Dynamics and stability of icosahedral Fe-Pt nanoparticles PawełT.Jochym,∗a JanŁaz˙ewski,a MałgorzataSternika andPrzemysławPiekarza The structure, dynamics and stabilityof Fe-Pt nanoparticles have been investigated using DFT-based techniques: total energy calculationsandDFTmoleculardynamics. Theinvestigatedsystemsincludedmulti-shellanddisorderednanoparticlesofiron 5and platinum. The study is concerned with icosahedral particles with magic number of atoms (55): iron-terminated Fe Pt , 43 12 1platinum-terminatedFe Pt ,anddisorderedFe Pt .Additionally,theFe Pt clusterhasbeeninvestigatedtoprobebehaviour 0 12 43 27 28 6 7 ofextremelysmallFe-Ptparticles. MoleculardynamicssimulationshavebeenperformedforafewtemperaturesbetweenT = 2 150−1000 K. The calculations revealed high structural instability of the Fe-terminated nanoparticles and a strong stabilising b effectofthePt-terminationintheshell-typeicosahedralparticles. Theplatinumterminationpreventeddisorderingoftheparticle e evenatT =1000KindicatingveryhighmeltingtemperaturesoftheseFe-Pticosahedralstructures. Theanalysisofevolutionof F theradialdistributionfunctionhasshownsignificanttendencyofPtatomstomovetotheoutsidelayeroftheparticles–evenin 5 theplatinumdeficientcases. 1 ]1 Introduction calapplications.18 l l a Due to small sizes, standard diffraction techniques cannot Nanoalloysarebi-ormulti-componentmetallicnanoparticles h be applied for NPs and most information about their struc- -(NPs), withthecomplexstructuresandproperties, whichde- spendontheirsize,structure,andcomposition.1–5 Thesizeof turalpropertiescomesfromhigh-resolutiontransmissionelec- e tron microscopy.19–21 Relevant information about structural mnanoalloys(1–100nm)placesthembetweensmallmolecules stability and electronic properties of the Fe-Pt nanoclusters andbulkcrystals. Theycanbeconsideredastheintermediate . have been obtained by the theoretical studies based on ei- tphase sharing common properties of atoms and solid materi- a thersemiempiricalpotentialsorabinitiotechniques.22–27The mals. By adjusting the size, geometry and chemical composi- Monte Carlo simulations showed that a continuous transfor- tion, nanoalloys can be optimised for various applications in - mation between the ordered structure L1 (tP4) and a dis- dcatalysis,6 nanomedicine,7 optics,8 data recording9 and en- 0 nergystorage.10 ordered phase in Fe-Pt NPs occures at temperatures lower o than the bulk melting temperature (1572 K).23,24 Disorder- Iron-platinum (Fe-Pt) nanoalloys consist of two metallic c ing processes in nanoalloys are enhanced due to finite-size [components with significant ratios (Pt/Fe) of masses (195.1 and surface effects, e.g. strong surface segregation tendency / 55.8 in amu), bulk moduli (230 / 170 in GPa) and atomic 2 ofPtatoms.25,26 Thestructuralorderandmagneticproperties radii (1.46 / 1.30 in A˚) which result in very interesting, not v ofFe-Pt nanoalloyswithvariousmorphologies andchemical 3only geometrical, features. They belong to the most studied composition have been studied previously within the large- 4systemsduetoanextremelyhighuniaxialmagnetocrystalline scaleDensityFunctionalTheory(DFT)calculations.27 Inthe 1anisotropy(K =7×106J/m3),whichmakesFe-Ptapromis- 7 u present study, we focus on icosahedral Fe-Pt NPs, which ing material for applications in ultra-dense magnetic record- 0 are energetically favoured over the L1 phase for small par- ingmedia.9Asevidencedbymanystudies,Fe-Ptsystemsex- 0 . ticles.19,20,27 Application of DFT-based methods, including 1hibitenhancedcatalyticalproperties,comparingtopureplat- 0 DFT molecular dynamics, provides additional, independent inum surfaces. Fe-Pt nanoalloys may be used as a power- 5 informationonthebehaviourofFe-PtNPs,whichsupplement ful catalyst for the electro-oxidation of formic acid in fuel 1 the published studies based mainly on semiempirical poten- :cells11–13andashighlyefficientoxidationcatalystsfordegra- v tialsandsuppliesavaluableconsistencycheckonthealready dation of organic pollutants.14 Fe-Pt NPs are also promising i establishedmodelsofthesesystems. Xcandidates for biomedical in vivo applications (e.g. for cel- rlular magnetic resonance imaging15) because of their high Our study of Fe-Pt NPs has been divided into two main astability in the presence of oxygen.16 By coating with inor- parts. The first part is a set of total energy calculations and ganic molecules, the core-shell Fe-Pt nanoparticles become structural optimisations, designed to establish