ebook img

Dynamical stability of fluid spheres in spacetimes with a nonzero cosmological constant PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamical stability of fluid spheres in spacetimes with a nonzero cosmological constant

7thFebruary2008 4:21 WSPC-ProceedingsTrimSize:9.75inx6.5in main DYNAMICAL STABILITY OF FLUID SPHERES IN SPACETIMES WITH A NONZERO COSMOLOGICAL CONSTANT∗ STANISLAVHLEDÍK†,ZDENĚKSTUCHLÍK‡ andKRISTINAMRÁZOVÁ⊙ Institute of Physics, Faculty of Philosophy and Science, Silesian UniversityinOpava, Bezručovo nám. 13, Opava, CZ-74601, Czech Republic E-mail: †[email protected], ‡[email protected], ⊙[email protected] 7 0 0 TheSturm–Liouvilleeigenvalueequation foreigenmodesof theradialoscillationsisde- 2 termined for spherically symmetric perfect fluid configurations in spacetimes with a nonzero cosmological constant and applied in the cases of configurations with uniform n distributionofenergydensityandpolytropicspheres.Itisshownthatarepulsivecosmo- a J logicalconstantrisesthecriticaladiabaticindexanddecreases thecriticalradiusunder whichthedynamicalinstabilityoccurs. 5 1 Keywords: Perfectfluidconfigurations;Cosmologicalconstant; Dynamicalstability. 2 v 1. Introduction 1 5 The internal Schwarzschildspacetimes with nonzero cosmologicalconstant(Λ6=0) 0 and uniform distribution of energy density were given for star-like configurations1 1 0 andextendedtomoregeneralsituations.2Thepolytropicandadiabaticsphereswere 7 preliminary treated and compared,3,4 neutron star models with regions of nuclear 0 matter described by different relativistic equations of state that are matched were / c also treated.5 Their stability can be considered on energetic grounds6 or it can be q treated in dynamical way.7 Here we determine the dynamical stability conditions - r for the uniformdensity and polytropic spheresusing the approachofMisner et al.8 g : v i 2. Sturm–Liouville Equation X r Interior of a spherically symmetric configuration is described (in standard a Schwarzschildcoordinates) by the line element ds2 =−e2Φdt2+e2Ψdr2+r2(dθ2+sin2θdϕ2), (1) with metric coefficients taken in the general form Ψ=Ψ(r,t), Φ=Φ(r,t). (2) Theperfectfluiddistributionis givenbyenergydensity andpressureprofilesρ(r,t) and p(r,t). The static equilibrium configuration is given by Φ (r), Ψ (r), ρ (r), 0 0 0 p (r) satisfying the Euler equations. The radially pulsating configuration is then 0 determined by q(r,t)=q (r)+δq(r,t), δq ≡(δΦ,δΨ,δρ,δp,δn), (3) 0 ∗ThisresearchhasbeensupportedbyCzechgrantMSM4781305903. 1 7thFebruary2008 4:21 WSPC-ProceedingsTrimSize:9.75inx6.5in main 2 where n is the number density. The pulsation is given by the radial displacement ξ =ξ(r,t). The Euler perturbationsδq are related to the Lagrangianperturbations measured by an observer who moves with the pulsating fluid by the relation ′ ∆q(r,t)=q(r+ξ(r,t),t)−q (r)≈δq+q ξ. (4) 0 0 Introducing a new variable ζ ≡r2e−Φ0ξ, the radial pulsations are governedby Wζ¨=(Pζ′)′+Qζ (5) with the functions W(r), P(r), Q(r) determined for the equilibrium configuration 1 W ≡(ρ +p ) e3Ψ0+Φ0, (6) 0 0 r2 1 P ≡γp eΨ0+3Φ0, (7) 0r2 (p′)2 1 4p′ 8πG e2Ψ0 Q≡eΨ0+3Φ0 0 − 0 −(ρ +p ) p −Λ . (8) (cid:20)ρ +p r2 r3 0 0 (cid:18) c4 0 (cid:19) r2 (cid:21) 0 0 The linear stability analysis