ebook img

Dynamical quarks effects on the gluon propagation and chiral symmetry restoration PDF

0.78 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamical quarks effects on the gluon propagation and chiral symmetry restoration

Dynamical quarks effects on the gluon propagation and chiral symmetry restoration A. Bashir 4 UniversidadMichoacanadeSanNicolásdeHidalgo,EdificioC-3,CiudadUniversitaria, 1 Morelia,Michoacán58040,México. 0 2 E-mail: [email protected] n A. Raya a J UniversidadMichoacanadeSanNicolásdeHidalgo,EdificioC-3,CiudadUniversitaria, 7 Morelia,Michoacán58040,México. & ] h FacultaddeFísica,PontificialUniversidadCatólicadeChile,Casilla306,Santiago22,Chile p E-mail: [email protected] - p J. Rodríguez-Quintero∗ e h DepartamentodeFísicaAplicada,FacultaddeCienciasExperimentales,Universidadde [ Huelva,Huelva21071,Spain. 1 & v CAFPE,UniversidaddeGranada,E-18071,Granda,Spain. 7 4 E-mail: [email protected] 4 1 . Weexploittherecentlatticeresultsfortheinfraredgluonpropagatorwithlightdynamicalquarks 1 0 andsolvethegapequationforthequarkpropagator. Chiralsymmetrybreakingandconfinement 4 (intimately tied with the analytic properties of QCD Schwinger functions) order parameters are 1 : thenstudied. v i X r a QCD-TNT-III-Fromquarksandgluonstohadronicmatter: Abridgetoofar?, 2-6September,2013 EuropeanCentreforTheoreticalStudiesinNuclearPhysicsandRelatedAreas(ECT*),Villazzano,Trento (Italy) ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero 1. Introduction This contribution is mainly devoted to report on the results of Ref. [1], where we dealt with the dynamical quarks effects on the gluon propagation and applied this knowledge to the analysis of the chiral symmetry restoration with increasing number of light fermion flavours. Quantum chromodynamics (QCD) with large number of massless fermion flavors has seen a resurgence of interest due to its connection with technicolor models, originally proposed by Weinberg and Susskind [2], which fall into the category of Beyond the Standard Model Theories. They possess intrinsicallyattractivefeatures. Theydonotresorttofundamentalscalarstoreconcilelocalgauge symmetry with massive mediators of interaction and have close resemblance with well-studied fundamental strong interactions, i.e., QCD. However, their simple versions do not live up to the experimental electroweak precision constraints, in particular the ones related to flavor changing neutral currents. Walking models containing a conformal window and an infrared fixed point can possibly cure this defect and become phenomenologically viable [3]. This scenario motivates the investigation of QCD for similar characteristics. One looks for such behavior of QCD for large number of light flavors albeit less than the critical value where asymptotic freedom sets in, i.e., Nc1 =16.5, aNobelprizewinningresultknownsincetheadventofQCD,[4]. JustasN dictates f f the peculiar behavior of QCD in the ultraviolet, we expect it to determine the onslaught of its emergingphenomenaintheinfrared,i.e.,chiralsymmetrybreakingandconfinement. Whereastheselfinteractionofgluonsprovidesanti-screening,theproductionofvirtualquark- antiquark pairs screens and debilitates the strength of this interaction of non abelian origin. For realQCD,lightflavorsaresmallinnumberandhenceyieldtothegluonicinfluencewhichtriggers confinementandchiralsymmetrybreaking. Oneneedstoestablishifthereisanothercriticalvalue Nc2 <Nc1 whichcansufficientlydilutethegluon-gluoninteractionstorestorechiralsymmetryand f f deconfine color degrees of freedom. Such a phase transition lies at the non perturbative boundary oftheinteractionsunderscrutinyandhencewecannotexpecttoextractsufficientlyreliableinfor- mationfrommultiloopcalculationsoftheQCDβ-function. Purelynonperturbativetechniquesare