static stability opticallydetectable17andcanbefunctionalisedforthehyper- propertiesoftheinvestigatedsystems.Themethodsemployed thermia treatment of cancer and advanced radiopharmaceuti- inthispartaredescribedinsection2.1andtheresultsinsec- tion 3.1. The second part of the work concerns the investi- aDepartmentofComputationalMaterialScience,InstituteofNuclearPhysics gationofdynamicalstabilityofthesystemsusingDFT-based PAN,Cracow,Poland;E-mail:[email protected] molecular dynamics (MD). Description of the methods em- 1–8 |1 ployedforthispartoftheworkisincludedinsection2.2and of the system. Furthermore, additional energy pumped into theresultsarediscussedinsection3.2. Section4containsthe the system by this noise is cancelled out by the action of the resultsoftheinvestigationofdynamicalstabilityofthedisor- thermostat. The actual molecular dynamics used the VASP deredFe Pt andFe Pt particles. Theconcludingsection5 implementation of the Nose thermostat MD algorithm with 6 7 27 28 summarizesthekeyresultsofthepaper. 10 fs time step, which was determined by convergence test- ing. Theuseofthisfairlylargetimestepwaspossiblethanks tolargemassesofatomsinthesystem. Thestartingconfigu- 2 Methods rationscorrespondtoperfecticosahedralgeometrieswiththe multi-shellordisorderedstructures. Incaseofthedisordered A common denominator of the methods used in the present structure the atomic sites were assigned randomly to one of workistheDensityFunctionalTheory.28,29 Bothpartsofour thespeciesbydrawingfromthepre-determinedsetofatoms analysisusethesameDFTcodeasimplementedinViennaAb – 6 Fe and 7 Pt or 27 Fe and 28 Pt, respectively. The result- initio Simulation Package (VASP)30,31 and the same atomic ingstructureswerepre-optimised,bystandardstaticmethods datasetsprovidedwiththispackage. Forthepreparationand (seesec.2.1)toavoidlargeinter-atomicforcesatthestartof analysis of the molecular dynamics runs and control of the the MD run. For the same reasons we have used the results DFTcomputations,wehaveusedstandard,python-basedsoft- of the static structural optimisation (sec. 3.1) for the starting warestack32–36. Thedetailsofthecomputationalsetupsused configurationoforderedparticles. fortheworkaredescribedbelow–separatelyforeachpartof theanalysis. Fe Pt Fe Pt 102 12 43 43 12 102 2.1 Structuraloptimisation 101 101 y The static, zero Kelvin temperature calculations were per- nsit 100 100 e formed using the full-potential projector-augmented wave d method37,38withintheGGAapproachinPAW-PBEform.39,40 bility 10-1 10-1 Thefollowingvalencebaseconfigurationswereincluded: Fe ba10-2 Fit T=155K Fit T=154K 10-2 o 3d74s1andPt6s15d9. Theintegrationsinthereciprocalspace Pr Fit T=314K Fit T=315K 10-3 Fit T=518K Fit T=525K 10-3 was reduced to the single k-point Γ and the energy cut-off Fit T=1032K Fit T=1043K fortheplanewavesexpansionwasequalto320eV.Thecrys- 10-140-3 10-2 10-1 100 10-3 10-2 10-1 10010-4 talstructurewasoptimisedusingtheconjugategradienttech- E (eV) E (eV) k k nique with the energy convergence criteria set at 10−7 and 10−5eVfortheelectronicandioniciterations,respectively.In Fig. 1Distributionofparticlekineticenergyintheicosahedral-shell order to prevent interactions between system images created system(dots)andMaxwell-Boltzmanndistributionfitsforeachdata set(lines).Thebest-fittemperatureforeachdatasetisincludedin due to the periodic boundary conditions used in VASP, each thelegend. nanoparticlewasplacedinthebig20A˚×20A˚×20A˚ boxcon- tainingabout10A˚ widevacuum. Thislimitedforceconstants between neighbouring images below 0.3% of the strongest Thecalculationprocedureinvolvedathermalisationrunof forceconstantinthesystem. the system with kinetic energies assigned to atoms accord- ing to the Maxwell distribution. To assess the level of ther- malisation of the system we calculated a distribution of ki- 2.2 Moleculardynamics netic energies in each step for all the atoms and for an en- The molecular dynamics simulations were carried out in the sembleconfigurationsinthe0.1psslidingwindow(10steps). same DFT framework as the static calculations described The average energies in each step were compared with the aboveandwiththesetofmethodsandtoolsusedinourprevi- value expected for the perfect Maxwell distribution. When ous work on minerals.41 We used the PAW-PBE atomic data thesystematicdriftofthecomputedaveragevaluetransitioned setsandthespin-polarisedVASPcalculationfortheDFTpart. intorandom-lookingfluctuations,weperformedanadditional