ebook img

Dynamical decoupling and noise spectroscopy with a superconducting flux qubit PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamical decoupling and noise spectroscopy with a superconducting flux qubit

Dynamical decoupling and noise spectroscopy 1 1 with a superconducting flux qubit 0 2 n JonasBylander1, SimonGustavsson1, a J Fei Yan2,FumikiYoshihara3, KhalilHarrabi3†, GeorgeFitch4, 5 David G. Cory2,5,6, YasunobuNakamura3,7, Jaw-Shen Tsai3,7, WilliamD. Oliver1,4 2 ] 1ResearchLaboratoryofElectronics,2DepartmentofNuclearScienceandEngineering, n MassachusettsInstituteofTechnology,Cambridge,MA02139,USA. o c 3TheInstituteofPhysicalandChemicalResearch(RIKEN),Wako,Saitama351-0198,Japan. - r 4MITLincolnLaboratory,244WoodStreet,Lexington,MA02420,USA. p 5InstituteforQuantumComputingandDept.ofChemistry,UniversityofWaterloo,ON,N2L3G1,Canada. u s 6PerimeterInstituteforTheoreticalPhysics,Waterloo,ON,N2J,2W9,Canada. . t 7GreenInnovationResearchLaboratories,NECCorporation,Tsukuba,Ibaraki305-8501,Japan. a m †Presentaddress:PhysicsDept.,KingFahdUniversityofPetroleum&Minerals,Dhahran31261,SaudiArabia. - d January 26,2011 n o c [ Abstract 1 The characterizationand mitigation of decoherencein natural and artificial two-level systems (qubits) is funda- v mentaltoquantuminformationscienceanditsapplications. Decoherenceofaquantumsuperpositionstatearises 7 0 fromtheinteractionbetweentheconstituentsystem andtheuncontrolleddegreesoffreedomin itsenvironment. 7 WithinthestandardBloch-Redfieldpictureoftwo-levelsystemdynamics,qubitdecoherenceischaracterizedby 4 two rates: a longitudinal relaxation rate Γ due to the exchange of energy with the environment, and a trans- 1 . 1 verserelaxationrateΓ2 = Γ1/2+Γϕ whichcontainsthepuredephasingrateΓϕ. Irreversibleenergyrelaxation 0 canonlybemitigatedbyreducingtheamountofenvironmentalnoise,reducingthequbit’sinternalsensitivityto 1 thatnoise,orthroughmulti-qubitencodinganderrorcorrectionprotocols(whichalreadypresumeultra-lowerror 1 rates). Incontrast,dephasingisinprinciplereversibleandcanberefocuseddynamicallythroughtheapplication : v ofcoherentcontrolpulsemethods[1–3]. Inthisworkwedemonstratehowdynamical-decouplingtechniquescan i X moderatethe dephasingeffectsof low-frequencynoise on a superconductingqubit[4–6] with energy-relaxation time T = 1/Γ = 12µs. Using the CPMG sequence[7,8] with upto 200π-pulses, we demonstratea 50-fold r 1 1 a improvement in the transverse relaxation time T over its baseline value. We observe relaxation-limited times 2 TCPMG = 23µs 2T resulting from CPMG-mediated Gaussian pure-dephasing times in apparent excess 2 ≈ 1 of 100µs. We leverage the filtering property of this sequence in conjunction with Rabi and energy relaxation measurementstofacilitatethespectroscopyandreconstructionoftheenvironmentalnoisepowerspectraldensity (PSD)[9,10]. 1 Severalmulti-pulsesequencesdevelopedwithinthe field ofnuclearmagneticresonance[2] (NMR) have re- cently been applied to mitigate noise in qubits based on atomic ensembles [11], semiconductor quantum dots [12,13],anddiamondnitrogen–vacancycentres[14,15].Weextendthesemethodstotherealmofsuperconducting quantumdevices,andsubjectaremarkablylong-livedqubittovaryinglevelsoflongitudinalandtransversenoise byrotatingthequbit’squantizationaxis, againstwhichwe characterizethebaseline coherenceratesΓ , Γ , and 1 2 Γ . We evaluatethreedynamical-decouplingpulseprotocols: theCarr-Purcell[7](CP);Carr-Purcell-Meiboom- ϕ Gill[8](CPMG);andUhrigdynamical-decoupling[16](UDD)sequences. Thenarrow-bandfilteringpropertyof theCPMGsequenceenablesustosampleenvironmentalnoiseoverabroadfrequencyrange0.2–20MHz,andwe