required to tackle the problem. Lattice studies in the infrared indicate that just below Nc1, chiral f symmetryremainsunbrokenandcolordegreesoffreedomareunconfined[5]. Belowthisconfor- mal window, for an 8<Nc2 <12, the evolution of the beta function in the infrared is such that f QCDentersthephaseofdynamicalmassgenerationaswellasconfinement. Modern lattice analyses for this matter appear to strongly argue in favour of a restoration for the chiral symmetric phase taking place somewhere between N ∼8 and N ∼10 [6, 7]. In f f particular, the authors of ref. [7], with their study of the meson spectrum in lattice QCD with eight light flavours using the Highly Improved Staggered Quark action, gathered some striking evidences that N =8 QCD still lies in the broken chiral symmetry phase but, at the sime time, f suffering the effects from a remnant of the infrared conformality (a large anomalous dimension forthequarkmassrenormalizationconstant)indicatingthattheunbrokenphaseisrecoverednear above N ∼8. In the present work, we intend to combine the Schwinger-Dyson machinery, well f adjusted to account for QCD phenomenology in the pion sector, with the very last lattice data including twisted-mass dynamical light flavours in order to provide with a model for the chiral restorationmechanism,inquantitativeagreementwiththeabovementionedlatticestudies. 2 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero 2. ChiralphasetransitionpicturefromSchwinger-DysonandLatticegluon propagators In continuum, Schwinger-Dyson equations (SDEs) of QCD provide an ideal framework to studyitsinfraredproperties,[8]. Thesearethefundamentalequationsofanyquantumfieldtheory, linkingallitsdefiningGreenfunctionstoeachotherthroughintricatelycouplednonlinearintegral equations. As their formal derivation through variational principle makes no appeal to the weak- nessoftheinteractionstrength, theynaturallyconnecttheperturbativeultravioletphysicswithits emerging non perturbative properties in the infrared sector within the same framework. The sim- plesttwo-pointquarkpropagatorisabasicobjecttoanalyzedynamicalchiralsymmetrybreaking andconfinement. WithintheformalismoftheSDEs,theinversequarkpropagatorcanbeexpressed as S−1(p)=Z (iγ·p+m)+Σ(p), (2.1) 2 whereΣ(p)isthequarkselfenergy: (cid:90) d4q λa Σ(p)=Z g2∆ (p−q) γ S(q)Γa(q,p), (2.2) 1 (2π)4 µν 2 µ ν whereZ =Z (µ2,Λ2)andZ =Z (µ2,Λ2)aretherenormalizationconstantsassociatedrespec- 1 1 2 2 tivelywiththequark-gluonvertexandthequarkpropagator. Λistheultravioletregulatorand µ is therenormalizationpoint. Thesolutiontothisequationis iγ·p+M(p2) S−1(p)= , (2.3) Z(p2,µ2) whereZ(p2,µ2)isthequarkwavefunctionrenormalizationandthequarkmassfunctionM(p2)is renormalization group invariant. This equation involves the quark-gluon vertex Γa(q,p) and the ν gluon propagator ∆ (p−q). Very much attention will be paid in the next subsection to the two- µν point function as a crucial input to study the quark propagator. Here, in the following, the only otheringredient,thethree-pointquark-gluonvertexΓa(q,p),willbebrieflydiscussed. ν Significant advances have been made in pinning it down through its key attributes in the ul- traviolet and infrared domains [9]. More recently, the seeds of the most general ansatz for the fermion-bosonvertexappearedin[10]anditsfullblownextensionwaspresentedin[11]. Further- more, given the general nature of constraints and the simplicity of the construction, a straightfor- wardextensionofthisapproachisexpectedtoyieldanansatzadequatetothetaskofrepresenting thedressed-quark-gluonvertex. Beforethisisachieved,werestrictourselvestoaneffectivethough efficacious approach. Following the lead of Maris et. al. [12], we