciescausedbybadweatherorinstrumentfailure were excluded. In evaluating the P–M equation, LE values were excluded during calm nights (frictionvelocityu* <0.30m¨s´1,wheretheu* thresholdwasestimatedfollowingtheChinaFLUX standardmethod[45]). Gapsoflessthan2hinallvariableswerefilledbylinearinterpolation. Longer gaps in LE were filled using the P–M equation, adjusted to match the EC measurements. Longer gaps in meteorological variables were filled by the Mean Diurnal Variation method (MDV) [36]. Atmosphere2016,7,32 4of15 ToassesstheaccuracyofLE,theEnergyBalanceRatio(EBR)methodwasused. Nighttimeenergy balanceclosurewasanalyzedforthestudyperiodbasedontheregressionbetweenthemeasured availableenergy(R ´G)andthesumoftheECturbulentheatfluxes(LE+H),wherenighttimewas n delineatedusingPAR(i.e.,asperiodwithPAR<5µmol¨m´2¨s´1). ThenighttimeECmeasurements showedanacceptableenergy-closurefractionofabout67%(slope=0.67,R2=0.91),whichfallsinthe rangeofthevaluesof0.55to0.99reportedforFLUXNET[46],Ourclosurefractionof0.67indicates reasonabledataqualitybutsuggestsourestimatesofdewamountmaybeunderestimatedbyasmuch as33%. However,becausetheactualvalueoftheclosurefractionisuncertain,wedidnotapplyan energy-closureadjustmenttothemeasurementsofdewamount,exceptintheevaluationofthedew estimates from the P–M equation. All data processing procedures were performed within Matlab (Version7.5.0,TheMathWorks,Natick,MA,USA). 2.4. CalculationofBulkParameters The dew point temperature was calculated using the Magnus–Tetens approximation method[47]as: T “b¨γpT ,RHq{ra´γpT ,RHqs d a a (2) γpT ,RHq“ a¨T {pb`T q`lnpRH{100q a a a where T is dew point temperature (˝C) and parameters a (17.27) and b (237.7) are constants. d DailyminimumT wasobtainedfromthe30-minT series. Dewdaysweredefinedinthisworkas d d dayswhendailyminimumT waslessthandailyminimumT . s d TheP–MestimateofLEwascomputedas: C 0.408¨∆pR ´Gq`γ¨ n ¨W pe0´e q n T `273 s s a λE“ s (3) ∆`γ¨p1`C W q d s where∆(kPa¨K´1)istheslopeofthesaturationvaporpressureversusairtemperaturecurve(Equation(6)), γisthepsychrometricconstant(0.055kPa¨˝C´1),C andC arereferenceparameterswhichvaryby n d planttype,e ˝(kPa)isthesaturatedvaporpressureatsurfacetemperatureande (kPa)istheambient s a vaporpressureatthereferenceheightof6mabovetheground. Inourstudy,C wassetto66forboth n daytimeandnighttimeperiod[48],andC wassetto0.25duringthedayand1.7atnight. d ThesaturationandambientvaporpressureswerecalculatedwiththeTetensformula[49]: ˆ ˙ b¨T e0 “ a¨exp s (4) s T `c s ˆ ˙ b¨T a e “ RH¨a¨exp (5) a T `c a wherea=0.611kPa,b=17.502(dimensionless),andc=240.97K.Thevalueof∆maybecalculatedas: b¨c¨e0 ∆“ s (6) pc`T q2 s 2.5. DataAnalyses Dayswithrainwerescreenedfromtheanalysis.One-wayanalysisofvariance(ANOVA)wasused totestfordifferencesamongmonthsinthetimeofdewcommencementandcessation. Dailyvalues wereconsideredasreplicateswithineachmonth(testgroups). Pathanalysiswasusedtoanalyzethe comprehensiveeffectsofabioticfactorsondewformation. Nonlinearregressionwasconductedbased on daily non-gapfilled data to analyze the relationship between dew and different environmental factors. Theregressionanalyseswerelimitedtothemid-growingseason(June–August)toexclude theconfoundingeffectsofplantphenology. Thedewvalueswerebin-averagedforeachabioticfactor, Atmosphere2016,7,32 5of15 with a minimum of five data points required for a valid bin. Threshold values for some fits were identifiedwhenthefittedrelationshipwasasymptotic. Regressionanalysiswasalsousedtoexamine therelationshipbetweenECmeasurementsandP–Mequationestimatesofdewamount. Regression significancewasevaluatedusingtheFstatisticatasignificancelevelof0.05. Root-Mean-SquareError (RMSE)andBiasError(BE)(estimatedminusmeasuredvalues)wereusedtoevaluatethegoodnessof fitoftheP–Mequation. AllthestatisticalanalyseswereperformedusingtheSPSS20.0programfor windows(SPSS20.0Inc.,Chicago,IL,USA). 