ebook img

Dynamical state and star formation properties of the merging galaxy cluster Abell 3921 PDF

20 Pages·2008·1.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamical state and star formation properties of the merging galaxy cluster Abell 3921

A&A430,19–38(2005) Astronomy DOI:10.1051/0004-6361:20041811 & (cid:1)c ESO2005 Astrophysics Dynamical state and star formation properties of the merging (cid:1),(cid:1)(cid:1) galaxy cluster Abell 3921 C.Ferrari1,2,C.Benoist1,S.Maurogordato1,A.Cappi3,andE.Slezak1 1 LaboratoireCassiopée,CNRS/UMR6202,ObservatoiredelaCôted’Azur,BP4229,06304NiceCedex4,France e-mail:[email protected] 2 InstitutfürAstrophysik,Technikerstraße25,6020Innsbruck,Austria 3 INAF,OsservatorioAstronomicodiBologna,viaRanzani1,40127Bologna,Italy Received6August2004/Accepted31August2004 Abstract.WepresenttheanalysisandresultsofanewVRIphotometricandspectroscopicsurveyofthecentral∼1.8×1.2Mpc2 regionofthegalaxyclusterA3921(z=0.094).Wedetectthepresenceoftwodominantclumpsofgalaxieswithamassratioof ∼5:amainclustercentredontheBrightestClusterGalaxy(BCG)(A3921-A),andanNWsub-cluster(A3921-B)hostingthe secondbrightestclustergalaxy.Thedistortedmorphologyofthetwosub-clusterssuggeststhattheyareinteracting,whilethe velocitydistributionof104confirmedclustermembersdoesnotrevealstrongsignaturesofmerging.Byapplyingatwo-body dynamicalformalismtothetwosub-clustersofA3921,andbycomparingouropticalresultstotheX-rayanalysisofA3921 based on XMM observations (Belsole et al. 2005), we conclude that A3921-B is probably tangentially traversing the main clusteralongtheSW/NEdirection.Thetwosub-clustersareobservedinthecentralphaseoftheirmergingprocess(±0.3Gyr), withacollisionaxisnearlyperpendiculartothelineofsight.BasedonthespectralfeaturesofthegalaxiesbelongingtoA3921 weestimatethestarformationpropertiesoftheconfirmedclustermembers.Substantialfractionsofbothemission-line(∼13%) andpost-star-formingobjects(socalledk+a’s,∼16%)aredetected,comparabletothosemeasuredatintermediateredshifts.Our analysisrevealsalackofbrightpost-star-formingobjectsinA3921withrespecttohigherredshiftclusters,whilethefraction ofk+a’sincreasestowardsfaintermagnitudes(M > −20).SimilarresultswereobtainedintheComaclusterbyPoggianti RAB et al. (2004), but at still fainter magnitudes, suggesting that the maximum mass of actively star-forming galaxies increases withredshift(“downsizingeffect”).Thespatialandvelocitydistributionsofk+agalaxiesdonotshowsignificantdifferencesto thoseofthepassivepopulation,andtothewholecluster.MostoftheseobjectsshowrelativelyredcoloursandmoderateBalmer absorptionlines,whichsuggestthatstarformationhasceased∼1−1.5Gyrago.Theirpresenceisthereforedifficulttorelate totheon-goingmergingevent.Wefindthatstar-forminggalaxiesshareneitherthekinematicsnortheprojecteddistributionof thepassiveclustermembers.Moreover, mostemission-linegalaxiesareconcentratedinA3921-B andintheregionbetween thetwosub-clusters.Wethereforesuggest thattheongoingmergermayhavetriggeredastar-formationepisodeinatleasta fractionoftheobservedemission-linegalaxies. Keywords.galaxies:clusters:general–galaxies:clusters:individual:Abell3921–galaxies:distancesandredshifts– cosmology:observations 1. Introduction stillformingatthepresentepoch(e.g.Jones&Forman1992; West etal. 1995; Donnellyet al. 2001),mergingclusterspro- In the standard cosmological scenario of hierarchical struc- vide a unique tool to test or analyze the physics of structure tureformation,boundobjectsformfromthecollapseofinitial formationandevolution. density fluctuations that grow under the influence of gravity throughmergingofsmallerstructuresthathaveformedbefore. Major cluster-cluster collisions are the most energetic AsopticalandX-raystudiesrevealthatclustersofgalaxiesare eventsthathaveoccurredin the Universesince theBig Bang, astheyreleasetotalenergiesupto3×1064erg(Sarazin2003), (cid:1) Based on observations collected at the European Southern and their effects on all cluster components are far from be- Observatory,Chile.Proposalnumbers:67.A-0494(A),67.A-0495(A) ing fully understood. The intra-cluster gas experiences com- and70.A-0710. (cid:1)(cid:1) TablesA.1–A.5areonlyavailableinelectronicformattheCDS pression, rarefaction and shock waves (Schindler & Müller via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) 1993), and shows characteristic features such as cold fronts orvia (Markevitch et al. 2000). Additionally, as regards galaxy