employ the following suitable ansatz which has sufficient integrated strength in the infrared to achieve dynamical mass genera- tion: λa Z g2∆ (p−q)Γ (p,q)→g2 (q2)∆N (p−q,N ) γ , (2.4) 1 µν ν eff µν f 2 ν where D(q2,N ) (cid:20) q q (cid:21) ∆N (q) = f δ − µ ν . (2.5) µν,Nf q2 µν q2 3 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero In the next subsection, the nonperturbative gluon dressing function, D(q2,N ), will appear mod- f elledandaccountingthusfortheeffectsfromthedynamicallightflavoursonthegluonpropagation. Concerningtheeffectivecoupling,g ,ithasbeenchosentobe eff D(q2,N ) g2 (q2)D(q2,N ) = f g2 (q2), (2.6) eff f D(q2,2) MT where g2 stands for the effective coupling ansatz proposed by Maris et. al. in ref. [12] and MT built there to incorporate also the nonperturbative information from the gluon propagator (as it is assumedtomultiplythetree-levelone). Thus,Eq.(2.6)fortwodegeneratelightfermionflavours allowstoreproducecorrectlythestaticaswellasdynamicpropertiesofmesonsbelow1GeV(see for example review [13] and references therein) while, by fixing the right number of flavours in theperturbativetailofg2 ,italsoreproducestheappropriateultravioletbehaviour,foranyflavour MT number. 2.1 Modellingtheflavourbehaviourforthegluonpropagator The second ingredient needed to solve Eq. (2.1) with (2.2,2.3) is the two-point gluon Green function, ∆ , that has been the object of a patient effort, spanning several decades, addressed µν to unravel its infrared behaviour. Lattice as well as SDE studies have finally converged on its massiveorsocalleddecouplingsolution(seeforexample[14]). Afterthegluonpropagatorsolution in the quenched approximation has been chiselled, we now have the first quantitatively reliable glimpsesofitsquarkflavordependencebyincorporatingN =0,2lightdynamicalquarkflavors1 f and 2+1+1 (2 light degenerate quarks, with masses ranging from 20 to 50 [MeV], and two non degenerate flavors for the strange and the charm quarks, with their respective masses set to 95 [MeV] and 1.51 [GeV]) [21]. As we demonstrate shortly, in this last 2+1+1 case, the number of light quarks corresponds effectively to 3. This is exactly the result derived from the recently developed "partially unquenched" approach to incorporate flavor effects in the gluon SDE, [22]. Their work is in agreement with one of [21] when the charm flavor is assumed to decouple from gluons. ItshouldnotbeworthlesstoremarkthatthesameN =2+1+1gaugefieldshavebeenalso f used to compute the running strong coupling and estimate accurately the value of Λ , in very MS goodagreementwithexperiments[23]. Moreover, our modern understanding of the flavor dependence of the gluon propagator pro- videsuswiththesolidbasistousethefollowingnonperturbativemodel[24]: z(µ2)q2(q2+M2) D(q2) = (2.7) q4+q2(cid:0)M2−13g2(cid:104)A2(cid:105)/24(cid:1)+M2m2 0 todescribethegluondressingrenormalizedinMOMschemeatq2=µ2. Thismodelisbasedonthe tree-levelgluonpropagatorobtainedwiththeRenormalizedGribov-Zwanziger(RGZ)action[25] which have been shown to describe properly the lattice data in the infrared sector (see refs. [26, 24]). Theoverallfactorz(µ2)isintroducedtoguaranteethemultiplicativeMOMrenormalization prescription, namely, D(µ2)=1, and implies no physical consequence as the effective coupling, 1Thedynamicalflavorshavebeengenerated,withintheframeworkofETMcollaboration[15,16,17,18],withthe mass-twistedlatticeaction[19],whileN =0datahavebeenborrowedfrom[20]. f 4 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero 7 N=0 3 f β=5.80 (N=0) Linear law 6 β=4.05 (Nff=2) m0 2 Exp. law β=4.90 (N=2) 5 Nf=2 β=1.95 (Nff=2+1+1) 1/ 1 2) / q 4 NNf==34 ββ==12..9100 ((NNff==24+)1+1) 00 1 2 3 4 5 6 7 8 9 10 11 12 2 f (q 3 8 D 2 Nf=6 2> 6 ELxinpe.a lra wlaw A N=8 < 4 1 f 2 g 2 0 0 0.1 1 10 0 1 2 3 4 5 6 7 8 9 10 11 12 N p (GeV) f Figure1: (Left)Latticegluonpropagatordataintermsofmomentafordifferentnumberoffermionflavors and fits with Eq. (2.7) and the parameters of Eqs. (2.9,2.10). (Right) Parameters g2 <A2 > and 1/m2 in 0 termsofthenumbersofflavorsandthefitswithEqs.