3. Results 3.1. SeasonalChangesinEnvironmentalVariables Environmentalvariablesobservedfrom6Juneto18October(196days)showedclearseasonal patternsbothforday-andnighttimevalues(Figure1). Diurnalvaluesofairtemperature(T ),surface a temperature(T ),windspeed(W ),soilheatflux(G)andvaporpressuredeficit(VPD)wereallhigher s s thanthevaluesatnight,butoppositetoRH.ThemeanT atnightrangedfrom1.94˝Con12April a to 21.35 ˝C on 29 July (Figure 1a). The mean T at night had a minimum of ´2.36 ˝C on 12 April s and a maximum of 20.7 ˝C on 29 July (Figure 1b). The mean RH at night was 64.3 ˘ 18.8%, with 117 days being greater than 60% and 90 days greater than 70% (Figure 1c). The mean W at night s hadamaximumof5.17m¨s´1andaminimumof0.59m¨s´1,averaging2.18˘0.93m¨s´1overthe growingseason(Figure1d). Ofallthenightswithdew,thenumberofnightswithW <3.0m¨s´1 s were 150, accounting for 90% of the nights with dew. The number of nights with W < 1.0 m¨s´1 s accountedfor6.6%ofdewnights. AccumulatedGatnightreachedamaximumof84.0W¨m´2 on 1 Juneandaminimumof´273.2W¨m´2on1September. Eighty-threepercentofnightshadGvalues ď0duringtheobservationperiod(Figure1e). Totalrainfallwas296mmoverthegrowingseason. Therewerethreebigrainfalleventsofě20mm¨day´1overthegrowingseason,withthelargestbeing 50mm¨day´1on27June(Figure1f). SoilWaterContent(SWC)ata10cmdepthfollowedthepattern ofrainfallandtherewasnosignificantdifferencebetweenmeansduringthedayandatnightduring themeasurementperiod(Figure1f). ThenightlymeanVPDreachedamaximumof1.29kPaon13June andtheminimumofVPDis0.06kPaon4May,averaging0.55˘0.29kPaovertheseason(Figure1g). Figure 1. Daytime and nighttime means for: (a) air temperature (Ta) at 6 m above the ground; (b)surfacetemperature(Ts);(c)RelativeHumidity(RH);(d)windspeed(Ws)at6mabovetheground; dailysumsfor(e)soilheatflux(G)attheupper10cmofsoiland(f)rainfall;daytimeandnighttime meansfor(f)SoilWaterContent(SWC)intheupper10cmofthesoiland(g)VaporPressureDeficit (VPD)from6Aprilto18October. Atmosphere2016,7,32 6of15 3.2. SeasonalChangesinDew Dew amounts varied over the growing season (Figure 2), with higher values in mid-summer (June–August)andlowervaluesinspringandautumn. Themaximumdailydewamountwas0.16 mmon21September,andtheminimumwas2.4ˆ10´3mmon13May,withameandewamountof 0.049˘0.04mmovertheobservationalperiod. Themaximummonthlymeandailydewamountwas 0.08mminJulyandtheminimumwas0.03mminMay. Themaximummonthlymeandaytimedew amountwas0.04mminJulyandtheminimumwas0.004mminMay. Figure2. (a)Dailydewamountfrom6Aprilto18Octoberand(b)monthlymeansofdailytotal (night- and daytime) and day-time values of dew. Rainy days were excluded and the data are non-gapfilledvalues. Thetotalnumberofdewdayswas166,whichaccountedfor85%ofthegrowingseason. Mean daily dew duration varied by month (Figure 3). Daytime dew duration was longest in July, and shortestinAprilandMay,mostvariableinJuly(from0.5to7h),andleastvariableinMay(0.5to2h) (Figure3a). NighttimedurationwaslongestinOctober,mostvariableinAprilandAugust(from1to 9.5h),andleastvariableinOctober(3.5to10h)(Figure3b). Theaveragedurationfordaytimeand nighttimewere1.3h¨day´1and6.2h¨day´1,respectively. Figure3.Monthlymean,maximum,andminimumvaluesof(a)daytimedewduration(b)nighttime dewdurationfrom6Aprilto18October. Inautumn(SeptemberandOctober),dewcommencementwasearliestandcessationwaslatest (Table1). Inthesummer,dewcommencedlaterandceasedearlier. Significantinter-monthvariationin meandailycommencementtimeswereobserved(P=0.000,ANOVA).However,therewerenoclear inter-monthdifferencesindewcessation(P=0.108,ANOVA). Atmosphere2016,7,32 7of15 Table1.Monthlydewestimates,including:meanstartandendtimes(rain-freedaysonly),meandaily dewamount(afterfillingofgaps),monthlytotal(afterfillingofgaps),monthlyevapotranspiration (ET),rainfall,ratioofdewtorainfall,andratioofwaterinput(dew+rainfall)toET,foradesert-shrub