Tolowerthecomputationalcostweadjustedtheaccuracypa- checkforgoodthermalisationofthesystembycomputingthe rametersofthecalculation–sincetheMDdoesnotneedex- fulldistributionofkineticenergiesintheensemblebuiltfrom tremely precise inter-atomic forces. The precision parameter the configurations in the 1 ps window (100 steps) and com- ofthecalculationwassettoNormal,thecut-offenergywasre- paringitwiththeMaxwelldistribution. Thecomparisonwas ducedto275eVandtheenergeticconvergencethresholdwas performedbyfittingtheMaxwelldistributiontothehistogram set at 10−6 eV. A small numerical noise added by lowering of the kinetic energy in the ensemble and comparing the ob- accuracy of the calculation is drowned by the thermal noise tainedtemperaturewiththeexpectedvalue. Wealsochecked 2| 1–8 Small Large Fe and Pt shells exhibit very high structural stability.21 The stability of Ih NPs results from the low energy of the close- 101 101 packed (111) surfaces, whichcompensates the internal stress y sit 100 100 existing in the particle core. The present study focuses on n de twotypesoficosahedralparticles: particleswithperfectshell y 10-1 10-1 bilit structures (terminated with Pt or Fe atoms) and disordered ba10-2 10-2 NPs with approximately equal number of Fe and Pt atoms. o Pr10-3 Fit T=283K Fit T=310K 10-3 TheorderedFe12Pt43 particlewiththealternatingshellstruc- ture: 1Pt,12Feand42PtatomsisdisplayedinFig.4(a). Fit T=486K Fit T=510K 10-4 10-4 10-2 10-1 10-2 10-1 E (eV) E (eV) 3.1 Staticcalculations k k Fig. 2Distributionofparticlekineticenergyintherandomsystems The first step, after constructing individual NPs, was to op- (dots)andMaxwell-Boltzmanndistributionfitsforeachdataset timise the structure at T =0 K, by minimising the total en- (lines).’Small’system(leftcolumn)isadisorderedFe6Pt7cluster, ergy of the system, keeping Th point group symmetry ele- while’Large’system(rightcolumn)isadisorderedFe Pt cluster mentsonly,sinceI symmetrywasbrokeninperiodicbound- 27 28 h (seesec.4).Thebest-fittemperatureforeachdatasetisincludedin ary conditions.∗ The lowering of particle symmetry allows thelegend. notonlyforvolumechangingbutalsoforsurfaceshellrelax- ation. In both cases, Fe Pt and Fe Pt , high symmetry 43 12 12 43 configuration with well-defined alternating Fe/Pt shells was if the size of the residuals is consistent with the size of the obtained. Thecalculatedradialdistributionfunctionsofopti- fluctuationsexpectedfortheensemble. misedstructuresarepresentedinFig.3. Inicosahedrathereis The combination of all such comparisons is presented in only one non-equivalent position of atoms in the first shell, Figs1and2. Theprobabilitydistributionspresentedinthese which defines the distance between the centre and the first figures are based on the whole measurement part of the MD shell, and two different positions in the second shell: at ver- run–thethermalisationpartwasdiscarded. Verygoodagree- ticesandedgesoftheicosahedron. Interestingly,inbothNPs, ment of data points with the perfect Maxwell distribution is thedistancesfromthecentralatomtothefirstshell(2.643A˚ slightly broken only at the extreme large energy range in the and 2.587 A˚ for Fe Pt and Fe Pt , respectively) as well 43 12 12 43 case of the Fe-terminated system at the lowest temperature as to vertices in the second shell (5.091 A˚ for Fe Pt and 43 12 (T =150K).NoticethelogarithmicscaleonbothaxisinFigs 5.054 A˚ in Fe Pt case) are quite similar. A larger differ- 12 43 1 and 2, which was chosen to amplify any discrepancy from ence (∼0.1 A˚) is found for the distance between the centre theexpecteddistribution–onthelinearscalethediscrepancy and edge atoms in the second shell (4.374 A˚ in Fe Pt and 43 12 isinvisible. Thisistherangeofahigh-energytailofthedis- 4.477A˚ inFe Pt case). 12 43 tribution and one can fully expect large relative fluctuations there, due to the small probability density in this region and Fe Pt Fe Pt 43 12 12 43 thus,smallcountsinthehistogrambins. Furthermore,asthe 8 8 cwahlcicuhlarteiosnusltsreivnedalieffidc,uthlteieFsew43itPht1b2riinsgainqguiittetounesqtaubilliebrsiyusmtemat density675 PFte 567 lgolwe dteismcrpeepraantucryest.oNbeevseirgtnhiefilecsasn,twfoerdtohenoantacloynssisidcearrtrhieisdsoinu-t ability 43 34 b inthisworkandregardallinvestigatedsystemsasadequately Pro2 2 1 1 thermalised. 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Radius from c.m. ( ) Radius from c.m. ( ) 3 IcosahedralFe-Ptnanoparticles Fig. 3Radialdistributionofatomicpositionsfromthemasscentre ofFe Pt (leftpanel)andFe Pt (rightpanel). 