(2.9,2.10). Thebluesquaresstandfortheextrapolated resultsatN =4weusedforFig.2. f g ,isfurtheradjustedtoreproduceproperlythemesonphenomenology. Then,weapplyEq.(2.7) eff toreproducethegluonpropagatorlatticedataanalyzedinRef.[21]andthusfititsmassparameters. M2isrelatedtothecondensateofauxiliaryfields,emergingmerelytopreservelocalityfortheRGZ action. Afreefitofthelatticedatasuggeststhatitdoesnotdependonthenumberoffermionflavors (wefindM2=4.85[GeV2]). Dimensiontwogluoncondensate(cid:104)A2(cid:105),[27],and q2 m2 =z(µ2) lim (2.8) 0 q2→0D(q2) are flavor dependent and we look for their best fits. In order to cover a wide range of possibilities within reason, we assume their evolution with the flavor number to be driven either by a simple linearscalinglaw m−1(N ) = m−1(0)(1−AN ) 0 f 0 f g2(cid:104)A2(cid:105)(N ) = g2(cid:104)A2(cid:105)(0)(1−BN ), (2.9) f f asdataappeartosuggest,orbyanexponentiallaw m−1(N ) = m−1(0)e−ANf 0 f 0 g2(cid:104)A2(cid:105)(N ) = g2(cid:104)A2(cid:105)(0)e−BNf , (2.10) f which allows for the possibility that the gluon propagator becomes infinitely massive only when the number of light quark flavors tends to infinity. The best-fit of the m and g2(cid:104)A2(cid:105) from lattice 0 data will require m (0)=0.333 GeV and g2(cid:104)A2(cid:105)(0)=7.856, in both cases, A=0.083 and B= 0 0.080, for the linear case, and A=0.095 and B=0.091, for the exponential one. Eq. (2.7) now provides prediction for the gluon propagator for arbitrarily large N , as can be seen in the right f plot Fig. 1, while the right one shows the corresponding gluon propagator along with the lattice data superimposed [21]. We also include some very recent gluon propagator data obtained from 5 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero latticesimulationswithfourdegeneratelighttwisted-massflavors2. Thesenewdataareratherwell describedbyEq.(2.7)evaluatedforthemassparametersextrapolatedtoN =4withEq.(2.9)(see f the zoomedplot in Fig.2). This observation stronglysupports thatN =2+1+1 gluondata indeed f correspondtothreelightflavors. Figure2:ThesameoftheleftplotofFig.1butonlywiththeparametersforthelinearcaseandincorporating newsmall-volumelatticedatafor4degeneratefermionflavors. Thus,wecanefficaciouslymodelthedilutionofthegluon-gluoninteractionswithincreasing flavor number in order to study the chiral restoration mechanism. We can now employ the gap equation to provide quantitative details of chiral symmetry breaking in terms of the quark mass functionforanincreasingnumberoflightquarks. 2.2 Results Inthefollowing,wemostlydiscusstheresultsobtainedbyemployingthelinearlawandstate the effect of exponential extrapolation afterwards. Note that we have not considered the flavor dependencewhichwouldarisefromthequark-gluonvertex(noexplicithandleonthisdependence is available at the moment). Otherwise said, as can be seen from Eq. (2.6), we take the effective coupling g , in the IR, to depend on N only through the gluon dressing function. The latter can eff f befairlyjustifiedbytheresultsof[21](seeEq.(5.2))whichsuggestthataneffectivecouplingcan beconstructedsuchthatthereisanabsenceofanyflavordependenceintheinfraredregion, more preciselystartingfromq2(cid:46)1GeV2. Once the quark mass function is available for varying light quark flavors (see Fig. 3 for the linear case), one can investigate any of the interrelated order parameters, namely, the Euclidean 2The gluon propagator lattice data for 4 light flavors have been borrowed from ETMC [28]. Simulated at small volumes,theyareonlyavailableformomentaabove1.25GeVandhardlyallowforafitwithEq.