dis- http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/19 tribution, the velocity dispersion of the cluster members can Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20041811 20 C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 Table1.Imaging:summaryoftheobservations. Filter ESOid No.ofexp. Totalexp. Seeing Mag.limit(AB) (s) (arcsec) (5σ,2×FWHM) V V/89 5 750 1.35 22.5 R Rc/162 5 750 1.15 22.7 I Ic/Iwp 10 1800 1.25 21.5 increase up to a factor of two during the merger event telescope and with WFI at the 2.2 m ESO telescope respec- (Schindler& Böhringer1993). While the effectson the intra- tively. Section 2 briefly describes the observations, the data clustermediumandonclusterinternaldynamicshavebeenan- processing technique and the completeness level achieved by alyzed in some detail, the effects on the galaxies are still de- the new spectroscopicsample.In Sect. 3 cluster membersare bated. Caldwell et al. (1993) showed that strong Balmer-line identifiedandin Sect. 4the opticalmorphologyof thecluster absorption galaxies are distributed between the main Coma is studied. In Sect. 5 we perform a kinematical and dynami- cluster and the merging SW sub-cluster, suggesting that star calanalysisofthecluster.Theopticalmassesofthetwomain formationistriggeredbythemergingevent.However,various subclustersareestimatedinSect.6,andwesolvethetwo-body physical mechanisms have been shown to affect the process problem for these two systems. The photometric and spectral of star formation within clusters. Changes of the tidal gravi- properties of the cluster members are investigated in Sect. 7, tational field during cluster merging could affect star forma- making it possible to define several subsamples whose spa- tioningalaxies(e.g.Bekki1999).Theincreasingexternalpres- tial and velocity distributions are analyzed. The main results surefollowingtheinfallofgalaxiesintothedenseintra-cluster andtheirinterpretationaresummarizedinthefinalSect.8.All gasmaytriggerstarformation(Dressler&Gunn1983;Evrard numbersareexpressedasafunctionofh ,theHubbleconstant 75 1991),whilegasstrippingingalaxiesduetoram-pressureex- inunitsof75km−1s−1Mpc.We haveusedtheΛCDM model ertedbytheICMcouldweakenthestarburstphenomenondur- with Ωm = 0.3 and ΩΛ = 0.7, thus 1 arcmin corresponds to ing cluster-cluster collisions (Fujita et al. 1999). So far it is ∼0.097h −1Mpcinthefollowing. 75 notclearwhichofthesecompetingeffectsisthedominantone, sinceresultsinfavouroftheformer(e.g.Abrahametal.1996; Wang et al. 1997; Moss & Whittle 2000; Flores et al. 2000; 2. Thedata Gavazzietal.2003;Poggiantietal.2004)andofthelatter(e.g. Tomitaetal.1996;Baloghetal.1997,1998;Baldietal.2001) 2.1.Imaging wereobtained. TheopticalobservationsofAbell3921werecarriedoutusing CombinedopticalandX-raystudieshavebeenparticularly theWideFieldImager(WFI)mountedattheCassegrainfocus successfulinrevealingthecomplexdynamicsofmergingclus- oftheMPG/ESO2.2mtelescopeatLaSillaobservatory.WFI ters (e.g. Davis et al. 1995; Lemonon et al. 1997; Roettiger isamosaiccamerawith4×2CCDchipscoveringatotalarea et al. 1998; Durret et al. 1998; Arnaud et al. 2000; Donnelly of 34×33 arcmin2. To coverthe gapsbetween the eightindi- etal.2001;Ferrarietal.2003).TheX-raypropertiesofmerg- vidualchipsofthecameraweadoptedastandardditheringse- ing clusters are currently being investigated through a set of quence.Thefieldcentredonα = 22h49m44s δ = −64◦22m15s XMM observations (XMM guaranteed time, Sauvageot et al. wasobservedinservicemodeintheV,RandIpassbands.The 2001),togetherwiththepropertiesoftheirgalaxydistribution data,includingphotometriccalibrationimages,wereobtained through optical observationsby our group, hence providinga betweenAugust20thand23rd,2001.InTable1wesummarize unique combined analysis. In this paper we will concentrate theobservations. ontheopticalanalysisofthemergingclusterAbell3921,and The data reduction was performed using the package ourresultswillbecomparedtoconclusionsobtainedfromthe “alambic” developed by B. Vandame based on tools avail- X-rayanalysisofXMMdatabyBelsoleetal.