observea1/fα-typespectrumwhichweindependentlyconfirmwithaRabi-spectroscopyapproach. Wefurther- morecharacterizetheenvironmentalnoisefrom5.4to21GHzbymonitoringthequbit’srelaxationrate[9,10]. Thedeviceisapersistent-currentqubit(Figs.1aandA1),analuminiumloopinterruptedbyfourAl-AlO -Al x Josephsonjunctions. WhenanexternalmagneticfluxΦthreadingtheloopisclosetohalfasuperconductingflux quantumΦ /2, thediabaticstates correspondtoclockwise(counterclockwise)persistentcurrentsI = 0.18µA 0 p withenergies ¯hε/2 = I Φ ,tunablebythefluxbiasΦ = Φ Φ /2. AtΦ = 0,thedegeneratepersistent- p b b 0 b ± ± − currentstates hybridizewith a strength ¯h∆ = h 5.3662GHz (Figs. 1b and A2b), where ¯h = h/2π and h is × Planck’sconstant. Thecorrespondingtwo-levelHamiltonianis[4,5] ¯h ˆ = [(ε+δε)σˆ +(∆+δ∆)σˆ ], (1) x z H −2 whichincludesnoisefluctuationtermsδε andδ∆, andσˆ arePaulioperators(Fig.A2). Theground(0 )and x,z | i excited (1 ) states have frequency splitting ω = √ε2+∆2 and are well isolated owing to the qubit’s large 01 | i anharmonicity,ω /ω 5. Theenvironmentalnoiseleadingtofluctuationsδε (e.g.,fluxnoise)andδ∆(e.g., 12 01 ≈ criticalcurrentandchargenoise)physicallycouplestothequbitintheε–∆frame(equation1). However,their manifestationaslongitudinalnoise(dephasing)ortransversenoise(energyrelaxation)istunable[17]bytheflux biasΦbanddetermined,respectively,bytheirprojectionsδωz′ ontothequbit’squantizationaxisσˆz′ (whichmakes anangleθ =arctan(ε/∆)withσˆz)andδω⊥′ ontotheplaneperpendiculartoσˆz′. Thechipismountedina3He/4Hedilutionrefrigeratorwith12-mKbasetemperature. Foreachexperimental trial, we initialize the qubit by waiting sufficient time ( 1 ms) for it to relax to its ground state. We drive the ∼ desiredquantum-staterotationsof angleΘ by applyingcalibratedin-phase(X ) and quadrature(Y ) harmonic Θ Θ fluxpulsestothequbitloop.ThepulsescompriseGaussianenvelopeswithatypicalstandarddeviationσ =1.2ns and truncated at 3σ. The qubit readout has 79% visibility (Fig. A3) and is performed in the energy basis by ± determiningtheswitchingprobabilityP ofa hystereticdc SQUID, averagingoverseveralthousandtrials(see sw Appendix). We begin with a spectroscopic characterization of our device and its baseline coherence times. The qubit level splitting ω is measured via saturated frequency spectroscopy (Fig. 1b), and at low-power it exhibits a 01 Lorentzianfull-width-at-half-maximum(FWHM) linewidth ∆f = 0.18MHz at Φ = 0 (Fig. 1c). The (FWHM) b energyrelaxationisgenerallyexponentialanditstimeconstantT =12 1µs(Fig.1d)isremarkablylongamong 1 ± superconductingqubits[6],afeatureweleverageinthisworkinconjunctionwithquantizationaxistunability.We observe similarly long decay times at Φ = 0 for the Hahn spin-echo, T = 23µs (Fig. 1d), Ramsey free b 2,E ∗ induction,T = 2.5µs(Fig.1e), andRabioscillations,T = 13µs(Fig.1f). Althoughthe spinechoandRabi 2 R exhibitanapparentlyexponentialdecayatΦ =0(theyareessentiallyT -limitedatthisfluxbias),ingeneral,their b 1 decayfunctionsarenon-exponential.Furthermore,thedephasingtimesdecrease(ratesincrease)dramaticallyaway fromΦ =0(Figs.2cand3b)duetothequbit’sincreasedsensitivitytothedominantδε-noise(fluxnoise)inthis b system[18](increased ∂ω /∂ε),which,aswewilldemonstrate,canbemitigatedwithmulti-pulsedynamical- 01 | | decouplingsequencestopushcoherencetimesuptowardstheT -limit. 