ecosysteminYanchi,Ningxia. EndTime Daily Monthly Dew: Dew+ StartTime(HH: Rainfall Month (HH:MM Amount Amount ET(mm) Rainfall Rainfall: MMp.m) (mm) a.m) (mm¨day´1) (mm) (%) ET(%) April 8:40 7:10 0.16 3.9 80 – – 5 May 9:20 6:30 0.11 3.1 75 22 14 33 June 10:40 6:30 0.09 2.1 67 83 2 127 July 9:50 6:40 0.12 2.7 42 63 4 156 August 9:30 6:55 0.16 4.3 63 42 10 74 September 8:40 7:25 0.11 2.8 55 72 4 136 October 8:20 7:30 0.14 3.0 32 15 15 54 Total – – – 21.3 238 296 7 133 3.3. ControlofDew Pathanalysisoftheeffectofmeteorologicalfactorsondewamount(Figure4)revealedthestrong positiveeffectofRH,T ,amoderatenegativeeffectofSWC,aweakpositiveeffectofVPD,andweak a negativeeffectsofGandW . Amongthesefactors,theinfluenceofRHwasstronglydominant. s Figure4.Finalpathdiagramsfortheeffectsofsoilheatflux(G),SoilWaterContent(SWC)at10cm depth,airtemperature(Ta),RelativeHumidity(RH)andwindspeed(Ws)andVaporPressureDeficit (VPD)ondewamountduringthepeak-growingseasonof2012.Standardizedcoefficientsareshown foreacharrow. Nonlinear regressions of daily dew amount against environmental variables during the peak-growingseasonareshowninFigure5. DewincreasedwithincreasingT whenT ď17˝C,and a a thenremainedconstantatT >17˝C.DewstayedconstantandrelativelylowwhenRHď75%,and a thenincreasedsharplywhenRH>75%. TheindependentvariablesT andRHindividuallyexplained a 54% and 89%, respectively, of the variations in daily dew amount (Figure 5a,b). The independent variablesW ,G,SWCandVPDindividuallyexplained36%,68%,56%and77%ofthevariationsin s dew, respectively (Figure 5c–f). In general, dew decreased with increasing W , SWC, VPD and G s (whichisvector,sothatnegativevaluesmeansupwardsoilheatfluxandpositivemeansdownward). Atmosphere2016,7,32 8of15 Figure5. Dailydewamountasafunctionofnighttimemean: (a)airtemperature(Ta);(b)Relative Humidity(RH);(c)windspeed(Ws);(d)SoilHeatFlux(G);(e)SoilWaterContent(SWC);and(f)Vapor PressureDeficit(VPD).Tominimizetheconfoundingeffectsofphenology,theanalysiswaslimited todatafromthemid-growingseason(June–August).Dailydatapointswerebinnedwithincrements of1˝CforTa,5%forRH,0.3m¨s´1forWs,50W¨m´2forG,0.004m3¨m´3forSWCand0.1kPafor VPDwithaminimumoffiveobservationsperbin.Thebarsindicatestandarderrors. There was a significant positive relationship between daily rainfall amount and dew amount onthefirstdayafterrainfall(R2 =0.81,p<0.05,Figure6). Tofurtherexaminetheeffectsofrainfall eventsondew,weexamineddewduringsixconsecutivedays(dayofyear(DOY)178–183),including tworainfalldays(DOY179–180), thedayprior(178)andthethreedaysafter(181–183)(Figure7). Onthetwodayswithrain,allrain(61mm)fellduringdaytimehours. TheSWCincreasedsharply during the rainy day DOY 179, and then decreased slowly afterwards. The RH increased sharply onDOY179, andthenremainedalmostsaturatedduringtheday DOY180and181. T remained a relativelylowduringthetworainydaysandincreased,showingaclearday-nightdifferenceonthe dayDOY181–183. Dewwasmarkedlyincreasedonthefirstday(DOY181)followingraincompared tothedaybeforerain. Figure6.Relationshipbetweendewondrydaysfollowingdayswithrain,anddailyrainfall,during mid-growingseason(June–August). Atmosphere2016,7,32 9of15 Figure 7. Half-hourly measurements over six consecutive days including periods before, during andafteramajorrainfallevent:(a)dewamountandSoilWaterContent(SWC)at10cmdepthand (b)RelativeHumidity(RH)andairtemperature(Ta).Theverticaldotlinesin(a)and(b)separateeach day.Theshadowareasin(a)and(b)indicaterainydays.Rainfallwas50mmondayofyear(DOY)179 and11mmonDOY180.Onthetwodayswithrain(DOY179–180),norainfellatnight. 