(2005). able from the multi-resolution visual model package (MVM) Abell 3921 is a R = 2, BM II Abell cluster at z = 0.094 by Bijaoui and collaborators (Bijaoui & Rué 1995; Rué & (Katgert et al. 1998). Previous ROSAT and Ginga observa- Bijaoui 1997). The photometric calibration was obtained us- tions revealed the presence of a main cluster and a substruc- ing several standard stars from Landolt (1992) over a large ture with a very perturbed morphology, interpreted as falling range of airmasses, leading to an accuracy of the photometry onto the main component (Arnaud et al. 1996). Following of∼0.05mag. XMM-Newton/EPICobservations(Sauvageotetal.2001)con- TheSExtractorsoftwarepackage(Bertin&Arnouts1996) firmed the presenceof a two-componentstructure.Thismoti- wasusedtoidentifyallsourcesinthefieldaswellastoclassify vated new optical observations in order to better characterize themandmeasuretheirmagnitudes.Thelatterwerecorrected the merger scenario of this complex cluster. In this paper we forgalacticabsorptionusingE(B−V)=0.027asderivedfrom analyze the spectroscopic and photometric galaxy catalogues Schlegeletal.(1998),yieldingA =0.09mag,A =0.07mag V R of the central ∼1.8×1.2 Mpc2 region of the cluster, with new and A = 0.05 mag. They were also transformed to the AB I data ofmulti-objectspectroscopy(239newspectra)andVRI- systemgivenbythefollowingrelations:V =V−0.01,R = AB AB band imaging, obtained with EFOSC2 at the 3.6 m ESO R+0.19,I =I+0.49. AB C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 21 2.2.Spectroscopy Inthispaperwepresenttheresultsoftheanalysisofnewspec- troscopicdataobtainedthroughtwosessionsofobservationsat theESO3.6mtelescope(2nightsinSeptember2001,2nights inOctober2002).We usedtheESOFaintObjectandCamera (EFOSC2) with grism#03 and a punching head of 1.35(cid:4)(cid:4), ob- taining a spectral resolution of FWHM ∼ 7.5 Å over the wavelength range 3050–6100 Å. For each frame we made at leasttwoscienceexposuresinordertoeliminatecosmicrays, withanintegratedexposuretimeof5400sforbrighterobjects (R <18)andof7200sforfainterones(R <19).Wemade AB AB a standardspectroscopicreductionusingourautomatedpack- ageformulti-objectspectroscopybasedonthe task“apall”in IRAF1. Spectra were wavelengthcalibratedusing the helium- argonlamp spectrataken aftereach scienceexposure.We de- terminedredshiftsusingthecross-correlationtechnique(Tonry &Davis1981)implementedinthetask“xcsao”oftheRVSAO package.Spectraoflate-typestarswereusedasradialvelocity Fig.1.R-bandmagnitudedistributionsofthegalaxiesofourspectro- standards. scopicsample(207objects–dottedline),ofallthegalaxieswithgood In Table A (available at the CDS) we list the results of velocitydetermination(122–dashedline),and,amongthem,ofthose our spectroscopic observations in the following way: Col. 1: belongingtoA3921(104–shadedarea). identification number of each target galaxy; Cols. 2 and 3: rightascensionanddeclination(J2000.0)ofthetargetgalaxy; Cols. 4–6:theV, Rand I bandmagnitudesin theABsystem; Cols. 7 and 8: best estimate of the heliocentric redshift (ex- pressed as cz) and associated error from the cross-correlation technique (those values have been set to “–2” if the object is a starandto“–1”ifwe havenoredshiftinformation);Col. 9: runofobservations;Col.10:aqualityflagfortheredshiftde- termination:1=good determination(R parameterof Tonry & Davis ≥3), 2=uncertain determination, 3=no determination; Cols.11and12:theequivalentwidths(negativeorpositivein the case of emission or absorption features respectively) for [OII]λ3727 and Hδ (λ = 4101 Å) lines, measured only for theclustermembers;Col.13:thespectralclassificationofthe galaxymembers. A total of 239 new spectra has been obtained, among which56arestars, 100aregalaxieswith averygoodredshift determination and 83 are spectra with R < 3. In the follow- inganalysis,wealsoconsidertheredshiftsmeasuredinthere- gionofA3921byotherauthors(ENACScollaboration,Katgert et al. 1996; Mazure et al. 1996). We compare the values of Fig.2.Completenessofthespectroscopicsampleasafunctionofthe the redshifts of 11 galaxies obtained from the common sam- R-bandmagnitudeinthecentral18×12.5arcmin2fieldforallgalaxies pletothosepublished(35)andweobtainameandifferenceof observed (dashed line) and for those that led to a Quality Flag=1 −12.7±75.8kms−1,whichshowsagoodconsistencybetween (solidline). the two datasets. The final sample includes our 239 redshifts and24availableredshiftsfromtheENACScatalogue(Katgert etal.1996;Mazureetal.1996),amongwhich22withquality andcomparedto the distributionof galaxieswith a goodred- flag=1followingourcriterion.Itcoversafieldof∼25.5(cid:4)×25(cid:4), shift determination, i.e. quality flag=1 (122 galaxies), and slightlylargerthanthesizeofourownspectroscopicfollow-up among them, those belonging to A3921 (104 galaxies, see (∼18(cid:4)×12.5(cid:4)). Sect.3). The R-band magnitude distribution of the whole spectro- The ratio of the number of galaxies with measured red- scopicsampleofgalaxiesispresentedinFig.1(207galaxies), shifttothetotalnumberofgalaxiesdetectedwithinthecentral 1 IRAF is distributed by the National Optical Astronomy field of 18×12.5arcmin2 coveredby ourlast observationsis Observatories,whichareoperatedbytheAssociationofUniversities plotted in Fig. 2 as a function of the R-band magnitude. The for Research in Astronomy, Inc., under cooperative agreement with spectroscopic catalogue is complete to better than 50% up to theNationalScienceFoundation. RAB =18.5(R∗AB+2.1). 