1 Decoherencein superconductingqubitshasbeen studied theoretically[9,17,19,20] and experimentally[10, 17,18]. EachnoisesourceλischaracterizedbyitsPSD,whichquantifiesthefrequencydistributionofthenoise ∞ power, S (ω) = (1/2π) dt λ(0)λ(t) exp( iωt). In contrast to a simple Bloch-Redfield picture, which λ −∞ h i − presumesweaklycouplednoisesourceswithshortcorrelationtimesτ T ,T resultinginpurelyexponential c 1 2 R ≪ 2 a b c d R R L C Hz)5.9 1Psw0.99 1 Relaxation: Xπ τ read outt V I G 0.98 P ΦdVc + Imdwc + pulse S|Q0U/1ID\ fFrequency, (55..75 0.50.97 Df ( F W H M ) = 0.18 MHz s0w.5 Echo: Xπ/τ2/2 XπTT2 τ1 E / 2 == 12X23 π mm/s2st 5.3 0 0.96 0 -2 -1 0 1 2 5.365 5.367 0 20 40 60 Flux detuning, Φ (mΦ ) Frequency, f (GHz) τ (ms) e f b 0 P 1 Ramsey: Xπ/2τ Xπ/2t Rabi oscillations TR = 13 ms |0\ sw 0.5 X Θ(τ) T2 * = 2.5 ms t |1\ 0 0 2 4 6 0 5 10 15 20 25 τ (ms) τ (ms) Figure1:Qubitdeviceandcharacterization.a,Deviceandbiasingschematic:Analuminiumsuper- conductingloopinterruptedbyJosephsonjunctions(crosses)witharead-outdcSQUID.b,Frequency spectroscopyof the qubit’s 0 1 transition. c, Spectroscopyat Φ = 0 (arrowin b). d, Echo b | i → | i decay(bluetriangles)andrelaxationfromtheexcitedstate(blackdots)atΦ =0.Intheinsets,τ isa b timedelayandX symbolizesarotationoftheBlochvectorbytheangleΘaroundtheaxisσˆ . The Θ x redsquaresindicatethetimeofreadout. e,Free-inductiondecay(Ramseyfringe)atΦ =0. f,Rabi b oscillationsatΦ =0. b decayfunctions, moregenerallythe decayfunctionsare non-exponentialfornoise sourceswith longcorrelation times,singularnearω 0(e.g.,1/f-typenoiseatlowfrequencies,relevanttodephasing). ≈ Asuperpositionstate’saccumulatedphaseϕ(t)= ω t+δϕ(t)diffusesduetoadiabaticfluctuationsofthe 01 transitionfrequency,δϕ(t) = (∂ω /∂λ) tdt′δλ(t′).hForinoisegeneratedbyalargenumberoffluctuatorsthat 01 0 areweaklycoupledtothequbit,itsstatisticsareGaussian.Ensembleaveragingoverallrealizationsofthestochas- R tic process δλ(t), and taking the sources λ to be independent, the dephasing is exp[iδϕ(t)] exp[ χ (t)], N h i ≡ − withthecoherenceintegral ∂ω 2 ∞ χ (τ)=τ2 01 dωS (ω)g (ω,τ), (2) N λ N ∂λ λ (cid:18) (cid:19) Z0 X where τ is the free evolution time and N will denote the number of π pulses in the pulse sequences [11,16]. Equation (2) expressesthat the PSD S (ω) is filtered by a dimensionless weightingfunction g determinedby λ N thepulsesequence,andtheaggregatedλ-noisetranslatestodephasingthrough∂ω /∂λ,thequbit’slongitudinal 01 sensitivity to λ-noise. For Gaussian noise with spectral distribution S (ω) = A /ω at low frequencies, the λ λ coherenceintegralresultsinaGaussiandecayfunction,χ (τ)=(Γ τ)2. N ϕ The Ramsey free-inductionand Hahn spin-echo dependenceon flux bias (Fig. 2c) are both apparently con- sistent with Gaussian distributed, 1/f-type noise. Ramsey free induction, the free evolution of a superposition state for a time τ (Fig. 2a with no π pulses), has a filter functiong peakedat ω = 0 (Fig. 2b) and is sensitive 0 to low-frequency longitudinalnoise δωz′(ω 0). Inhomogeneitiesin the precession frequency ω01 from one → realizationofthepulsesequenceto thenextleadtoa decayoftheaveragedsignal. We denotesuchfluctuations “quasi-static” noise and characterizethem by a noise variance σ2 = 2 ωuλv dωS (ω), with cut-offfrequencies λ ωiλr λ ωiλrandωuλvdeterminedrespectivelybytheaveragingtimeoveralltrialsRandthetypicalfree-evolutiontimeduring 3 asingletrial. Incontrast,theHahnspin-echosequence[1],asingleπpulseappliedattimeτ/2(Fig.2awithoneπ pulse),hasafilterfunctiong peakedawayfromω =0(Fig.2b)andislesssensitivetoquasi-staticnoise.Weplot 1 thedecayrates1/T versusfluxbiasΦ forRamseyandechoinFig.2c(seealsoFig.A4),where,forpurposesof e b comparisonamongstdifferentdecayenvelopes,T parameterizesthetimeT todecaybyafactor1/eindependent e 2 oftheexactdecayfunction(seeAppendix). AtΦ = 0, δ∆-noiseisthe dominantlongitudinalnoisethatlimits