(2.7). Nevertheless, theycanbeusedtocheckourmodellingoftheflavorevolution. 6 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero N (cid:61)2 0.5 f (cid:76) V 0.4 N (cid:61)4 f e G 0.3 (cid:72) (cid:76) N (cid:187)7.07 2 0.2 Nf (cid:61)6 f p (cid:72) M 0.1 N (cid:61)7 f 0.0 10(cid:45)10 10(cid:45)8 10(cid:45)6 10(cid:45)4 0.01 1 2 2 p GeV Figure3: Thequarkmassfunctiondiminishesheightforincreasinglightquarkflavors(herewithEq.(2.9) AboveN ≈7.07,onlythechirallysymmetricsolutionexists. f (cid:72) (cid:76) polemassdefinedasm2 +M2(p2=m2 )=0,thequark-antiquarkcondensatewhichisobtained dyn dyn from the trace of the quark propagator or the pion leptonic decay constant f defined through the π Pagel-Stokarequation[29],orthroughconsideringtheresidueatthepionpoleofthemesonpropa- gator. Eachofthesequantitiesinvolvesthequarkwave-functionrenormalization,themassfunction and/oritsderivativesandishencecalculablefromthesolutionforthefullquarkpropagator. More- over, these order parameters can help to locate the critical number of flavors above which chiral symmetryisrestored. We investigate these three order parameters and choose to present here the Euclidean pole mass of the quark in Fig. 4 for the linear (exponential) case and show that, at a critical value of aboutNc≈7.1(Nc≈9.4),chiralsymmetryappearsrestored. Thephasetransitionappearssecond f f order,describedbythefollowingmeanfieldbehavior(solidlinesinFig.4): (cid:113) m ∼ Nc2−N . (2.11) dyn f f It has been established that confinement is related to the analytic properties of QCD Schwinger functions which are the Euclidean space Green functions, namely, propagators and vertices. One deducesfromthereconstructiontheorem[30]thattheonlySchwingerfunctionswhichcanbeas- sociatedwithexpectationvaluesintheHilbertspaceofobservables;namely,thesetofmeasurable expectationvalues,arethosethatsatisfytheaxiomofreflectionpositivity. Whenthathappens,the real-axismass-polesplits,movingintopairsofcomplexconjugatesingularities. Nomass-shellcan be associated with a particle whose propagator exhibits such singularity structure. We define the 7 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero 1 (cid:76) V 0.1 e G (cid:72) n y d 0.01 m 0.001 2 4 6 8 10 N f Figure 4: Quark pole mass in the Euclidean space clearly demonstrates that chiral symmetry is restored aboveacriticalnumberofquarkflavors. Blue(red)pointscorrespondtolinear(exponential)case. Thesolid lineisthemean-fieldscaling,Eq.(2.11) followingSchwingerfunction: (cid:90) (cid:90) d4p ∆(t) = d3x ei(p4t+p·x)σ (p2), (2.12) (2π)4 s to study the analytic properties of the quark propagator; where σ (p2) is the scalar term for the s quarkpropagatorinEq.(2.3),thatcanbewrittenintermsofthequarkwavefunctionrenormaliza- tion and mass function as Z(p2,µ2)M(p2)/(p2+M(p2)). One can show that if there is a stable asymptoticstateassociatedwiththispropagator,withamassm,then ∆(t)∼e−mt , (2.13) whereas two complex conjugate mass-like singularities, with complex masses µ =a±ib lead to anoscillatingbehaviorofthesort ∆(t)∼e−atcos(bt+δ) (2.14) forlarget,[31]. Fig.5analyzesthisfunctionforvaryingN ,inthelinearextrapolationcase. The f existenceofoscillationsclearlydemonstratesthatthequarkscorrespondtoaconfinedexcitationfor small N . With increasing N , the onslaught of oscillations moves towards higher values oft and f f eventuallynevertakesplaceaboveacriticalN whenquarksdeconfineandcorrespondtoastable f asymptotic state. As an order parameter of confinement, we therefore employ ν(N )=1/τ (N ), f 1 f where τ (N ) is the location of