43 12 12 43 Icosahedron (Ih) is one of the five Platonic solids and one of the non-crystallographic structures with fivefold symme- In the surface shell, there are two characteristic nearest tries.42 It consists of 20 surfaces, 12 vertices and 30 edges, neighbours(NN)distances: fromaverticalatomtothenear- each surface has close-packed structure with the (111) ori- entation. The most stable particles are built of closed shells ∗Ihpointgroupincludes5-foldaxes,whicharenotcompatiblewiththetrans- lationalsymmetryand3Dperiodicboundaryconditionsimposedonsupercell with the number of atoms N =1,12,42,.... Fe-Pt NPs shell inVASPpackage. RemainingelementsofIhgroup,formingThpointgroup, crystallising in the icosahedral geometry with the alternating wereconsideredinourstaticcalculations. 1–8 |3 estedgeatoms(1–2inFig.4)andbetweentwonearestedge Fe Pt Fe Pt 12 43 43 12 atoms (2–2 in Fig. 4). In Fe Pt , they read 2.704 A˚ and T=150K T=150K 0.8 43 12 8 2.677 A˚, while in Fe Pt – 2.767 A˚ and 2.663 A˚, respec- Pt 0.6 12 43 6 Fe tively. In the Pt subsurface shell NN distances are equal to 4 0.4 2.778 A˚, while in the Fe one they are 2.720 A˚. For compari- 2 0.2 son,inthebccironstructuresimulatedwiththesameatomic 0 0.0 dataset,43theNNdistanceisequalto2.485A˚ andinfccplat- 60T=3100RKa2dius 3from 4c.m. 5( ) 6 0T=3100RKa2dius 3from 4c.m. 5( ) 6 0.8 inum 2.772 A˚. This means that, contrary to platinum shells, 0.6 4 tohfeFientePr-tatoamnidcsduibstsaunrcfaecseinofbFoethiProtn,sahreellsst,rothneglsyursftarceetchoende ensity 2 00..24 (∼8−43101%2)whichcanbeoneof1t2he4m3ainreasonsoftheiron- bility d 00T=5100K2 3 4 5 6 0T=5100K2 3 4 5 6 0.0 terminated NP instability. The similar influence of strain on ba 4 Radius from c.m. ( ) Radius from c.m. ( ) 1.0 o ironsurfacestabilitywasobservedpreviouslyintheFemono- Pr layer on W(110) surface44 and in FeAu and FePt multilay- 2 0.5 ers45,46. In both particles, the NN distances between the Fe andPtatomslocatedinthefirstandsecondshell(∼2.50A˚) 00T=11000K2 3 4 5 6 0T=11000K2 3 4 5 6 0.0 and between the central atom and the first shell (∼2.60 A˚) 3 Radius from c.m. ( ) Radius from c.m. ( ) 0.6 are reduced comparing to the Fe-Pt distance in the bulk fct 2 0.4 L10 structure (2.70 A˚).47 It causes the internal stress in the 1 0.2 core, which may be the driving force for the amorphisation 0 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 processes and may induce the structural transformation ob- Radius from c.m. ( ) Radius from c.m. ( ) servedinlargerFe-Ptparticles. Fig. 5Radialdistributionofatomicpositionsfromthemasscentre (c.m.)oftheicosahedral-shellsystem.Theresultsforall 3.2 Moleculardynamics temperaturesarecomparedside-by-sidefortwoinvestigated The dynamical stability of a nanoparticle is quite different systemsPt-terminated(left)andFe-terminated(right).The from the static one. The later requires only that the system probabilitiesarenormalisedtounitypereachelement.The isinthelocalenergyminimum,theformernecessitatesstabil- semitransparentcolouroftheFeplot(orange)isusedtoshowthePt ity of the structure against finite, even large, thermal fluctua- plot(blue)inthesamerange. tions. Theamplitudeoffluctuationsisdeterminedbythetem- peratureofthesystemandthestrengthofinter-atomicbonds Fig. 4. At the first glance the qualitative difference between presentinthesystem.Togobeyondthestaticstabilityanalysis platinum-terminated (a) and iron-terminated (b) particles is describedabove,weneedtoincludetemperatureinourcalcu- obvious. All the Fe atoms are in the subsurface in the for- lations. WeusedtheDFT-MDtechniquedescribedabove(see mer, nearly perfect structure, while there are many platinum section2.2). Thesimplewaytoassestheeffectsofsuchcal- atoms on the surface of the later, strongly distorted structure culationisbyinspectionoftheevolutionofthestructure. – despite the fact that this is a Pt-deficient system. What is more,thepictureisvirtuallyidenticalathighertemperatures. Even at T =1000 K there is no qualitative visual difference between Fig. 4 and the corresponding picture at that temper- ature. This calls for more detailed, quantitative analysis. In thecrystallinematerialtheradialdistributionfunction(RDF) wouldbeafirst-linetoolforsuchinvestigation. Here,thesys- temisfiniteandwecannotusestandardRDFdirectly. Instead (a) (b) we have used radial probability distribution p(r) of finding i atomofelementiatthedistancerfromthecentreofmassof Fig. 4Fe Pt (a)andFe Pt (b)structuresatT=150Kafter10 12 43 43 