can be realized by the standard assumption of the displacement decomposition ζ(r,t)=ζ(r)eiωt. (9) ThenthedynamicequationreducestotheSturm–Liouvilleequationandtherelated boundary conditions in the form (Pζ′)′+(Q+ω2W)ζ =0, (10) ζ eΦ0 ′ finite as r→0, γp ζ →0 as r →R. (11) r3 0 r2 The Sturm–Liouville equation (10) and the boundary conditions determine eigen- frequenciesω andcorrespondingeigenmodesζ (r),wherei=1,2,...,n.Theeigen- j i value Sturm–Liouville (SL) problem can be expressed in the variational form8 as the extremal values of R Pζ′2−Qζ2 dr ω2 = 0 (12) R (cid:0) R (cid:1) Wζ2dr 0 R determine the eigenfrequencies ω and the corresponding functions ζ (r) are the i i eigenfunctions that have to satisfy the orthogonality relation R e3Ψ0−Φ0(p +ρ )r2ξ(i)ξ(j)dr =0. (13) 0 0 Z 0 3. Results and Conclusions We applied the Sturm–Liouvilleapproachto spheres with uniform energydensity,1 andpolytropicspheres.3Thecaseofuniformspherescanbeproperlytakenasatest bedofthedynamicalinstabilityproblem—althoughthesesolutionsoftheEinstein equationsareofratherartificialcharacter,theyreflectquitewellthebasicproperties 7thFebruary2008 4:21 WSPC-ProceedingsTrimSize:9.75inx6.5in main 3 6 4 c Γ 2 0 1 2 3 4 9(cid:144)8 R(cid:144)r g Figure1. Dependence ofthecriticalvalueofadiabatic indexγc onsphereradiusR. Full curve: vanishingcosmologicalconstantλ=0;thenγc divergesasR→9rg/8fromabove.Dashed curve: positive cosmological constant λ = 0.1, the point of divergence is shifted to 1.18421 > 9/8, and γc,λ>0 > γc,λ=0. Dashed-dotted curve: negative cosmological constant λ = −0.1, the point of divergenceisshiftedto1.07143<9/8,andγc,λ<0<γc,λ=0. of very compact objects.9 The dependence of the critical value of adiabatic index γ ≡ (∂lnp/∂lnn) = (n/p)(∆p/∆n) on configuration radius R is for the uniform s casegiveninFig.1(seealso12).ThepolytropiccaseistreatedindetailsbyStuchlík and Hledík.10 Bibliography 1. Z. Stuchlík,Acta Phys. Slovaca 50, 219 (2000). 2. C. G. Böhmer, Gen. Relativity Gravitation 36, p. 1039 (2004). 3. Z.StuchlíkandS.Hledík,GeneralRelativistic Polytropes with aNonzero Cosmolog- ical Constant, In preparation, (2006). 4. S. Hledík, Z. Stuchlík and K. Mrázová, General relativistic adiabatic fluid spheres with a repulsivecosmological constant, Inpreparation, (2006). 5. M. Urbanec, J. Miller and J. R. Stone, Matching of equations of state: influence on calculated neutron star models pp.357–362. In Hledík and Stuchlík.11 6. R.F. Tooper, Astrophys. J. 140, 434 (1964). 7. S.Chandrasekhar, Astrophys. J. 140, p. 417 (1964). 8. C.W.Misner,K.S.ThorneandJ.A.Wheeler,Gravitation(Freeman,SanFrancisco, 1973). 9. N.K. Glendenning, Phys. Rev. C 37, p. 2733 (1988). 10. Z. Stuchlík and S. Hledík, Radial pulsations and dynamical stability of spherically symmetricperfectfluidconfigurationsinspacetimeswithanonzerocosmological con- stant pp. 209–222. In Hledík and Stuchlík.11 11. S. Hledík and Z. Stuchlík (eds.), Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, Opava, 16–18/18–20 September 2004/2005 (Silesian Univer- sity in Opava,Opava, 2005). 12. C.G.BöhmerandT.Harko,Dynamicalinstability offluidspheresinthepresenceof a cosmological constant, Phys. Rev. D 71, p. 084026 (2005), arXiv: gr-qc/0504075.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.