22 C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 thegalaxycatalogueperformedonfivesuccessivescalesfrom which the significant structures are recombined into the final map(followingtheEq.(C7)ofFaddaetal. 1998).Thesesig- nificant structures are obtained by thresholding each wavelet plane at a level of three times the variance of the coefficients ofeachplaneexceptforthetwosmallestscalesforwhichthe thresholdisincreasedtofourandfivetimesthevarianceinor- dertoreducefalsedetectionsduetotheverylowmeandensity ofthePoissonprocessatthesescales(0.01forachosengridof 128×128pixel2). Such density maps are presented in Fig. 5 for three in- put catalogues. In the left panel, all galaxies with R < 19 AB (R∗ +2.6)areused,leadingtoamaprevealingtwodominant AB clumpsinthecentralpartofthefield(hereafterA3921-Ainthe centreandA3921-BtotheNW)inthecentral∼34×34arcmin2. Inordertoavoidpossibleprojectioneffects,we isolategalax- ieslikelytobeearlytypesatthesameredshiftonthebasisof theircolourproperties.Indeed,despitethebimodalstructureof A3921 one can notice in the two colour magnitude diagrams Fig.3. Apparent radialvelocity(cz)histogram ofthegalaxiesinthe centralfieldoftheclusterA3921,withabinningof500kms−1. ofFig.7a welldefinedredsequence,thecharacteristiclinear structuredefinedbythebulkofearly-typegalaxiesinacluster. The determination of the slope, intercept and width of these Amongthe263objectsofourspectroscopicsamplewewill “red sequences” is performed using the technique described consider in the followingonlythe 122galaxieswith redshifts in Appendix A. The central panel of Fig. 5 shows the result- determinedwithaqualityflag=1(i.e.ournew100highquality ing red sequence density map (keeping only galaxies at ±1σ spectraplus22publishedpreviously). around the red sequence), where one can notice that several small-scale clumps in the cluster core disappear as well as in its surroundings, leaving the larger-scale structure of the two 3. Clustermembership mainclumpsunaffected. Figure 3 shows the radial velocity (cz) distribution of this Inordertogoonestepfurtherinavoidingprojectioneffects datasetinbinsof500kms−1.Thebulkoftheclusterisconcen- wetakeadvantageofourspectroscopicfollowup.Eventhough tratedbetween25400and30400kms−1.Fourobjectshavecz it is complete down to a level of 50% at R = 19, most of AB higherthan75000,onegalaxyappearstobeintheforeground, theclumpsseenvisuallyhavebeenspectroscopicallysampled while 13 are located between 31000 and 50000 kms−1 and allowing us to discard possible externalgroups.For example, most of them (12) are also spatially concentrated in the re- asmentionedintheprevioussection,thebackgroundredshift- gion around the two brightest objects of the West side of peakgroupmayleadtoanover-densityunrelatedtothecluster the cluster, BG2 and BG3. If we consider only the 8 galax- in the iso-density map. Therefore,from the sample of red se- ies around 40000 kms−1, they correspond to a peak located quencegalaxiesweadditionallyexcludegalaxiesknownfrom at CBI = 40378 kms−1 (z¯ = 0.135) with a velocity disper- spectroscopynottobeclustermembers.Theresultisshownin sion SBI = 427 kms−1, indicating that they could be a back- the right panelof Fig. 5, which is quite similar to the map in groundgroup. thecentralpanelexceptthatthelocationofclumpBisshifted In order to eliminate the galaxies not belonging to the towards the South and its central peak is shifted close to the cluster, we apply the standard iterative 3σ clipping (Yahil & positionoftheBG2.Ifwecantrustatahighconfidencelevel Vidal1977).104clustermemberswithczbetween25400and thatthesub-structuresstillvisiblearepartofA3921,itisstill 30400kms−1 areselected.Notethatthebackgroundpeakbe- notclear whetheror not theyare projectioneffects within the ing located ∼10000 kms−1 behind the mean velocity of the