3.4. ContributionofDewtotheWaterBalance Energy-closure-adjusted values of LE were used to evaluate the P–M equation (Figure 8). The closure adjustment was applied by dividing the LE values by the observed closure fraction of0.67. TheP–Mequationestimatesofdewamountweremorecloselycorrelatedwiththemeasured dewoverdailythanhourlytimescales(Figure8a,b;hourlyR2 =0.37,P<0.05anddailyR2 =0.73, P<0.05). Thefittedlineswerereasonablycloseto1:1linebothatthehourlyanddailyscale,witha slopeof1.11atthehourlyscaleand1.21atthedailyscale. TheRMSEandBEweresmall,withvalues of1.9ˆ10´4and3.7ˆ10´3mmathourlyscale,and5.4ˆ10´3and1.80ˆ10´3mmatthedailyscale, respectively. ResidualsshowedthattheP–Mequationwasabletoestimatedewreasonablywellat bothtimescales(Figure8c,d). Figure8.LinearregressionsofdewamountsmeasuredbyECandestimatedbythePenman–Monteith equationat(a)hourlyand(b)dailytimescales.Theregressionresidualsat(c)hourlyscaleand(d)daily scale.Thedottedlinesin(a)and(b)are1:1lines. Atmosphere2016,7,32 10of15 Afterapplyingtherelationshipbetweenestimatedandmeasureddewtofillgapsindailydew, andconductingasimilardaytimeanalysistofillgapsinday-andnighttimeET(Figure9a),thevalues weresummedoverthestudyperiod. Thetotaldewwas21.3mm,whichaccountsfor8.9%ofseasonal ET(238mm),and7.2%ofcorrespondingrainfall(296mm)overthesameperiod. Atamonthlytime scale, the ratio of dew to rainfall varied significantly from 2% in June to 15% in October (Table 1). Theratioofinputstooutputs(dewplusrainfalltoET)variedgreatlyfrom5%inAprilto156%in Julydemand(Table1). ThemonthlycontributionofdewtoETwasgreaterduringJuly–Octoberthan April–June(Figure9b). Figure 9. (a) Daily dew amount and evapotranspiration (ET) and (b) the ratio (%) of monthly dew to evapotranspiration from 6 April to 18 October. The data were gap-filled using the Penman–Monteithequation. 4. Discussion 4.1. MeasurementsIssuesandUncertainties ECmeasurementsofLEaresubjecttomoderateuncertainty,andthemeasurementofnighttime fluxisparticularlychallenging[26,50],TheECtechniquefailsduringperiodsoflowwindspeedat nightandroutinelyundermeasuresofLEathigherwindspeeds,withenergy-closurefractionsofless thanone[46]. Tocompensatefortheseproblems,wehaveexcludedcalmnightsfromtheanalysis usingaveryconservativeu˚thresholdof0.30m¨s´1. Wehavealsoevaluatedenergy-balanceclosure atnightandfoundaclosurefraction(i.e.,(H+LE)/(R ´G))of0.67,whichiscomparabletoother n studies. However,thisfractionwasnotusedtoadjustthedewamountbecauseitissubjecttohigh uncertainty. Althoughthereismoderateuncertaintyinthegrowingseasontotaldewamountrelated totheuncertaintyinLE,theprocessrelationshipsfromthisstudy,suchasshowninFigures4and5are robustandarenotaffectedbytheuncertaintiesintheenergy-closureadjustments. The meteorological sensors in this study were mounted at 6 m height, which is higher than thestandardheightformeteorologicalmeasurementsandhigherthanpreviousstudies. Theheight differencebetweenthisstudyandpreviousstudiesmayaccountforthelowerRHthreshold(75%)for dewinthisstudy,becauseofthesteepgradientsinRHthatexistnearthesurfaceatnight. Fortunately, thehighersensorheightinthisstudydoesnotinvalidatethefunctionalrelationshipsin,e.g.,Figure5, butitmayalterthevaluesofthefittedparameters. Thedewestimatesfromeddy-covariancereflected thedynamicsofdewwellandcanbeusedtounderstanditscontrollingmechanisms. Inaddition,theP–MequationwasshowntofittheECdewmeasurementsreasonablywellwhen au*thresholdof0.30m¨s´1andanenergyclosureadjustmentof1/0.67wereused. Thissuggeststhat theP-Mequationissuitabletoestimatedewinthestudyarea. 4.2. TheFormationCharacteristicsofDew Our study site is in the south edge of the Mu Us desert (also called the Mu Us sandland, 1200–1600ma.s.l.), which lies in a critical geographic transition zone between arid and semiarid climates,andbetweenagriculturalandpastorallanduses. Comparedtothedesertsinitswest(suchas

Description:
manual rain bucket before 22 July, and thereafter with a tipping bucket rain gauges (TE525WS The dew point temperature was calculated using the Magnus–Tetens approximation .. Haba Lake, which is 30 km from our study site,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.