b theRamseydecay,yetitisrefocusedwithasingleπ-pulseresultingintheT -limitedexponentialecho-decayin 1 Fig.1d. As Φ isincreased,boththeRamseyandechodecayratesincreaseduetothequbit’sincreasedlongi- b | | tudinalsensitivitytoδε-noise(seeFigs.2candA4). Theδε-noiseistoolargefortheechotorefocusefficiently, duetoitshigh-frequencytail,andwefindbest-fitphasedecayfunctionsthatareGaussian,χ(τ) = (Γ τ)2. ϕ,F(E) We extract the ratio Γ (Φ )/Γ (Φ ) 4.5, as expected for 1/f noise [17], with an equivalent flux-noise ϕ,F b ϕ,E b ≈ amplitude[18]A = (1.7µΦ )2. Importantly,wenotethatinthisanalysisandrelatedworks[17,18], thePSD Φ 0 waspresumedapriori totaketheform1/fαwithα=1. Numerical simulations (see Appendix), including the measured T decay at each Φ , linearly coupled and 1 b uncorrelatedquasi-static noises, and uncorrelateddynamic1/f noise from104 to 1010 Hz, reproducethe entire ∗ Φ -dependenceofT andT usingtheparametersinTable1andarealsoconsistentwithequation(2). b 2 2,E Inorderto mitigate higher-frequencynoise thanwhatthe Hahnspin-echocan efficientlyrefocus, we further shape the filter function by applyingadditionalπ-pulses (Figs. 2a and A5). The filter g (ω,τ) dependson the N numberN anddistributionofπ-pulses[11,16,21,22]duringthetotalsequencelengthτ, N 1 2 g (ω,τ)= 1+( 1)1+Nexp(iωτ)+2 ( 1)jexp(iωδ τ)cos(ωτ /2) , (3) N (ωτ)2 − − j π (cid:12) Xj=1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) whereδ [0,1]isthenormalizedpositionofthecentreofthejthπ-pulsebetweenthetwoπ/2-pulses,andτ is j π ∈ thelengthofeachπ-pulse.Asthenumberofpulsesincreasesforfixedτ,thefilterfunction’speakshiftstohigher frequencies(Fig. 2b), leadingto a reductionin the netintegratednoise(equation2) for1/fα-typenoise spectra withα>0. Alternatively,forafixedtimeseparationτ′ =τ/N (validforN 1),thefilterasymptoticallypeaks ≥ nearω′ =2π/4τ′asmorepulsesareadded.Inprinciple,onecanadaptthefilterfunctiontosuitaparticularnoise spectrumviathechoiceofdynamical-decouplingprotocol. Wehaveevaluatedthreedifferentdynamical-decouplingprotocolsrelevantfor1/f-typepowerlawnoisespec- tra[23–25]. TheCPandCPMGsequences[7,8]aremulti-pulseextensionsoftheHahnechowithequallyspaced π-pulseswhosephasesdifferfromtheinitialπ/2pulseby0◦(X )and90◦(Y ),respectively(Fig.2a).TheUDD π π sequence[16]hasY -pulsepositionsdefinedbyδ =sin2 πj . π j 2N+2 InFig.2c,weincludethe1/TedecayratesforCPMGd(cid:16)ynamic(cid:17)al-decouplingsequenceswithN =2...48π- pulsesalongwiththeRamsey(N =0)andHahnecho(N =1)alreadydiscussed.Thedecayratesmonotonically improve towards the 1/2T -limit as the number of π-pulses increases, extending the range around Φ = 0 for 1 b whichdephasingisnegligible.Outsidethisrange,asthequbit’ssensitivitytoδε(flux)noisegrowswithincreasing Φ ,increasingthenumberofπ-pulsesmitigatesthenoisesufficientlywelltoachieveadesireddecayrate. b | | At a specific flux bias Φ = 0.4 mΦ , where the qubitis highly sensitive to δε noise, the CPMG sequence b 0 givesamarkedimprovementinthedecaytimeT uptoN 200π-pulses(Fig.2d),beyondwhichpulseerrors e begintolimittheCPMGefficiency.Weachievea50-folden≈hancementofTCPMGovertheRamseyT∗ (Fig.2d), 2 2 and well over 100-fold improvement in the Gaussian pure dephasing time T . The CPMG sequence performs ϕ about5%betterthanUDD,indicatingthatthe1/f δε-noisespectrumexhibitsarelativelysoft(ifany)ultraviolet cutoff [21,25], and it dramatically outperformsCP, as Y -pulse errorsappear only to fourth order with CPMG, π whereaswithCP,X errorsaccumulatetosecondorder[26]. π WeusethefilteringpropertyoftheCPMGsequencetocharacterizetheδε-noisespectrum.Thefilterg (ω,τ) N is sufficiently narrow