cluster.InFig.6therelativevelocitydistributionsofthesevar- clusterisexcludedasasubgroupofthecluster.Figure4shows ioussub-structuresarepresentedusingtheavailableredshifts. thelocationofthe104identifiedmemberssuperimposedona AtthelevelofR = 19theseclumpsactuallyhavefullspec- AB fractionoftheR-bandimage. troscopic coverage except for the eastern group with 5 con- firmedclustermembersoutof7galaxiesbelongingtothered sequence.Thestrongclusteringinredshiftspaceforallthesub- 4. Colourpropertiesandspatialmorphology structuresconfirmstheaccuracyofthepicturereflectedbythis ofA3921 densitymap. In order to investigate the projected spatial morphology of InFig.8thesamemapsarepresentedforthreemagnitude A3921 several density maps of the galaxy distribution have cuts. The globalbi-modalstructureof the cluster remainsun- beenbuiltonthebasisofamulti-scaleapproach.Theadopted changedwithluminosity.Thisisparticularlytrueforthecentral algorithm is a 2D generalization of the algorithm presented partsofclumpsAandB.However,notethattheeasterngroup, in Faddaetal. (1998). Itinvolvesa waveletdecompositionof morecompactthanclumpB,isstrongeratfainterlevels. C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 23 N E BG2 BG3 BG1 BG4 Fig.4.GalaxiesidentifiedasmembersofA3921(squares),superimposedonafractionoftheR-bandimage(27(cid:4)×20(cid:4)). N B E x xx xx x xx xx xx x xxxx x xxxx x A Fig.5.Projectedgalaxydensitymaps(withR ≤19)ona34×34arcmin2fieldcentredonA3921.Leftpanel:allgalaxies;centralpanel:the AB redsequencegalaxies,andrightpanel:sameascentralpanelbutremovinggalaxiesknownnottobeclustermembersfromspectroscopy.The whitecrossesshowthepositionsofthefourbrightestgalaxiesindicatedinFig.4. Theresultsgivenabovearebasedontheonlyredsequence Tosummarize,A3921ischaracterizedbya)abimodalmor- galaxies.InFig.9thegalaxiesbluerthantheredsequenceare phology; b) the presence of several substructures inside each presented,superimposedontheredsequenceiso-densitymap. of the two main clumps; c) an offset of the Brightest Cluster Thesebluegalaxiesappearmuchlessclusteredthantheredder Galaxy(BCG)fromthemaindensitypeakofclumpA,andd) onesoverthewholefieldandshowonlylittlecorrelationwith an excess of blue galaxiesaround the clump B. These results the red density peaks except in the case of clump B showing suggest that this system is out of dynamical equilibrium and an excess of blue galaxies relative to the other clumps and in thatitisprobablycomposedofamainclusterinteractingwith particular to the center of clump A. This asymmetry is also at least two groups,one to the North-East(clumpB) and one presentin the distributionof emissionline galaxiesaswill be totheEast,thelatterbeingsignificantlylessluminousthanthe shownanddiscussedinSect.7.3.1. former.Inthefollowingsectionwewillanalyzethedynamical 24 C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 xx xx xxxx x Fig.6.Velocitydistributionsofthemainstructuresoftheprojectedgalaxydensitymap(sameastherightpanelofFig.5).Thedottedlines inthehistogramsindicatetherelativevelocitiesoftheneighbouringbrightestgalaxy.AtthelevelofR = 19alltheselectedclumpshave AB a100%coverageexcepttheeasterngroupwith70%completeness. propertiesofA3921inordertounderstandwhichphaseofthe deviations from Gaussianity could provide important indica- mergingprocesswearewitnessing. tionsofongoingdynamicalprocesses.Inthefollowing,weare therefore interested in measuring a possible departure of the observedclustervelocitydistributionfromaGaussian. 5. Clusterkinematics A velocity distribution with slight tails can indicate the 5.1.Velocitydistributionofthewholecluster presenceoftwoormoreoverlappingGaussiancomponentsin the whole velocity histogram, while an asymmetric distribu- Using the biweight estimators for location and scale tioncanbetheresultofthecontemporarypresenceofsubclus- (Beers et al. 1990), we find a mean apparent velocity of C =28047+76kms−1, corresponding to a mean redshift of ters with differentnumbersof galaxies(Ashman et al. 1994). BI −77 z¯(cid:8)0.0936,andavelocitydispersionofS = 831+100 kms−1 Weusetwokindsofshapeestimators:thetraditionalthirdand BI −76 (at1σsignificancelevel,seeTable2).Figure10showsthehis- fourthmoments,i.e.skewnessandkurtosis,andtheasymmetry andtailindices(Bird&Beers1993).InTable2wereportthe togramofthecosmologicallyandrelativisticallycorrectedve- locityoffsetsfromthemeanclusterredshift(∆v=c(z−z¯)/(1+ corresponding values and significance levels, estimated from z¯))ofthe104clustermembers.Contrarytotheprojectedmor- Table2inBird&Beers(1993)underthenullhypothesisofa Gaussiandistribution. phologyontheskywedonotfindanybi-modalstructureinthe velocity distribution. In dissipationless systems, gravitational ThevaluesobtainedforSkewnessandAIshowthattheve- interactions of cluster galaxies over a relaxation time gener- locityhistogramisquitesymmetric(significancelevel>10%). ate a Gaussian distribution of their radial velocities; possible Values observed for kurtosis and TI indicate a heavy-tailed C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 25 Fig.7.