the first singularity, [32]. The first oscillation is pushed to infinity 1 f whenconfinementislost. Itisnotablethatwhenthedynamicallygeneratedmassapproacheszero, ν(N )diminishesrapidly(seerightplotofFig.5). Thishighlightstheintimateconnectionbetween f 8 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero 0 0.200 (cid:68)Logt (cid:45)(cid:45)(cid:45)(cid:45)(cid:45)(cid:45)11208642(cid:200)(cid:72)(cid:76)(cid:200)(cid:230) (cid:230) (cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)N(cid:230)(cid:224)(cid:230)(cid:230)f(cid:230)(cid:236)(cid:230)(cid:224)(cid:230)(cid:61)(cid:230)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)4(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:236)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:236)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:242)(cid:230)(cid:224)(cid:230)(cid:230)N(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:236)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:224)(cid:224)(cid:236)f(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:61)(cid:242)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)6(cid:224)(cid:236)(cid:242)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:242)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)N(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:242)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:236)(cid:224)(cid:242)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)f(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:242)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:242)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:61)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:242)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:236)(cid:224)(cid:224)(cid:224)(cid:236)(cid:224)(cid:242)(cid:224)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)7(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)N(cid:236)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)(cid:236)(cid:236)(cid:242)(cid:236)f(cid:236)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:187)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)7(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242).(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)0(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)7(cid:242)(cid:242)(cid:242)(cid:242)(cid:242)(cid:242) ΝGeV 0000000.......000000100012501250000(cid:72)(cid:76) (cid:45)14 (cid:224) 1 10 100 1000 2 3 4 5 6 7 8 (cid:45)1 t GeV N f Figure5: (Left)Spatiallya(cid:72)veragedE(cid:76)uclideanspace2-pointSchwingerfunction∆(t)developsoscillations forlargetimeswhichcorrespondstothenon-existenceofasymptoticallystablefreequarkstates. Forsuf- ficiently large values of N , the first minimum of these oscillations is pushed all the way to infinity, thus f ensuringtheexistenceofapoleonthetime-likeaxis,apropertyoffreeparticlepropagators. (Right)Theor- derparameterforconfinementν(N )=1/τ (N ),whereτ (N )isthelocationofthefirstzeroofEq.(2.12) f 1 f 1 f ComparisonwithFig.4suggeststhatquarksgetdeconfinedwhenchiralsymmetryisrestored. chiralsymmetryrestorationanddeconfinement. Infact,withinournumericalaccuracy,Ncisfound f tobethesameforboththetransitions. The results with the exponential and linear flavor extrapolations are qualitatively the same, leading to identical conclusions. They only quantitatively differ by the critical flavor numbers, although both are pretty much in the same ballpark: Nc (cid:39)7.1 and Nc (cid:39)9.4. Note that both the f f parameterizations,sofarapartastohaveaninfinitelymassivegluonatN ≈12orN ⇒∞,restore f f chiralsymmetryandtriggerdeconfinementatsosimilarvalueoflightquarkflavors. 