ebook img

Dynamical arrest: interplay of the glass and of the gel transitions PDF

0.32 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamical arrest: interplay of the glass and of the gel transitions

Dynamical arrest: interplay of the glass and of the gel transitions NagiKhalil,a‡,AntonioConigliob,AntoniodeCandiab,d,AnnalisaFierrob,andMassimoPicaCiamarrab,c 4ReceivedXthXXXXXXXXXX20XX,AcceptedXthXXXXXXXXX20XX 1 0FirstpublishedonthewebXthXXXXXXXXXX200X 2 nDOI:10.1039/b000000x a J The structural arrest of a polymeric suspension might be driven by an increase of the cross–linker concentration, that drives 8 2thegeltransition,aswellasbyanincreaseofthepolymerdensity,thatinducesaglasstransition. Thesedynamicalcontinuous (gel) and discontinuous(glass) transitionsmightinterfere, since the glass transition mightoccur within the gel phase, and the ]geltransitionmightbeinducedinapolymersuspensionwithglassyfeatures.Herewestudytheinterplayofthesetransitionsby h investigatingviaevent–drivenmoleculardynamicssimulationtherelaxationdynamicsofapolymericsuspensionasafunction c eof the cross–linkerconcentrationand the monomervolumefraction. We show that the slow dynamicswithin the gel phase is mcharacterizedbyalongsub-diffusiveregime,whichisduebothtothecrowdingaswellastothepresenceofapercolatingcluster. -Inthisregime,thetransitionofstructuralarrestisfoundtooccureitheralongthegeloralongtheglassline, dependingonthe t alength scale at which the dynamics is probed. Where the two line meet there is no apparent sign of higher order dynamical tsingularity. Logarithmic behavior typical of A singularity appear inside the gel phase along the glass transition line. These s 3 .findingsseemtoberelatedtotheresultsofthemodecouplingtheoryfortheF schematicmodel. t 13 a m 1 Introduction in lightinducedpolymerizationprocesses(e.g., dentalfilling - pastes) or by heat (e.g., cooking). On increasing the bond- d nA polymeric suspension might behave as a hard sphere sys- ing probability,onedrivesthe system acrossa geltransition, otem, when no cross–linkers are added to it, as its dynamics where a spanning cluster of connected monomers emerges. cslows down as the concentration increases. In this case, a This leads to a gel transition line f (p) in the p–f plane. [ gel transitionofstructuralarrest,theglasstransition,occurswhen Thisstructuraltransitionalso correspondsto a dynamicalar- 1 the volume fraction f overcomes a critical threshold, f glass. resttransition,asthedynamicsbecomesfrozenonthesmallest vThistransitionmarksthearrestofthedynamicsatallrelevant wavevectork beingthespanningclusterunabletodiffuse. min 52length scales, for wavevectors ranging from kmin =2p /L to Contrarytotheglasstransition,thisisacontinuoustransition, 2kmax =2p /s , with L and s sizes of the system and of the astheorderparametercontinuouslyincreasesasoneentersthe 7particles. The glass transition is a discontinuous dynamical gelphaseonincreasing porf . .phase transition because its order parameter, known as non– 1 Theinterferenceofdifferenttransitionsofdynamicalarrest ergodicityparameter and defined as the infinite time limit of 0 have been previously investigated, via model coupling the- 4relaxationfunctions,iszerobelowthetransitionbutacquires ory, in systems of particles interacting with a hard core re- 1a finite value at the transition. Polymeric suspensions may pulsion competing with a very short range attraction. These v:also undergo a different kind of structural arrest transition, systems show an attractive and a repulsive glass transition, ithegeltransition. Thisoccursatfixedvolumefractiononin- X both of them discontinuous, and mode coupling theory pre- creasingthecross–linkerconcentration,whichisrelatedtothe dicts that their interference leads to an A high order singu- rprobabilitythattwoclosemonomersarepermanentlybonded. 