(V−R) vs.R (left)and(R−I) vs.I (right)colour–magnitudediagrams.Allgalaxieswithin34×34arcmin2 areshown.Big AB AB AB AB symbolscorrespondtoconfirmedclustermemberswhereasdotscorrespondtogalaxieswithoutspectroscopicinformation.Trianglescorrespond toemissionlinegalaxies,squarestok+atype,circlestogalaxiespresentinganH−K inversionfollowingtheclassificationdescribedinthe text.Thesolidlineisthebestlinearfittotheredsequenceofthecluster,whilethedottedlineisat±1σ . RS R < 18 R < 19 R < 20 N AB AB AB E x xx xx x xx xx xx x xxxx x xxxx x Fig.8.Projectedgalaxydensitymaps(usingredsequencegalaxiesandexcludinggalaxiesknownnottobeclustermembersfromspectroscopy, asintherightpanelofFig.5)ona34×34arcmin2fieldcentredonA3921andforthreemagnitudecuts.Thewhitecrossesindicatethepositions ofthefourbrightestgalaxiesindicatedinFig.4. distribution,rejectingtheGaussianhypothesisforthefirst(i.e. ourdataset(Beersetal.1990)atcz = 27381.9kms−1 (shown kurtosis)at∼10%significancelevel,andforthesecondateven inFig.10)andcharacterizedbyanormalizedsizeof2.47and betterthan1%.Whilelight-taileddistributionsindicatemulti- a significance of 3%. On the contrary,among the 6 tests per- modality,heavilypopulatedtailscouldbeduetocontamination formedbyROSTATthatdonotrejecttheGaussianhypothesis, by non-cluster galaxies. We think that the analysis of Sect. 3 theDIPtest(Hartigan&Hartigan1985)acceptstheunimodal excludesthispossibility,butweapplyanadditionaltestinor- hypothesis at better than 99% level, in agreement with the dertodefinitivelyrejectthepresenceofoutliersinourvelocity conclusions obtained with the symmetry tests (i.e. Skewness sampleof104galaxies.Extensivedataavailableforlow-zclus- andAI). tersshowthatmost(≥95%)ofthegalaxiesinthecentralregion Classical tests of Gaussianity therefore give controversial oftheclustershaveradialvelocitieswithin±3500kms−1ofthe resultsforthekinematicalpropertiesofA3921. meanclusterredshift(Postmanetal.1998).Wethusverifythat allthe104galaxiesofourfinalsamplehave|∆v|<3500kms−1 (with∆vdefinedatthebeginningofthissection).Inanycase, 5.2.Analysisofapossiblepartitioninredshiftspace theshapeparametersdonotshowstrongevidenceofsubcom- andkinematicalindicatorsofsubclustering ponentsinvelocityspace. Because of the uncertain results obtained in the previous 7ofthe13normalitytestsperformedbyROSTATrejectthe section we apply the KMM mixture-modeling algorithm of Gaussianhypothesisatbetterthan10%significancelevel(see McLachlan & Basford (1988) which, using a maximum- Table 3). Moreover, we find one significant weighted gap in likelihoodtechnique,assigns each galaxyto a possible parent 26 C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 (Quintana et al. 1996; Muriel et al. 2002). Such integrated N measurementsare thereforeperformedwith the 104members E of A3921 up to a distance of ∼2 h −1 Mpc from the cluster 75 centre(taken to be at the position ofBG1), and are presented in the left panels of Fig. 11. The mean velocity has a very constant value (∼28000 kms−1) from the centre of the clus- tertoitsouteredges.Followingtheclassificationoftheradial profiles of the velocity dispersions of den Hartog & Katgert (1996),A3921presentsan“inverted”shape:thecumulativeve- locity dispersion shows an initial increase with radius up to ∼4 arcmin away from the cluster centre and then decreases nearly to its first bin value (∼900 kms−1). Finally, the veloc- itydispersionbecomesflatintheexternalregionsoftheclus- ter(≥1h −1 Mpc).Thisresultsuggeststhatthisfinalvalueis 75 representative of the total kinetic energy of the cluster mem- bers(Faddaetal.1996).A similarshapewasdetectedbyden Hartog&Katgert(1996)andNikogossyanetal.