12 thesystem. Theprobabilityiscalculatedovertheensembleof psthermalisationand20psofMDrun.Thedifferenceinstructural last10ps(1000steps)ofconfigurationsattheendoftheMD stabilityisvisibleevenatsuchalowtemperature.Elements:Fe– dark/brown,Pt–light/grey.1and2denotetwonon-equivalent run. Weperformedthesamecalculationonthemuchsmaller positionsofatomsinthesurfaceshellofidealicosahedron. ensembles(0.1−1ps)anddeterminedthatthereisnosignif- icantdifferenceexceptformuchlargerfluctuationspresentin Thestructuresafterthermalisation(10ps)andequilibration thehistograms(forobviousstatisticalreasons). (20 ps) runs at target temperature T =150 K are depicted in Theprobabilitydensity p(r)plots,normalizedtounityfor i 4| 1–8 each atomic species, for all investigated icosahedral systems withincreasingtemperatureintherightcolumnofFig.5. In- andtemperaturesarecollectedinFig.5. Itshouldberemem- terestingly, Featomscanbefoundclosetothecentreonlyat beredthatthesystemsarestartedintheperfectlyorderedstate low temperatures, while they are systematically replaced by with temperature-determined kinetic energy distribution. At platinumatomsathighertemperatures. the start of the simulation p(r) function for all systems re- Theresultsobtainedfortwotypesofparticlescanbeeasily i semblestheplotforFe Pt atT =150K(top,leftcornerof understoodifwetakeintoaccountstrongtendencyofPtatoms 12 43 Fig. 5) or the static RDF from Fig. 3. The probability distri- foroccupyingtheouterlayersofNPs. Itpreventsdisordering butionsintheFig.5arecalculatedattheendoftheequilibra- ofPt-terminatedparticles,whichkeeptheirperfectmulti-shell tion. Since the relaxation processes may have very different structure even at high temperatures. It agrees with the previ- timescales,onecannotbesurethatthetrueequilibriumstate oustheoreticalstudies22–27andtheexperimentalobservations hasbeenreached. Nevertheless,thelackofsystematicdriftin of good thermal stability of icosahedral Fe-Pt particles even theprobabilitydistributionsattheendofthesimulationperiod withmuchlargersizes.20 Inthethinfilms,thePt-termination allowsustoconcludethatthesystemsarereasonablycloseto wasdeducedfromtheDFTcalculationsofthephononspectra equilibrium. andthesurfacesensitivenuclearinelasticscatteringmeasure- There is a clear difference between final states of the Pt- ment.47 The simulated Fe-terminated surface showed strong terminated (left column in Fig. 5) and Fe-terminated (right deviationfromthebulkbehaviour. column in Fig. 5) system. The former, essentially, exhibits The crucial role in the stabilization of multi-twinned temperature-caused broadening of the distribution peaks, nanoalloys is played by the difference in atomic sizes of the whilethelatershowsclearsignsofsubstantialreconstruction two elements: larger size mismatch reduces the compression ofthestructureaswellasmuchstrongerbroadeninganddis- ofthecore. TheMDsimulationsperformedonthepolyicosa- tortionofthepeaks. hedral core-shell Ag-Cu and Ag-Ni clusters revealed much highermeltingtemperaturesthanforpureAg,CuandNipar- Since there is not much happening in the Pt-terminated ticles.48,49 Even single impurities can stabilize the icosahe- structure, let us concentrate on the Fe-terminated one. We dralAgparticles–thesmallerthedopingatom,thehigherthe candistinguishtwomainphenomenaintheseplots. Thefirst meltingtemperature.50 Asshowninrecentstudies,thestabil- one is a significant disordering of the system, shown in very ityofNi-AuNPsisalsoenhancedinthecore-shellstructure, broad and irregular peaks – even at low temperatures. The which has much higher melting temperature than random al- secondphenomenonisasystematicdriftoftheplatinumdis- loys.51 tribution to the external shell of the particle. We expect the TheFe Pt particleisveryunstableduetothemovement formerprocesstohavefairlyshorttimescaleandlowactiva- 43 12 of Pt atoms towards the surface. This leads to significant tionbarriers,oppositetotheotheronewhichrequiresglobal, changes of atomic positions and strong deformation of the collectivemovementsandthuslargeactivationenergy,andex- icosahedral geometry. Apart from the segregation processes hibitsmuchlongertimescale. Consequently, thereconstruc- resultingfromdifferentsizesofconstituentatoms,otheramor- tionisprobablyclosetofinishedonlyinthehightemperature phisationmechanismsmayalsobeofsomeimportancehere. case (T =1000 K bottom of Fig. 5), is under way for inter- The previous MD simulations revealed the amorphisation of mediate temperatures (T =500 K), and is only