3. Conclusions We have benefited from the latest lattice result for the quark flavor dependence of the gluon propagator in the infrared, as well as from a RGE-grounded nonperturbative model for this IR gluonpropagator,inordertoperformaPoincare-covariantSDEanalysisforthequarkpropagator. Thisprovidedwithanefficaciousmodelfordilutionofthegluon-gluoninteractionwithincreasing numberoflightquarksandweappliedittostudytheevolutionwiththelight-flavorsnumberofthe quark chiral behaviour. A nonperturbative picture for the chiral symmetry restoration mechanism emerges thus from this analysis. The quantitative analysis, following this approach, hints towards chiralsymmetryrestorationinQCDwhenthenumberoflightquarkflavorsexceedsacriticalvalue ofNc2 ≈8.2±1.2. Thisisinperfectagreementwiththestate-of-the-artforthedirectlatticeinves- f tigations on the chiral symmetry restoration in QCD [6, 7] and supports that the model presented hereforthechiralrestorationmechanismisproperlycapturingmostoftherelevantphysicsforthe problemwedealwith. 9 Dynamicalquarkseffectsonthegluonpropagation J.Rodríguez-Quintero Furthermore,wehavealsostudiedanorderparameterfortheQCDconfinement-deconfinement transition,whichisbasedontheanalyticpropertiesofthequarktwo-pointSchwingerfunction,and locatednumericallythecriticalpointatthesamenumberofflavorsaschiralsymmetryrestoration took place. That chiral symmetry appears restored when quarks get deconfined, within the ap- proachwefollowed,highlightstheintimateconnectionbetweembothfundamentalphenomenaof QCD.Thisisamainresultofthiswork. Acknowledgments We acknowledge D. Schaich for a fruitful communication. This work was supported by the grants: CIC, UMICH, Mexico, 4.10 and 4.22, CONACyT (Mexico) 82230 and 128534,andMINECO(Spain)researchprojectFPA2011-23781. References [1] A.Bashir,A.RayaandJ.Rodriguez-Quintero,Phys.Rev.D88,054003(2013);arXiv:1302.5829 [hep-ph]. [2] S.Weinberg,Phys.Rev.D13,974(1976);S.Weinberg,Phys.Rev.D19,1277(1979);L.Susskind, Phys.Rev.D20,2619(1979). [3] B.Holdom,Phys.Lett.B150,301(1985);K.Yamawaki,M.BandoandK.Matumoto,Phys.Rev. Lett.56,1335(1986);T.W.Appelquist,D.KarabaliandL.C.R.Wijewardhana,Phys.Rev.Lett.57, 957(1986). [4] D.J.GrossandF.Wilczek,Phy.Rev.Lett.30,1343(1973);H.D.Politzer,Phy.Rev.Lett.30,1346 (1973). [5] T.Appelquistet.al.,Phys.Rev.Lett.104,071601(2010);T.Appelquist,G.T.Flemingand E.T.Neil,Phys.Rev.D79,076010(2009);Z.Fodoret.al.,Phys.Lett.B681,353(2009); K.-I.Nagaiet.al.,Phys.Rev.D80,074508(2009);L.DelDebbioet.al.,Phys.Rev.D82,014510 (2010);A.Hasenfratz,Phys.Rev.D82,014506(2010). [6] M.Hayakawa,K.-I.Ishikawa,Y.Osaki,S.Takeda,S.Uno,N.Yamada,Phys.Rev.D83074509 (2011);"ApproachingConformalitywithTenFlavors",T.Appelquist,R.C.Brower,M.I.Buchoff, M.Cheng,S.D.Cohen,G.T.Fleming,J.Kiskis,M.Lin,H.Na,E.T.Neil,J.C.Osborn,C.Rebbi, D.Schaich,C.Schroeder,G.Voronov,P.Vranas,arXiv:1204.6000[hep-ph](2012);Y.Iwasaki, "ConformalWindowandCorrelationFunctionsinLatticeConformalQCD",e-Print: arXiv:1212.4343[hep-lat](2012);"Scale-dependentMassAnomalousDimensionfromDirac Eigenmodes",A.Cheng,A.Hasenfratz,G.Petropoulos,D.Schaich,arXiv:1301.1355[hep-lat] (2013). [7] Y.Aoki,T.Aoyama,M.Kurachi,T.Maskawa,K-INagai,H.Ohki,A.Shibata,K.Yamawaki,T. Yamazaki;"WalkingSignalsinNf=8QCDontheLattice",arXiv:1302.6859[hep-lat](2013). [8] F.Dyson,Phys.Rev.75,1736(1949);J.S.Schwinger,Proc.Nat.Acad.Sci.37,452(1951); J.S.Schwinger,Proc.Nat.Acad.Sci.37,455(1951). [9] J.S.BallandT-W.Chiu,Phys.Rev.D22,2542(1980);D.C.CurtisandM.R.Pennington,Phys. Rev.D42,4165(1990);Z.Dong,H.J.MunczekandC.D.Roberts,Phys.Lett.B33,536(1994); A.BashirandM.R.Pennington,Phys.Rev.D50,7679(1994);A.KizilersuandM.R.Pennington, Phys.Rev.D79125020(2009). [10] A.Bashir,A.Raya,S.Sánchez-Madrigal,Phys.Rev.D84,036013(2011). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.