about ω′ that we can treat the noise as constant within its bandwidth B and approximate equation (2) as χ (τ) τ2(∂ω /∂Φ)2S (ω′)g (ω′,τ′)B (Fig. A6). We compute ω′ and B numerically N 01 ε N ≈ for each N and τ used in the CPMG measurements of Fig. 2d. The measured decay function contains three decay rates: dephasing Γ(N) and exponentialrelaxation Γ /2 during the total free-evolutiontime τ, and pulse- ϕ 1 4 induced decay Γ during Nτ (we assume Γ to be independentof N). Conceptually, Figs. 2e–g illustrate for p π p N = 84howwedivideouttheΓ andΓ (assumingexponentialpulse-induceddecay)componentsfromtheraw 1 p data (e)to obtainthe Gaussianphase decay(f), andthencomputeS (ω)(g). Morerigorously,we onlyuse that ε methodtodetermineastartingpointatasinglefrequency,andthenusearecursivemethodtoobtaintheremainder of the spectrum without presuming a functional form for the pulse-induced decay, the dephasing, or the noise a Xπ/2 Yπ Yπ Yπ Yπ Yπ Yπ Xπ/2 b 1 N = 0 τ = 1 ms 2τN Nτ Nτ . . . τN τN 2 τN ω,τ) 12 4 . . . 10 . . . N π-pulses (N >_ 1) t g (N 0 c ε/2π (MHz) 0 2.5 5 -400 -200 0 200 400 Frequency, f (MHz) 1 Ramsey CPMG e 0.8 0.8 N increases Φ b = -0.4 mΦ0 w Ps N = 84 -1s ) 0.6 1 - 0.6 m T (e 0.4 / 1 0.4 f 0.2 1 \ 0 1/2T1 tϕ() ] -0.4 -0F.l2u x d e t u n i n 0g , Φ ( m Φ 0 .2) 0.4 ip[ 0.5 b 0 x d e \ 2T1 0 0 10 20 s)10 CPMG Free evolution, τ (ms) m T (e simulation g 8 me, CPMG 10 e1/ decay ti 1 Ramsey (N=0) CUPDD -1S ω() (s )ε110067 Φ = -0.4 mΦ b 5 0.1 10 6 7 8 1 10 100 1000 10 10 10 Number of π pulses, N Frequency, f (Hz) Figure 2: Dynamical decoupling pulse sequences. a–b, CPMG pulse sequence and filter function g (ω,τ) for a fixed total pulse-sequence length τ. c, Decay rates (inverse of 1/e N times) vs. flux detuning: Free induction (green squares) and CPMG (coloured dots) with N = 1,2,4,6,8,10,16,20,24,30,36,42,48. Solid lines are calculationsusing equation(2) with param- eters in Table 1. d–g, Measurements at Φ = 0.4mΦ (ε/2π = 430MHz). d, 1/e decay time b 0 − under N-pulse CPMG, CP, and UDD sequences. The simulation (red line) assumes perfect pulses. e, Population decay under an 84-pulse CPMG sequence. Gaussian fit with fixed exponentialdecay contributionsT =12µs,T =1.75µs.f,PhasedecayofthesignalineafterdividingoutT andT . 1 p 1 p g,NoisePSDcalculatedfromthedatainf. 5 spectrum(seeAppendix). Bothapproachesyieldnearlyidentical1/fα-typespectrawithaslightincreaseinthe measuredPSDabove2MHz;weplottherecursivelyextractedPSDS (ω)overtheregion0.2–20MHzinFig.4. ε Interestingly,thePSDestimatedinthismannerisbetterapproximatedbya1/fαpowerlaw[27]withα=0.9<1 (solid,redline)withnoiseamplitudeA = (0.8µΦ )2,obtainedbyfittingthelower-frequency,linearportionof Φ 0 thePSD.Projectingthislinetohigherfrequenciescomeswithinafactor2ofthetransversenoiseatfrequency∆ asextractedfromtherelaxationmeasurementsdescribedbelow. Weconfirmedthespectrumoverasimilarfrequencyrangebyanalyzingthedecoherenceduringdrivenevolu- tion,whichprovidesanindependentmeanstorotatethequantizationaxiswithrespecttothenoisesourceswhen viewed in the rotatingframe [17,28]. A transversedrivingfield at frequencyω results in Rabi oscillationswith angularfrequencyΩ = Ω2+(∆ω)2 Ω+(∆ω)2/2Ω,where∆ω = ω ω . Integratingtheoscillations R 01 ≈ − overa normaldistributionwithvarianceσ2, weobtainthequasi-staticdecayfunctionζ(τ) = 1+(uτ)2 −1/4, p ε whereu=(ε/ω )2σ2/Ω. AlongwithΓ ,thenoiseattheRabifrequencyΓ(λ) =πS (Ω )comprisestheusual 01 ε 1 Ω λ R (cid:0) (cid:1) exponentialRabi-decayrate 3 1 ε 2 1 Γ = Γ + Γ(∆) cos2θ+ Γ(ε), (4) R 4 1 2 Ω ω 2 Ω (cid:18) (cid:19) (cid:18) 01(cid:19) wherecos2θ 