starting for mono-atomicPt icosahedralparticlesinvolvingtherosette- lower temperatures (T =150 K, T =300 K). Nevertheless, 55 likestructuraltransformation,whichformsasixfoldringcen- even at T =150 K we can see non-vanishing Pt probability tred around the fivefold vertices and breaks the I symme- at the outside shell and some migration of Fe atoms towards h try.52 A preference for low-symmetry amorphous structures the interior of the particle. This process seems fully consis- wasfoundalsointheAunanoclusters.53 tentwithourearlierobservationsdrawnfromthestructuresin Fig.4. ThehightemperatureintheT =1000Kcasehelpsto overcometheactivationbarriersandspeedsupthereconstruc- 4 DisorderedFe-Ptnanoparticles tion.Weexpectthatifweleavethelowertemperaturecasesto evolvelongenoughtheywillreachsimilarshapeofthedistri- Theresultsdescribedaboveconcernedicosahedralmulti-shell butionasthehightemperaturecase. Unfortunately, thiskind structures. Thesestructuresareinherentlynon-stoichiometric oftimescaleisprohibitivelylongtoachieve–weestimateit and thus quite different from the fragments of the bulk crys- willrequireatleastoneyearworthofMDrunforT =150K. tals.Ontheotherhand,suchhighlyorderedsmallparticlesare Note also that after reconstruction some level of ordering is veryunlikelytoformnaturally,althoughadvancedexperimen- recoveredinthehightemperaturesystem–thepeaksarebet- taltechniquesmaybewellcapableofproducingjustsuchsys- ter defined and localised and actually narrower than for the tems. The synthesised icosahedral particles with larger sizes low-temperature systems. In fact, one can recognise a clear (∼5−6nm)andclosetoequiatomiccompositionsexhibitthe gradient of decreasing noise and disorder of the distributions shell-periodicstructurewiththeFe/PtcoreandthePtenriched 1–8 |5 outershell.20Forsmallsystemssuchorderedcore-shellstruc- of the MD run) for both sizes of the particles are depicted in turesmaybeveryunstableandweexpectnaturalprocessesto Fig.6. form rather disordered particles with the composition of ele- mentsdeterminedbytheirrelativeconcentrationsintheenvi- ronmentandotherfactorssuchaschemicalpotentials,surface Small Large energies,bondingenergiesetc. T=300K T=300K 0.8 2 Pt Fe 0.6 nsity 1 0.4 de 0.2 y abilit 030T=5001K 2 3 0T=1500K2 3 4 5 6 0.0 b Pro 0.6 2 (a) (b) (c) 0.4 1 Fig. 6SmalldisorderedparticleatT =300K(a),largerdisordered 0.2 particleatT =300K(b)andatT =500K(c).Allstructuresafter 0 0.0 30psthermalisation.Elements:Fe–dark/brown,Pt–light/grey. 0 1 2 3 0 1 2 3 4 5 6 Distance from c.m. ( ) Distance from c.m. ( ) Asthesimplestmodelwehavedecidedtoselecttwomagic Fig. 7Radialdistributionofatomicpositionsfromthemasscentre number(i.e. numbersfromthepartialsum: 1+12+42+...) (c.m.)ofthesystem.Theresultsforalltemperaturesarecompared side-by-sidefortwoinvestigatedsystemssmall(left)andlarge particles with concentrations close to 50/50 (the magic num- (right).ThesemitransparentcolouroftheFeplot(orange)isusedto bers are odd, thus the exact 50% concentration is unattain- showthePtplot(blue)inthesamerange. able). TheselectedstructuresareFe Pt andFe Pt –both 6 7 27 28 with slight iron deficiency – as we expect such particles to bemorestablethantheirplatinum-deficientcounterparts(see above).Weselectedmagic-numberparticles(13and55atoms Weappliedthesameanalysistechniquesasdescribedabove respectively) to make it possible for the systems to relax to for icosahedral particles. The resulting radial distribution closed-shell configurations which one can expect to be ener- functionsareplottedinFig.7.Theresultsforthesmallsystem geticallyfavourable. indicatethesamepatternweobservedintheicosahedralparti- Theappliedprocedurewasidenticaltotheoneusedabove cles–theplatinumatomstendtomovetotheexternallayerof insection2.2. Theonlynotabledifferencewasamuchlonger theparticleandtheironatomsgatherclosertothecentre. The thermalisation period required for the system to settle down same pattern is less visible in the data for the larger particle closetotheequilibrium–oftheorderof10ps. Duetoalarge – which is not as close to equilibrium as the small one – but size of the configuration space of disordered particle and a thesametrendisvisibleanyway. Thereiscleardifferencein longtimescaleofslowrelaxationprocesses,wedonotexpect theleveloforderingexhibitedbysmallversuslargerparticles, the system to reach the true equilibrium state. Nevertheless, forthereasonsexplainedabove, butevenforalargersystem by examining the directions the system configuration drifts there are