(1999)forthe galaxyclusterA194,andtheseauthorsinterpretedsuchapro- Fig.9. Projected galaxy density map (34×34 arcmin2) of the red- fileasoriginatinginanearlyrelaxedregion.Therefore,neither sequence galaxies (see Fig. 6). The symbols represent the galaxies theintegratedradialprofilesofthevelocitydispersionnorthose withR <20andbluerthantheredsequencegalaxies. AB ofthemeanvelocityrevealthepresenceofsignificantvelocity gradients that could be produced by the presence of internal population,andevaluatestheimprovementinfittingamultiple- sub-structures. These results are confirmed by the right pan- componentmodeloverasingle-one.Firstofall,wetrytoallo- elsofFig.11,wheremeanvelocitiesandvelocitydispersions catethe104galaxiesofourdatasetintotwopossiblesubclus- are estimated in rings containing the same number of galax- ters,respectivelywithmeanvelocitylowerandhigherthanthe ies(13).Theshapesofthesedifferentialprofilesagreewiththe gapposition.Severaltestsarethenperformedbychangingboth integrated ones, again presenting an inverted shape. Its mini- the estimated mean velocities and the estimated mixing pro- mumvelocitydispersioncorrespondstotheringcontainingthe portionfor each group,butwe always obtainthe same result: group of galaxies located around BG2. Within the errors, the the KMM algorithmtries to fit a 2-grouppartition fromthese mean velocities are nearly constant around 28000 kms−1, as guesses, obtaining intermediate confidence levels that cannot fortheintegratedprofile. rejectthenullhypothesisofunimodaldistribution.Thisresult actuallyagreesbothwiththeDIPtestandwithwhatisobserved 5.4.VelocitydistributionsofA3921-AandA3921-B fromtheshapeparametersofthevelocitydistribution,theab- senceoflight-populatedtailsandofasignificantasymmetryin Asshownabove,thedynamicalandkinematicalpropertiesof thehistogramexcludingthepossiblepresenceofseveralover- the whole cluster do not reveal strong signatures of merging. lappingsubunitspopulateddifferently. More indications on the dynamical state of the cluster could Classical statistical tests for sub-clustering are then ap- comefromthe analysisof the velocitydistributionof the two pliedtothe104clustermembersinordertolookfortheexis- main subclusters detected separately on the iso-densitymaps. tenceofcorrelatedsubstructuresin velocityandspatialdistri- Forthis,ourvelocitysampleisdividedintotwodatasets,con- bution(Dressler&Shectman1988;Bird1994;West&Bothun taining the confirmed cluster members in the two circles dis- 1990). The results, obtained by the bootstrap technique and playedinFig.14,chosenasthelargestnotintersecting.Thera- 1000MonteCarlomodels,arepresentedinTable4. diusofthetwocirclesis(cid:8)0.34Mpcandtheyarecentredonthe Neither∆norαparametersfindevidenceofsubstructures densitypeakspreviouslydetected(Sect.4).WeplotinFig.13 withahighsignificancelevel,whilethe(cid:6) testhasaninterme- theratioofthenumberofgalaxieswithverygoodredshiftde- diate andinconclusivevalue.Figure12showsgraphicallythe terminations(QF=1)tothetotalnumberofobjectsdetectedin resultsobtainedwiththe∆test. the two circles of Fig. 14 as a functionof R-bandmagnitude; Inconclusion,whilenobi-modalityisshowninthevelocity thespectroscopicsamplingofthesetworegions,andinpartic- distribution,thevarioustestsofGaussianityandsubclustering ularofA3921-A,appearstobequitegood,withcompleteness donotreachaconsensus,butdonotshow“extreme”departures levels≥50%forR ≤19.5((cid:8)R∗ +3.1). fromGaussianity. AB AB Figure 15 shows the velocity distributions of the two datasetsandinTable2wequotetheirvelocitymeansanddis- 5.3.Radialprofileofthevelocitydispersion persions.Bothdatasetsshowameanvelocityveryclosetoeach otherandtothewholeclustervalue(thevelocityoffset2∆vbe- The analysis of the mean velocity and particularly of the tween the mean velocities of A3921-A and A3921-B is only radial profile of the velocity dispersion provides a useful tool for investigating the dynamics of galaxy clusters, as they can reveal signs of subclustering and ongoing merging 2 Asusualcosmologicallyandrelativisticallycorrected. C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 27 Table2.PropertiesoftheczdistributionandsignificancelevelsofshapeestimatorsforvarioussubsamplesofA3921.C andS arethemean BI BI velocityandthevelocitydispersionofthedifferentdistributions(biweightestimatorsforlocationandscale,Beersetal.1990). Subsample N C S Skewness AI Kurtosis TI gal BI BI [kms−1] [kms−1] % % % % Wholesample 104 28047+76 831+100 ≥10 >20 ≤10 ≤1 −77 −76 A3921-A 41 28017+145 1008+156 >10 >20 >20 >20 −173 −106 A3921-B 20 27920+88 451+215 <10 <5 >20 >10 −86 −80 Table3.1-DstatisticaltestsperformedintheROSTATpackagethat exclude the hypothesis of a single Gaussian distribution for