1asthequantizationangleissmall. Thecombineddecayfunctionisζ(τ)exp( Γ τ) (Fig.3a; R ≈ − seealsoAppendix). To determine S (Ω ), we measured the Rabi oscillations vs. Φ with fixed Rabi frequency Ω . For each λ R b R Ω ,wefindtheε-independentpartoftheratebyfittingtheenvelopeoftheoscillationsatε = 0. TherateΓ(∆) R Ω a 1 w Ps 0.6 0.2 0 2 4 Time, τ (ms) b 0.2 -1s )0.1 m (ΓR 0 -0.5 0 0.5 Detuning, Φ (mΦ ) b 0 Figure 3: Decoherence during driven dynamics. a, Rabi oscillations with Ω /2π = 2MHz at R ε/2π = 225MHz. Theredlineenvelopeisafittingusingζ(t)andΓ . TheblacklineshowstheΓ R R decayonly,andthegreenlinetheζ(t)-envelopecontribution.b,Rabi-decayrateΓ vs. fluxdetuning R atΩ /2π=2MHz,withaparabolicfittoequation(4)usedtoobtainS (Ω )= 1 Γ(ε). R ε R π Ω 6 was too small to distinguishaccuratelyfromΓ , consistentwith its correspondinglysmall quasi-static noise σ2 1 ∆ (Table1). Then,forε = 0,wedivideouttheknownquasi-staticcontributionζ(τ)andfittotheparabolictermin 6 equation(4),fromwhichweobtainΓ(ε) (Fig.3b). Usingthisapproach,wefindS (Ω)tobeconsistentwiththe Ω ε 1/fαnoiseobtainedfromtheCPMGmeasurements(Fig.4). We now turn to transversenoise, i.e. δε-noiseat ε = 0, andδ∆-noise at ε ∆ (Fig. 4, inset), at the qubit ≫ frequency ω responsible for energy relaxation Γ . In the low-temperature limit, k T ¯hω , where the 01 1 B 01 ≪ environmentcannot excite the qubit, the golden-rule expression for Γ in a weakly damped quantum two-level 1 systemis 2 Γ = π ∂ω⊥′ S (ω )= πS(ω ), (5) 1 λ 01 01 2 ∂λ 2 λ∈δε,δ∆(cid:18) (cid:19) X with∂ω⊥′/∂λthequbit’ssensitivitytotransversenoiseandS(ω01)thetotalPSD(seeAppendix). Weapplyalong( T )microwavepulsetosaturatethetransitionandmonitortheenergydecaytotheground 1 ≫ state,usingequation(5)todetermineS(ω )overthefrequencyrange∆ ω 2π 21GHzbytuningΦ . At 01 01 b ≤ ≤ × Φ =0(ω =∆)andusingameasurement-repetitionperiodt >1ms,weobserveT =12 1µsasshown b 01 rep 1 ± inFig1d.Ast becomesshorterthan1ms,thedecaybecomesincreasinglynon-exponential,whichweattribute rep totheresidualpresenceofnon-equilibriumquasiparticlesgeneratedbytheswitchingSQUIDduringreadout. We observe structure in the Γ data due to environmental modes (e.g. cavity modes, impedance resonances) with 1 uncontrolledcouplingstothequbit(Fig.4). Forcomparison,weplottheexpectedJohnson-Nyquistfluxnoisein Fig.4duetotheR=1/G=50ΩenvironmentmutuallycoupledwithstrengthM =0.02pHtothequbitviathe microwaveline, 2 1 ∂ε 2h¯ωG SJN(ω)= M2 . (6) ε 2π ∂Φ 1 e−h¯ω/kBT (cid:18) (cid:19) − Thisknownnoisesourcefallsabout100timesbelowthemeasuredPSDatf = ∆/2π(reddotinFig.4)where 01 the relaxation is due solely to δε noise, indicatingthat the dominantsource of energyrelaxationlies elsewhere. The crossoverf between the effective 1/f- and f-type flux noises (Fig. 4) occurs between ∆/2π and k T/h, c B whereT =50mKistheapproximateelectronictemperatureofourdevice[10,30]. Table1:Quasi-staticnoiseparametersusedinsimulations,andcoherencetimes. Noiseparameters σ /2π ωλ/2π ωλ /2π A λ ir uv λ λ=ε (equiv. Φnoise) 10MHz 1Hz 1MHz (1.7 10−6)2 Φ2 × 0 λ=∆ (equiv. I/I noise) 0.06MHz 1Hz <0.1MHz (4.0 10−6)2 c × Coherencetimes T T∗ TCPMG TCPMG/T∗ 1 2 2 2 2 Φ =0mΦ 12µs 2.5µs 23µs(N =1) 9 b 0 Φ =0.4mΦ 12µs 0.27µs 13µs(N =200) 48 b 0 In Ramsey-fringeand Hahn-echosimulations, we describe the Gaussian noise distributionsby their standarddeviations,σ , obtainedbyintegratingthe 1/f noisesoverthebandwidthgivenbytheex- λ perimentalprotocol(cut-offfrequenciesωλandωε ,seetext).Atε=0,thedephasingimprovement ir uv under a Hahn echo is greater than the theory would suggest for δ∆ 1/f noise that extends to high frequencies; the lower ω∆ gives consistency (see Appendix). The equivalent flux and normalized uv critical-currentnoiseamplitudes,A ,arevaluesderivedfromtheRamseyandechodataassuminga λ powerlaw 1/fα with α = 1 and thatall noisein ε and∆ is flux andcritical-currentnoise, respec- tively;theyareconsistentwithpreviouslyreportedvalues[18,29]. Usingtheseparametersinsimula- tionsyieldedagreementwithN-pulsedynamical-decouplingdata,consistentwithequation(2). The coherencetimesaregivenattwobiaspointsdominatedbyδ∆andδεnoise,respectively. 