3 a larity characterized by logarithmic decay of the correlation Thisconcentrationcanbetuned,forinstance,byradiationas functions1–3. Thesepredictionswereverifiedindifferentcol- loidalsystems4–9,bothexperimentallyandnumerically.Sim- a DepartamentodeF´ısica,UniversidaddeExtremadura,E-06071Badajoz, ilarfindingswerealsoobservedinRef.10, wherethedynam- Spain icsofaphysicalgelwasnumericallystudiedathighdensities bCNR–SPIN,DipartimentodiScienzeFisiche,UniversityofNapoliFederico II,Italy wheregelationandglasstransitioninterfere. cDivisionofPhysicsandAppliedPhysics,SchoolofPhysicalandMathemat- Inthispaperwestudytheinterferenceofacontinuousand icalSciences,NanyangTechnologicalUniversity,Singapore dINFN,SezionediNapoli,ComplessoUniversitariodiMonteS.Angelo,Via ofadiscontinuoustransitionofstructuralarrestfocusingona Cintia,Edificio6,80126Naples,Italy system with permanentbondswhere, as illustrated in Fig. 1, 1–7 |1 102 1 Gel line 0.6 Glass line 101 0.8 lity, p Gel & Glass 2r(t)1100-01 F(k,t)s00..46 k = k bi0.4 10-2 0.2 k = 1max a b Gel 10-3 0 pro 10120-210-1100 101 102 103 104 105 110-210-1100 101 102 103 104 105 d monomers k = kmax on0.2 Sol 101 percolating 0.8 k = 1 b Glass 2r(t) 100 F(k,t)s00..46 0 10-1 0.2 0.2 0.3 0.4 0.5 0.6 volume fraction, f 10-2 0 10-2 10-1 100 101 102 103 104 10-210-1100 101 102 103 104 105 time time Fig. 1 Structuralarrestdiagramasafunctionofthevolume fraction,f ,andofthebondingprobability, p,illustratingthe Fig. 2 Meansquaredisplacement(left)andsISF(right).Toppanel: interplayofthegelandtheglasstransitionlines.Thegellineis onapproachingtheglasstransitionatp=0,withvolumefraction determinedviapercolativeanalysis,afterintroducingbondswith fromf =0.52tof =0.59(fromlefttoright).Bottompanel:on probabilitypinanequilibrium(fullsymbols)orinan enteringthegelphaseatp=0.3(f gel≈0.4),withvolumefraction out–of–equilibrium(opensymbols)monomersuspension. Theglass fromf =0.4tof =0.51(fromlefttoright). lineisdefinedasthatwheretheextrapolateddiffusioncoefficient vanishes.Onlypointsuptop=0.5f =0.54areshown,wherethe selfIntermediateScatteringFunction(sISF)exhibitsalogarithmic (monomers) of mass m and diameters s and 1.4s , in a box behavior,whichweassociatetoanA3singularityaspredictedbythe ofsizeLwithperiodicboundaryconditions. Thechosensize F13modecouplingschematicmodel(seetextandFig.8).Solid ratioisknowntoeffectivelypreventcrystallization13–16. The linesareguidestotheeye. volume fraction f =Nv/L3, where v is the average particle volume,istunedbychangingthesizeLofthebox. Themass m, the diameter s of the smaller particles, and the tempera- thegelf (p)andtheglasstransitionlinef (p)intersect. gel glass tureT,fixourmass,lengthandenergyscales,whilethetime Weaddresssomequestionsraisedbythepresenceofthesetwo unit is pms 2/T. After thermal equilibration at the desired transition lines. First, we note that the gel transition corre- volume fraction, permanentbonds are introducedwith prob- spondstostructuralarrestoccurringatthelargest(k )scale, min ability pbetweenanypairofparticlesseparatedbyless than whileallscales,includingthesmallestone(kmax),arerelevant 1.5s . Abondcorrespondstoaninfinitesquarewellpotential, in the structural arrest corresponding to the glass transition. extendingfroms to1.5s . Theprocedureweusetoinsertthe Therefore, we consider the length scale dependence of the bondsmimicsalight–inducedpolymerizationprocess,asthe transitionof structuralarrest. Second, we note thatthe glass numberofbondsdependsonboth pandf . transitionlineentersinthegelphaseatapointwherebothcon- Usingthepercolationapproach,weidentifythegelphaseas tinuousanddiscontinuoustransitionoccur. Henceweexpect thestateinwhichapercolatingclusterispresent17,18,andthe that the model system here studied might have some analo- gelation transition as the percolationline. A standardfinite– gieswiththemodecouplingtheoryforschematicF model2, 13 size scaling analysis of the mean cluster size19 is applied to whichgivestwoarrestedlines: acontinuoustransition,which identifythepercolationline.Theresultinglineisillustratedin meetsadiscontinuousone.Thisdiscontinuoustransitionends Fig.1. Thegeltransitionoccursatacriticalbondprobability onahighordercriticalpoint(A3singularity)characterizedby p (f )decreasingwithf . logarithmdecay1–3 oftherelaxationfunctions. Topologically gel the phase diagram is similar to the one found here (Fig. 1). Consistentlywithmodecouplingtheory,wefindlogarithmic 3 Standard glassandgel behaviours behavioratapointwellinthegelphasealongtheglassline. Since we are interested in the interplay of the gel and of the glass transition lines, we start by shortly reviewing the main 2 Numerical model features of the slowing down of the dynamics when these transitions do not interfere. First, we consider the transition Weperformeventdrivenmoleculardynamicssimulations11,12 at zero bonding probability, where our system reduces to a of a 50:50 binary mixture of N = 103 hard spheres hardspheresuspensionandundergoesaglasstransitionasthe 2| 1–7 volume fraction increases. This crowding induced dynami- tothefluctuationsoftheclusterstructure,andthethirdtothe caltransitionischaracterizedbywellknownsignaturesinthe diffusionofitscenterofmass.Ofthese,onlythethirdreaches meansquaredisplacement,r2(t), andintheselfintermediate thediffusiveregimeatlongtimes. Atthegeltransition,when scatteringfunction(sISF),F(k,t),definedrespectivelyby: the diffusionof the center of mass of the largestcluster van- s ishes, the mean square displacement remains subdiffusive at hr2(t)i= 2 N(cid:229) /2r2(t), (1) alltimes,whileinsidethegeliteventuallyreachesaplateau. N i ThebehaviourofthesISFcritically dependsonthelength i=1 scaleatwhichitisprobed.Atsmallscales,thatisfork=k , max and it does not exhibit any particular feature on approachingthe F(k,t)= 2 N(cid:229) /2eik(ri(t)−ri(0)), (2) gel transition. On the other hand, at larger length scales, s N k = k , the relaxation time diverges when f approaches i=1 min wherethesumsextendonlytothelargerparticles. Theseare f gel(p). At the transition, the correlator decays in time as a power law, while inside the gel asymptotically tends to a reviewedinthetoprowofFig.2. Athighdensities,particles plateau, f , the non–ergodicityparameter, that is zero at the rattle in the cages formed by their neighbours before enter- k ing the diffusive regime. Accordingly, the mean square dis- the transition, and continuously grows on entering the gel placementdevelopsaplateauatintermediatetimes,knownas phase. Thegrowthiscontinuousasthevalueof fk is related tothedensityoftheparticlesinthepercolatingcluster,andof Debye–Wellerfactor.Thisplateaubecomeslongerandlonger asthedensityincreases. ThediffusivityD=limt→¥ r2(t)/6t themonomersthataretrappedinthepercolatingcluster. The decreases on increasing f , and vanishes at the glass transi- geltransitionthereforeinducesacontinuousdynamicalphase tion. Consistently with the behaviourof r2(t), the relaxation transition. Thesepropertiesarefoundingellingsystemsboth functionatlargekdevelopsatwostepdecay,thefirstone(b experimentally20–22andnumerically23–26. InRef.s27,28,deep relaxation)associatedtotherattlingwithinthecages,thesec- analogiesofgelationandspinglasstransitionwassuggested. ondone(a )totheonsetofdiffusivemotion.Theb relaxation becomeslessandlessvisibleaskdecreases,andlengthscales 4 Dynamicsinthe gel phase largerthan those associated to the typicalvibrationalmotion areprobed. Atthe glass transition, onlythe b relaxationoc- We now consider how the features of the relaxation process curs,andF(k,t)asymptoticallyreachesafinitevalue,known s changesasthevolumefractionincreases, andthesystemen- asnon–ergodicityparameter f . Theglasstransitionisadis- k tersthegelphaseandapproachestheglasstransition. Thisis continuousphasetransitionas f variesdiscontinuouslyacross k identifiedasthevolumefractionwheretheextrapolateddiffu- thetransition. sivityofthemonomersvanishes(seeFig.1).Inthissectionwe