the dif- ferentvelocitydatasetsconsideredinthepaper.InCols.1and2we reportthenameandthevalueofthestatistics,whileCol.3indicates theirsignificancelevels. Wholecluster Statisticaltest Value Significance A 0.735 <1% B2 3.567 8.8% I 1.099 <5% KS 0.901 5.0% V 1.621 2.5% W2 0.163 1.6% U2 0.159 1.2% A2 0.907 2.1% A3921-A Statisticaltest Value Significance none – – A3921-B Fig.10. Top: stripe density plot of the radial velocity offsets of the StatisticalTest Value Significance 104A3921membersfromz¯(correctedforcosmologicalandrelativis- A 0.684 <5% tic effects). The position of the gap detected in the cluster velocity U 4.822 ∼1% distribution is indicated by an arrow. Bottom: velocity histogram of B1 –0.657 7.8% the confirmed cluster galaxies in bins of 200 kms−1. The Gaussian B2 4.738 2.1% best-fittothevelocitydistributionissuperimposed. B1andB2 6.123 4.7% Table4.3-Dsubstructureindicatorsforthesampleof104objectswith qualityflag=1inthevelocityrange25400÷30400kms−1. 89+155 kms−1);clumpAischaracterizedbythehighestveloc- Indicator Value Significance ity−d17is7persion. ∆ 109.284 0.680 (cid:6) 0.991×10+27kg 0.353 Most(8)ofthe13normalitytestscontainedintheROSTAT α 0.129h −1Mpc 0.914 75 package accept the hypothesis of Gaussianity for the veloc- ity distributionoftheA3921-Bcomponent,andactuallynone of them rejects the null hypothesisfor the radial velocities of 6. Dynamicalstudyofthesystem theclumpA3921-A(Table3).Shapeparameters(Table2)ac- cept the Gaussian hypothesis at more than 10% significance 6.1.Massestimateofthetwomainclumps level, with the exception of the skewness and of the kurtosis, Determiningtherespectivemasses ofA3921-AandA3921-B which indicates the possible presence of an asymmetric ve- requires idealized assumptions which cannot be strictly valid locity distribution (significance level lower than 10%) and of for an interacting system. However, as seen in Sect. 5.4, the heavily populated tails (significance level lower than 5%) in dynamicsofthecentralregionsofthetwoclumpsappeartobe theA3921-Bvelocityhistogram. relativelyunaffectedbythemergingevent. Summarizing, Gaussianity tests suggest that the merging We have therefore assumed that each subcluster is virial- eventhasnotstronglyaffectedtheinternaldynamicsofthetwo ized.Asinthecaseofvelocitydispersions,thevirialradiusof sub-clusters. eachclumpwasestimatedselectingonlythosegalaxieswithin 28 C.Ferrarietal.:DynamicalstateandstarformationpropertiesofthemerginggalaxyclusterAbell3921 Fig.11. Profileof thevelocitymeans (top) and dispersions(bottom) inthecluster: left:asacumulativefunction of galaxiescentred onthe positionofBG1–right:differentialvaluesasafunctionofradiusinringswith13galaxies;thelastpointisfarfromtheothersduetothelower degreeofcompletenessreachedbyspectroscopicdataintheouterregionsofthecluster(beyond∼12arcminfromthecenter). a projecteddistance of ∼0.34 h −1 Mpc from its center (see InEq.(2)U isthepotentialenergyofthesystemandr isthe 75 h Fig.14).Inordertohavebetterstatisticsandatthesametime meanharmonicradius,definedas:   tgoromunindimcoiznetabmiainsaetsiodnu,ewteoisnpcelcutdreadl ianlclothmepgleatleanxeisessabnedlonbgacinkg- rh = N(N−1)(cid:4)N−1 (cid:4)N 1 −1 (3) to the red sequence (thus assuming that early-type galaxies 2 i<j j=i+1rij tracethemassprofile;seeKatgertetal.2004),exceptforthose where r is the separation between the ith and jth galaxies, withameasuredredshiftandidentifiedasoutliersonthebasis ij andN isthetotalnumberofobjectsinthesystem). ofourpreviousanalysis. We have to apply the above relations to projected separa- Themasswascalculatedwiththeclassicalvirialequation: tions, so that we can estimate the projected mean harmonic r σ2 M = vir vir (1) radius RH and obtain the corresponding projected virial ra- vir G dius Rvir. Assuming spherical symmetry√, rvir = (π/2)Rvir (see where σ is the three-dimensionalvelocity dispersion of the Limber & Mathews 1960) and σ = 3σ , where σ is the vir vir r r system,andr isthevirialradius: radialvelocitydispersionofthesystem. vir   rvir ≡−GMUv2ir = N2(cid:4)Ni<−j1j(cid:4)=Ni+1r1ij−1 = N2−N1rh. (2) htoarrm(TsoheeneiaCcbraoarvdlbeiuemrsg:eatenhtoaadllt.eis1rn9ba9at6sive).edWiosneththheaesvope-acaiarpwlpleilsdieerdiensbgtoiwmthiasmteoeerstohtifomtdhase-,

Description:
and post-star-forming objects (so called k+a's, ∼16%) are detected, comparable to those .. 1 IRAF is distributed by the National Optical Astronomy.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.