7 Thedynamical-decouplingprotocolsdemonstratedinthisworkcomprisethesametypesofsimplepulsesthat are used for quantum gate operations and therefore require little additional overhead to implement. Integrating refocusing pulses into qubit control sequences, e.g., by forming composite gates that incorporateboth quantum operationsandrefocusingpulses,willleadtolowerneterrorratesinsystemslimitedbydephasing[31]. Despite observinglevelsof1/f fluxandcritical-currentnoisesimilar tothoseobservedubiquitouslyinsuperconducting qubitsandSQUIDs[6,29],wecouldmitigatethisnoisedynamicallytoincreasethepuredephasingtimesbeyond 8 10 T relaxation 1 7 10 noise in ε: Rabi spectroscopy ( ) 106 CPMG spectroscopy (dots) Effective 1/f α flux noise -1s ) α = 0.9 ω) (105 SD, ( 1/f Transverse noise α = 1 Effective PS104 Z = Z’ Z noise Noise noise in D 1/(fββ>_2) Y = Y’ θ Y = YZ’’ 3 10 X = X’ X 2 ε = 0 ε = 4D X’ 10 Expected Johnson-Nyquist flux noise ~ k T/h D/2π B 1 10 5 6 7 8 9 10 10 10 10 10 10 10 Frequency, f (Hz) Figure4: Noise-power spectraldensity (PSD). Multi-coloureddots, δε-noisePSD (0.2–20MHz) derived from CPMG data at Φ = 0.4mΦ (see text). Colours correspond to the various N in b 0 − Fig. 2b–c; grey dots for data up to N = 250. Yellow squares, δε-noise PSD (2–20MHz) derived fromRabispectroscopy(Fig.3;seetext). Diagonal,dashedlines,Estimated1/f flux(red)andδ∆ (blue)noiseinferredfromtheRamseyandechomeasurements(cf.A andω∆ inTable1).Solid,red λ uv line,Power-lawdependence,S (f)=A′/(2πf)α,extrapolatedbeyondthequbit’sfrequency,∆/2π. ε ε TheparametersA′ = (0.8µΦ )2 andα = 0.9weredeterminedbyfittingthelow-frequency,linear ε 0 portionoftheCPMGPSDdatabeforetheslightupturnbeyond2MHz(seeAppendix). Theshaded area covers α 0.05. Green dots, High-frequencyε and ∆ PSD inferred from energy-relaxation ± measurementsabove ∆/2π=5.4 GHz. Purple line, Guide to indicate linearly increasing Nyquist (quantum)noise, including the eigenbasis rotation (see inset); dots indicate transverse δε (red) and δ∆(blue)noises. Inset,Graphicrepresentationofthequantizationaxis(greyarrowsoffixedlength) with the qubit’s(Z′) eigenstate tilted fromthe “laboratory”frame(Z) bythe angle θ. Fieldsε(Φ ) b and∆pointintheX andZ directions,respectively. Redandbluedouble-arrowsindicatetransverse noise. 8 0.1ms,morethanafactor104 longerthantheintrinsicpulselength. However,despitehavingaremarkablylong energyrelaxationtimeT = 12 µs, thetransverserelaxationT 2T wasultimatelylimitedbyit. Dynamical 1 2 1 ≈ decouplingprotocolsgoalongwaytorefocusingexistinglevelsof1/f noiseandachievelongcoherencetimes, andthemainemphasisisnowonidentifyingandmitigatingthenoisesource(s)thatcauseenergyrelaxation. We noteforfurtherstudythatthePSDpowerlawobtainedexperimentallybytheCPMGtechnique,whenextendedto higherfrequencies,fallswithin a factortwo ofthe measuredtransversenoise, suggestingthe possibilitythatthe microscopic mechanism responsible for low-frequencydephasing may also play a role in high-frequencyrelax- ation. Appendix Measurement set-up. WeperformedourexperimentsatMIT,inadilutionrefrigeratorwithabasetemperatureof12mK.Thedevicewas magneticallyshieldedwith 4 Cryoperm-10cylindersand a superconductingenclosure. Allelectricalleadswere attenuatedand/orfilteredtominimizenoise. WeusedtheAgilentE8267Dmicrowavesource,andemployedtheTektronixAWG5014arbitrarywaveform generatortocreateI/Qmodulatedpulses,andtoshapetheread-outpulse. Description ofthequbit. WefabricatedourdeviceatNEC,usingthestandardDolanangle-evaporationdepositionprocessofAl–AlO –Al x onaSiO /Siwafer(Fig.A1a). 