clear signs of the emerging structure in the form of after thermalisation, we can determine the direction of these obvious peaks in the RDF function and visible movement of relaxation processes. This idea can be further cross-checked platinumatomstotheoutsideoftheparticle.Thedetailsofthe by application to very small particles. Due to much smaller RDFdistributionaresubjecttostandardshort-termstatistical configuration space and much lower barriers for collective andthermalfluctuations,buttheoverallshapeofthedistribu- movements,asmallparticlecanreachitsequilibriuminmuch tions proved to be fairy robust and subject only to long time shortertime. RunningtheMDsimulationuntilfullrelaxation scale relaxation processes. We believe that if the system is isactuallyfeasibleinthiscase. Weranthisprocedureforthe left to evolve even longer, it will probably reach partially or- smallest non-trivial, magic cluster: Fe Pt at T =300 K and deredequilibriumwithplatinumatomslocatedmainlyonthe 6 7 T =500 K. The parameters of the simulation were the same surfaceoftheparticle. Unfortunately,theexpectedtimescale asforlargersystems,exceptthatthetotalsimulationlengthof –measuredatleastinnanoseconds, perhapsevenlonger–is 30 ps was easy and inexpensive to achieve. Simultaneously, prohibitiveforthepureDFTMDtechnique. Thistypeofcal- the small system stopped to drift in any significant way after culation would require a method which is at least few orders onlyfewpicosecondsofsimulation–indicatingarrivalatthe ofmagnitudemoreeffectivethanpureDFTMD–e.g. neural equilibriumconfiguration. Theresultingstructures(attheend networkderived,multi-parametereffectivepotentials.54–56 6| 1–8 5 Conclusions 6 Acknowledgements This work was partially supported by the COST Ac- tion MP0903 ”Nanoalloys as Advanced Materials: From In the presented work we have investigated the stability and Structure to Properties and Applications” and by the Pol- dynamics of icosahedral nanoparticles constructed with two ish National Science Centre (NCN) under Project No. radicallydifferent(intermsofmass,atomicradius,bulkmod- 2011/01/M/ST3/00738. ulus, magnetic moment) metals: iron and platinum. The op- timised icosahedral NPs with perfect layered structures have References rather stiff platinum shells with inter-atomic NN distances wellcorrespondingtothePtbulkvaluesandstronglystretched 1 R.Ferrando,J.JellinekandR.L.Johnston,Chem.Rev.,2008,108,845– ironshellswithNNdistanceelongatedby8−10%incompar- 910. isontothebulk. Evenforiron-separatedNPs,withsignificant 2 R.L.JohnstonandR.Ferrando,FaradayDiscuss.,2008,138,9–10. dominanceofFeatoms,compressionofPtshellsdoesnotoc- 3 M.Alca´ntaraOrtigozaandT.S.Rahman,Phys.Rev.B,2008,77,195404. curandprovestobeimpossible. Ontheotherhand,unstable 4 M.M.Mariscal,O.A.OviedoandE.P.M.Leiva,MetalClustersand Nanoalloys: FromModelingtoApplications,SpringerScience&Busi- ironshellsdrivethesystemtoreconstructionand/orsignificant nessMedia,2012. loweringofthemeltingtemperature. 5 S.DuanandR.Wang,ProgressinNaturalScience: MaterialsInterna- tional,2013,23,113–126. TheDFTmoleculardynamicscalculationscarriedoutina 6 C.T.Campbell,Nature,2004,432,282–283. number of temperatures (T =150−1000 K) revealed strong 7 X.Huang,P.K.Jain,I.H.El-SayedandM.A.El-Sayed,Nanomedicine (Lond),2007,2,681–693. instabilityoftheiron-terminatedstructureandsignificantten- 8 F.Iskandar,AdvancedPowderTechnology,2009,20,283–292. dencyforplatinumatomstomigrateintosurfacelayer–even 9 S.Sun,C.B.Murray,D.Weller,L.FolksandA.Moser,Science,2000, at low temperatures and platinum-deficient particles. The 287,1989–1992. same tendency was observed in the very small (13 atoms) 10 S.DuanandR.Wang,NPGAsiaMaterials,2014,6,e122. as well as larger disordered particles (55 atoms) with atomic 11 W.Chen,J.Kim,S.SunandS.Chen,Phys.Chem.Chem.Phys.,2006,8, concentrationsclosetothe50/50ratio. Furthermore,theplat- 2779. 12 J.Kim,Y.LeeandS.Sun,J.Am.Chem.Soc.,2010,132,4996–4997. inumcappinglayerseemstoadditionallystabilisetheparticle. 13 S.GuoandS.Sun,J.Am.Chem.Soc.,2012,134,2492–2495. Inourcalculationstheplatinum-terminatedsystemprovedto 14 S.HsiehandP.-Y.Lin,J.Nanopart.Res.,2012,14,1–10. be stable up to T = 1000 K. On the other hand, the iron- 15 S. Chen, L. Wang, S. L. Duce, S. Brown, S. Lee, A. Melzer, S. A. terminated system shows substantial instability – leading to CuschieriandP.Andre´,J.Am.Chem.Soc.,2010,132,15022–15029. significantreconstructionofthestructureandprobablypartial 16 D.K.Kim,D.Kan,T.Veres,F.Normadin,J.K.Liao,H.H.Kim,S.