Wenowconsiderthetransitionathighp,whereonincreas- ingf thesystemundergoesageltransitionata volumefrac- focusonahighenoughvalueofthebondprobability,p=0.3, tionf ≪f , so thatthetwotransitionsdonotinterfere. forwhichf gel≈0.4issensiblesmallerthanf glass≈0.58. gel glass Thetypicalbehaviourofr2(t)andofF(k,t)onapproaching s thistransitionisillustratedinFig.2(bottomrow). Duetothe 4.1 Meansquaredisplacement presenceofbonds,inthesystemthereareclusterswithadif- ferentsizes. Inthelongtimelimit,eachclusterdiffuseswith Inthe gelphase, themeansquaredisplacementatintermedi- adiffusivitydecreasingwiths. Accordingly,atlongtimesthe atetimesshowsasubdiffusiveregime,similartothatobserved mean square displacement is essentially fixed by that of the intheslowdynamicsofcolloidalparticlesdiffusinginama- fastest clusters, the monomers. Since the volume fraction is trix of disordered hard sphere obstacles30. We have charac- small,thediffusivityofthemonomersisonlyslightlyaffected terizeditbyinvestigatingthetimedependenceofthesubdif- bythevolumefractionandhasnotspecialfeaturesatthegel fusiveexponentq,definedbyq=dlogr2(t)/dlogt. Dataare transition,abovewhichthemonomersdiffusewithintheper- illustratedinFig.3. Thisexponentexhibitsacrossoverfrom colatingpolymernetwork.Onthecontrarythelargestcluster, theballisticshorttimevalueq=2,tothediffusivelongtime whosemeansquaredisplacementisalso illustratedinFig.2, value,q=1. Atintermediatetimes,asubdiffusivebehaviour slowsdownonapproachingthe geltransition, and indeedits isfound,q<1,whichbecomesprominentasthevolumefrac- diffusivityvanishesatthetransition(wherethelargestcluster tion increases. Further increasing the volume fraction, very percolates). We note that, on increasing f , the mean square peculiarfeaturesappear,astheexponentqmightalsoexhibit displacement of the largest cluster does not reach the diffu- two minima. This behaviour is rationalized considering that sive regime on the time scale of our simulations. Indeed, it themeansquaredisplacement,Eq.(1),hascontributionsfrom hasthreecontributions:thefirstisduetothevibrationsofthe particlesbelongingtodifferentfiniteclustersofsizes,aswell particlesinthecagesformedbynearestneighbors,thesecond as from the spanning cluster (s=¥ , in the thermodynamic 1–7 |3 3 2 10 10 2 f=0.44 60 q f=0.48 t 2 f=0.52 10 f=0.56 1 101 n 40 s 101 s20 Ær2æ 0 s = ¥ (t)100 10-210-1100101t102103104 (t)100 0 2 2 0 1 2 3 4 5 r r s Gel effect -1 10 -1 10 -2 10 Cage effect -3 -2 10 10 -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 time time Fig. 3 Meansquaredisplacementinthegelphase,for p=0.3and Fig. 4 Mainpanel:meansquaredisplacementaveragedoverallthe f from0.42to0.56(fromtoptobottom).Intheinset,the particles,hr2i,overparticlesbelongingtofiniteclustersofsize subdiffusiveexponentq=dlogr2(t)/dlogt,asfunctionoftimefor s=1,2,3,andoverparticlesbelongingtothepercolatingclusters, p=0.3andf =0.44, 0.48, 0.52, 0.56. for p=0.3andf =0.54.Inset:sizedistributionoffiniteclusters forthesamevaluesof pandf .Thereisalsoapercolatingcluster, withs≈930particles. limit),as hr2(t)i= 1 (cid:229) sn hr2(t)i, (3) 103 N s s s 2 10 wherethesumrunsovertheclustersizes,hr2(t)iisthemean s 1 square displacementof clusters of size s, and n is the num- 10 s berofclusterwithsizes. Theclustersizedistributionns and )100 themeansquaredisplacementfordifferentsareillustratedin (t 2 Fig.4,for p=0.3andf =0.54. Thefigureclarifiesthattwo r10-1 phenomenalead to the subdiffusivebehaviour. The first one -2 isthecrowdinginducedcageeffecttypicalofglasses, which 10 involvesbothparticlesbelongingtofiniteclusters, aswellas -3 10 particlesbelongingtothepercolatingcluster. Thesecondone only involves the particles of the percolating cluster, whose 10-4 -2 -1 0 1 2 3 4 meansquaredisplacementreachesaplateauatlongtimes,as 10 10 10 10 10 10 10 time thepercolatingclusterisunabletodiffuse.Thecoexistenceof