2 Thepersistent-current,orfluxqubit[4,5,32,33]consistsofasuperconductingloopwithdiameterd 2µm, ∼ interruptedbyfourJosephsonjunctions(Fig.A1). ThreeofthejunctionseachhavetheJosephsonenergyE = J 210GHz,andchargingenergyE = 4GHz;theforthissmallerbyafactorα =0.54. Theratioofenergyscales C putsthedeviceinthefluxlimit,E /E 50,thusmakingthephasesacrosstheJosephsonjunctionswelldefined. J C ≈ ThegeometricandkineticloopinductancesarenegligiblecomparedtotheJosephsoninductance: L µ d 2pH, L =µ λ2 l/S 30pH, L =Φ /2πI 10nH, g ∼ 0 ∼ k 0 L ∼ J 0 c ∼ whereweusedλ =100nm,l=10µm,andS =20 250nm2. L × C a b R R L V I SQUID V I dc + pulse |0/1\ Φ 1 mm dc + mw FigureA1: a,Scanningelectronmicrograph(SEM)ofadevice(qubitandSQUIDshown)withiden- ticaldesignparametersastheonemeasuredduringthiswork[18]. b,Schematic.Qubitloop(shaded) andgalvanicallycoupledread-outSQUID.ThecrossesareJosephsonjunctions;R,biasresistors;C, shuntcapacitances;L,inductances. 9 Whenthe externalmagneticflux Φ threadingthe qubitloopis close to halfa magnetic-fluxquantum,Φ /2, 0 thequbit’spotentialenergyexhibitsadouble-wellprofilewithquantizedenergylevels ¯hε/2 = I Φ , where p b ± ± Φ = Φ Φ /2isthefluxbiasandI = 0.18µAthepersistentcurrent. Thegroundstatesintheleftandright b 0 p − potentialwellscorrespondtothediabaticstates L and R ofoppositecirculatingpersistentcurrents. Atunnel | i | i coupling ¯h∆/2 between the right- and left-well qubitstates opens an energygap, ¯h∆, between the groundand excited states, 0 and 1 , at flux degeneracy, Φ = 0. The two-level Hamiltonian – analogous to a spin-1/2 b | i | i particleinamagneticfield–isinthe“laboratory”frame ¯h ˆ = [(ε+δε)σˆ +(∆+δ∆)σˆ ], (7) x z H −2 where ¯hω = h¯√ε2+∆2 is the energy-levelsplitting; σˆ are the Paulimatrices; andδε and δ∆ are the noise 01 j fluctuations. The quantization axis makes an angle θ = arctan(ε/∆) with σˆ (and an angle π θ with the z − persistent-currenteigenstates), so that the qubit is first-orderinsensitive to flux noise when biased at the “sweet spot” ε = 0. (We write the Hamiltonian in this way rather than with swapped x and z indices as in several previouspapers,sothatourpulseswillbealongX andY inagreementwiththehabitualNMRlanguage.) Itcan, alternatively,bewritteninthequbit’seigenbasis, 1 ˆ = ¯h(ω01σˆz′ +δωz′σˆz′ +δω⊥′σˆ⊥′), (8) H −2 seeFig.A2a. Hereσˆ⊥′ denotesthatthetransversespincomponentcanincludebothσˆx′ andσˆy′. Thelongitudinal andtransversenoises,δωz′ andδω⊥′,arefurtherdescribedbelow. a b Z = Z’ Z Y = Y’ Y = Y’ D ω01 D θ Z’ ω01 div.) / X = X’ X ε GHz 0 1 X’ h ( / ε = 0, ω = D ε = 4D E 01 { X, Y, Z } is the laboratory frame 0.48 0.50 0.52 Φ /Φ { X’, Y’, Z’ } is the qubit’s eigenframe b 0 FigureA2: Two-levelHamiltonianindifferenteigenbases,andsimulatedenergyspectrum. a,TheHamiltonian(7)inthe“laboratory”frame X,Y,Z hastheεfield(flux-bias)alongX,per- { } pendiculartotheplaneofthequbitloop,andthefixedtunnelcoupling∆alongZ. TheHamiltonian (8) in the qubit’seigenframe X′,Y′,Z′ makesan angle θ with Z. The figure showsbothframes { } undertwobiasconditions(ε=0[θ =0◦]andε=4∆),withthelaboratoryframefixedinspace.The twoframescoincidewhenε=0. b,Simulatedenergyspectrum. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.