-H. meltingevenatalowtemperature(T =150K). Lee,M.ZahnandM.Muhammed,J.Appl.Phys.,2005,97,10Q918. 17 K.SeemannandB.Kuhn,Biomed.Opt.Express,2014,5,2446–2457. 18 K. M. Seemann, M. Luysberg, Z. Re´vay, P. Kudejova, B. Sanz, Thestabilizingeffectofplatinumatomsseemtoberelated N.Cassinelli,A.Loidl,K.Ilicic,G.MulthoffandT.E.Schmid,J.Con- to the geometric aspect of platinum enclosure of the NP. In trolledRelease,2015,197,131–137. the case of Fe Pt NP, platinum atoms have no significant 19 C.Y.Tan,J.S.Chen,B.H.LiuandG.M.Chow,J.Cryst.Growth,2006, 43 12 influenceonthestabilityoftheNPbecausetheyonlydecorate 293,175–185. 20 R.M.Wang,O.Dmitrieva,M.Farle,G.Dumpich,H.Q.Ye,H.Poppa, the surface instead of forming complete enclosure. The case R.KilaasandC.Kisielowski,Phys.Rev.Lett.,2008,100,017205. of50/50Fe-PtNPsfurtherindicatesthatitisrathergeometry 21 R.Wang,H.Zhang,M.FarleandC.Kisielowski,Nanoscale,2009,1, thanconcentrationofplatinumatomsthateffectsthestability 276–279. ofnanoparticles. 22 A.FortunelliandA.M.Velasco,THEOCHEM,1999,487,251–266. 23 R.V.Chepulskii, J.VelevandW.H.Butler, J.Appl.Phys., 2005, 97, The structural properties of small Fe-Pt NPs and their de- 10J311. 24 R.V.ChepulskiiandW.H.Butler,Phys.Rev.B,2005,72,134205. pendence on temperature discussed in the present work may 25 M.Mu¨llerandK.Albe,Phys.Rev.B,2005,72,094203. be important for nano-technological applications. For in- 26 B.Yang,M.Asta,O.N.Mryasov,T.J.KlemmerandR.W.Chantrell, stance, the catalytic activity of strongly distorted NPs could ActaMater.,2006,54,4201–4211. beenhancedcomparingtopurePtsurfacesorlargerFe-Ptpar- 27 M.E.Gruner,G.Rollmann,P.EntelandM.Farle,Phys.Rev.Lett.,2008, ticles. A larger distribution of Fe-Pt bond lengths as well as 100,087203. the presence of both types of atoms at the surface may lead 28 P.HohenbergandW.Kohn,Phys.Rev.,1964,136,864. 29 W.KohnandL.J.Sham,Phys.Rev.,1965,140,1133. to selective modification of electronic structure and catalytic 30 G.KresseandJ.Furthmu¨ller,Comput.Mater.Sci.,1996,6,15–50. activityofPtatoms. ItwasobservedthatadditionalCoatoms 31 G.KresseandJ.Furthmu¨ller,Phys.Rev.B,1996,54,11169–11186. decoratingthesurfaceofPtnanocrystalsleadtoincreasedse- 32 F.Pe´rezandB.Granger,Comput.Sci.Eng.,2007,9,21–29. lectivityofhydrogenationreactions.57 33 S.R.BahnandK.W.Jacobsen,Comput.Sci.Eng.,2002,4,56–66. 1–8 |7 34 E.Jones, T.Oliphant, P.Petersonetal., SciPy: Opensourcescientific toolsforPython,2001–,[Online;http://www.scipy.org/;accessed2015- 01-07]. 35 S.vanderWalt,S.ColbertandG.Varoquaux,Comput.Sci.Eng.,2011, 13,22–30. 36 J.Hunter,Comput.Sci.Eng.,2007,9,90–95. 37 P.E.Blo¨chl,Phys.Rev.B,1994,50,17953–17979. 38 G.KresseandD.Joubert,Phys.Rev.B,1999,59,1758–1775. 39 J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson, D.J.SinghandC.Fiolhais,Phys.Rev.B,1992,46,6671–6687. 40 J.P.Perdew,K.BurkeandM.Ernzerhof,Phys.Rev.Lett.,1996,77,3865– 3868. 41 P. T. Jochym, A. M. Oles´, K. Parlinski, J. Łaz˙ewski, P. Piekarz and M.Sternik,J.Phys.:Condens.Matter,2010,22,445403. 42 A.L.Mackay,ActaCrystallogr.,1962,15,916–918. 43 J.Łaz˙ewski,P.Piekarz,A.Oles´andK.Parlinski,Phys.Rev.B,2006,74, 174304. 44 J.Łaz˙ewski,P.Piekarz,A.Oles´,J.KoreckiandK.Parlinski,Phys.Rev. B,2007,76,205427. 45 M.Sternik,K.ParlinskiandJ.Korecki,Phys.Rev.B,2006,74,195405. 46 P. T. Jochym, K. Parlinski and A. M. Oles´, Eur. Phys. J. B, 2008, 61, 173–179. 47 S. Couet, M. Sternik, B. Laenens, A. Siegel, K. Parlinski, N. Planck- aert,F.Gro¨stlinger,A.I.Chumakov,R.Ru¨ffer,B.Sepiol,K.Temstand A.Vantomme,Phys.Rev.B,2010,82,094109. 48 G.Rossi,A.Rapallo,C.Mottet,A.Fortunelli,F.BalettoandR.Ferrando, Phys.Rev.Lett.,2004,93,105503. 49 R.Ferrando,A.FortunelliandG.Rossi,Phys.Rev.B,2005,72,085449. 50 C.Mottet,G.Rossi,F.BalettoandR.Ferrando,Phys.Rev.Lett.,2005, 95,035501. 51 B.Li,G.Xing,H.WangandR.Wang,AIPAdvances,2014,4,117132– 1–9. 52 E.Apra`,F.Baletto,R.FerrandoandA.Fortunelli,Phys.Rev.Lett.,2004, 93,065502. 53 I.L.Garzo´n,K.Michaelian,M.R.Beltra´n,A.Posada-Amarillas,P.Or- dejo´n, E.Artacho, D.Sa´nchez-PortalandJ.M.Soler, Phys.Rev.Lett., 1998,81,1600. 54 S.Hobday,R.SmithandJ.BelBruno,Nucl.Instrum.MethodsPhys.Res., Sect.B,1999,153,247–263. 55 M. Malshe, R. Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam and R.Komanduri,J.Chem.Phys.,2008,129,044111. 56 J.Behler,ChemicalModelling,RoyalSocietyofChemistry,Cambridge, 2010,vol.7,pp.1–41. 57 S.C.Tsang,N.Cailuo,W.Oduro,A.T.S.Kong,L.Clifton,K.M.K.Yu, B.Thiebaut,J.CooksonandP.Bishop,ACSNano,2008,2,2547–2553. 8| 1–8