thesetwoeffects,whoserelevantimportanceisfixedbyf and Fig. 5 Themeansquaredisplacementofthemonomersinthegel p, leadsto the unusualfeaturesof the meansquaredisplace- (opensymbols)iscomparedwiththatobtainedwhenthespanning mentplottedinFig.3. clusterisfrozen(fullsymbols).Squares: p=0.2,f =0.52;Circles: As we have observed above, the diffusive problem in the p=0.25,f =0.55. gelphasesharessomesimilaritieswiththemuchinvestigated problemofsingle–particlediffusioninamatrixofdisordered hardsphereobstacles29–31,wheresingleparticlesareconsid- completelyarrestedbyfreezingthepercolatingcluster,show- ingthattherelaxationofthesystem iscompletelyduetothe ered to move in a frozen environment. Conversely, in the fluctuationsofthepercolatingcluster.Thisresultisrelevantto present case, monomers and finite clusters diffuse in a fluc- modeldiffusioninbiologicalsystems,e.g. toinvestigatedrug tuating environment,as the percolatingclusters may vibrate. deliveryprocesses. These fluctuationsaffectthe diffusionof free particlesas we seeinFig.5,wherethemeansquaredisplacementobtainedin theactualgeliscomparedwith thatobtainedbyfreezingthe 4.2 Correlationfunctions percolatingcluster. Thefigureclarifiesthatthefluctuationsof thepercolatingclusterstronglyinfluencethediffusivityofthe Inthissection,wedescribetherelaxationofthesysteminthe particles. For instance, at p=0.25, f =0.55, the system is gelphasethroughthestudyofthesISF,Eq. (2). Convention- 4| 1–7 ally, the relaxationtime t ofthe system is definedrequiring k f that F(k,t )≡1/e, or a similar small value, and the transi- glass s k tionofstructuralarrestisconsideredtooccurwhent reaches 0.55 k ahighvaluet ,relatedtheexperimentaltimescale. Here, arrest k = 0.1 wefixt ≡105,andexplicitlyconsiderthedependenceon k = 1 arrest 0.5 k = 3 the threshold used to define the relaxation time. Therefore, est wederiveak andxdependentstructuralarrestlinef (p), arr arrest definedasthevolumefractionatwhichF(k,t )≡x. f 0.45 s arrest Fig. 6 (top panel) illustrates the dependenceof f on x arrest forthreedifferentvaluesofk,at p=0.3. Thefigureclarifies 0.4 f gel theexistenceoftwocharacteristicvaluesforf ,f ≈0.4 arrest gel and f ≈ 0.58. Indeed, regardless of x, f ≈ f at glass arrest gel 0.35 small k, and f arrest ≈f glass at large k. At intermediate val- 0 0.2 0.4 x 0.6 0.8 1 uesofk,f exhibitsacrossoverfromf tof asxin- arrest gel glass creases. Thedecayofthecorrelationfunctionatwavevectors k <k <k is therefore influenced by both the gel and 0.9 0.58 min max the glass transitions. The bottom panel of Fig. 6 illustrates 0.8 0.56 the same crossover for different wavevectors, that influence 0.7 0.54 thevalueofxatwhichthecrossoveroccurs. Theglassytime 0.6 0.52 scale affectsthe initialdecayof thecorrelationfunction,and 0.5 x 0.5 it is thus observed for large x, while the gel relaxation cor- 0.48 0.4 responds to the final relaxation, and it is observed for small 0.46 0.3 x. 0.44 DatashowninFig.7furtherclarifythesefindings. Asalso 0.2 0.42 found in Ref.10, we can recognize three different relaxation 0.1 0.4 time scales: tb , due to the rattling of particlesin the nearest 0.1 1 neighbourcage,doesnotdivergeatall;ta ,duetotheopening k of the cage, divergingat the glass transition line; and finally t , dueto the relaxationofthe largestcluster, divergingat perc thegeltransitionline(dataplottedinFig.7refertof >f , Fig. 6 Weconsiderthetransitionofstructuralarresttooccurwhen gel thenFs(k,t)doesnotrelaxtozero,andreachesatlongtimea Fs(k,tarrest)≡x,withtarrest≡105.Thetoppanelillustratesthe finitevalue). dependenceoff arrestonx,forthreevaluesofk,andp=0.3.The bottompanelisacolourmapshowingthedependenceoff arrestonk, for p=0.3.Thefiguresclarifythatatsmallk,f arrest≈f gel,atlarge 5 Interference ofstructural arrestlines k,f arrest≈f glass,whileatintermediatekf arrestexhibitsacrossover betweenthesetwolimitingvaluesonincreasingx. Here,weconsidertheinterferenceoftheglassandofthegel transitionsinamodelofachemicalgel,wherebondsareper- manent. As we have noticed, the glass transition is a dis- continuous transition and the gel transition is a continuous one. Hence, we expect that the model system here studied Inordertoappreciatehowthislogarithmicdecayemerges,we might have some analogies with the mode coupling theory followtheevolutionofthesISFonincreasingpalongtheglass for schematic F model2, which gives two arrested lines: a line, in the gel phase. Fig. 9 shows that on increasing p the 13 continuoustransition,whichmeetsa discontinuousone. The valueoftheplateauassociatedtocagemotionoftheparticles modelpredictthatthediscontinuoustransitionendsonahigh decreases, and the plateaubecomesshorter. On increasing p ordercritical point(A singularity), where the plateau of the wealsoobservethevalueoftheplateauassociatedtothegel 3 twotransitionscoincide,characterizedbylogarithmdecay1–3 transitiontogrow,andthetimeneededtoreachittoincrease. ofthe relaxationfunctions. Topologicallythe phase diagram Accordingly,thehigherordercriticalpointwherealogarithm issimilartotheonefoundhere(Fig. 1). decay is found seems to be associated to the state where the In our model, due to long relaxation time involved, it is twoplateaucoincide,inagreementwiththeA singularityof 3 rather difficult to localize such singularity. However we do the F model. We stress thatthe highordersingularitymay 13 findevidenceofalogarithmicdecayinaregioninsidethegel occurathighervaluesof pincludingpossibly p=1. Further phase, close to the glass transition line, as shown in Fig. 8. investigationisnecessary. 1–7 |5 1.0 1.0 1.0 t b 0.8 0.8 0.8 (k,t)s0.6 t a F(k,t)s00..46 00..46 F 0.4 0.153 0.2 0.3 0.2 0.4 0.2 0.5 0.2 t perc 0.0 0.0 -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10-2 10-1 100 101 102 103 104 105 time time time Fig. 9 ThesISF,Fs(k,t),atdifferentvaluesof pasindicated, Fig. 7 ThesISF,Fs(k,t),fork=3, p=0.3,andf =0.54,larger movingalongtheglassline,fork=kmax(leftpanel)andfork=3 thanf gel≈0.4.Thethreerelaxationprocessesareclearly (rightpanel).Theplateauassociatedwiththegelandtheglassare distinguishable. indicatedbyanarrow. 1.0 Animportantopenquestionaheadregardstherelevanceof themodecouplingtheoryforschematicF model2 forthese 13 0.8 systems. Ourresultssupportthisscenario,aswedonotonly recoverthe interferenceof a continuousand of a discontinu- ) 0.6 ous transition, but we also find a point where the relaxation t k, functionseemstodecaylogarithmically,whichshouldbeas- ( Fs0.4 sociatedtotheA3singularity.However,moreworkisneeded inthisdirection,particularlytobetterlocalizethishighorder criticalsingularity. 0.2 Acknowledgement 0.0 -2 -1 0 1 2 3 4 5 The authors would like to thank Dr. M. Sellitto for having 10 10 10 10 10 10 10 10 time drawntheirattentiononthepropertiesoftheF13model. Fig. 8 ThesISF,Fs(k,t),for p=0.5,f =0.52,andwavevector References k=1,2,3,4,5,6.28(fromtoptobottom).Continuouslinesare logarithmicfunctions. 1 K. Dawson, G. Foffi. M. Fuchs, W. Gotze, F. Sciortino, M. Sperl, P. Tartaglia, T. Voigtmann, and E. Zaccarelli, Phys. Rev. E 63, 011401 (2000) 6 Conclusions 2 W.Go¨tzeandandM.Sperl,Phys.Rev.E66,011405(2002) 3 W.Go¨tze,Complexdynamicsofglass-formingliquids,OxfordUniver- sityPress,Oxford,2009 Thegelandtheglasstransitionsarecharacterizedbydifferent 4 T.EckertandE.Bartsch,Phys.Rev.Lett.89,125701(2002) dynamicalsignatures,reflectingthefactthatthegeltransition 5 K.N.Pham,A.M.Puertas,J.Bergenholtz,S.U.Egelhaaf,A.Moussaid, isa continuoustransitionmarkingthe arrestof the dynamics P.N.Pusey, A.B.Schofield, M.E.Cates, M.Fuchs, W.C.K.Poon, onthelargestlengthscaleofthesystem,whiletheglasstran- Science296,104(2002) 6 S.H.Chen,W.R.Chen,F.Mallamace,Science300,619-622(2003) sition is a discontinuous transition marking the arrest of the 7 A.M.Puertas,M.Fuchs,andM.E.Cates,Phys.Rev.Lett.88,098301 dynamicsat all length scales. This makes of interest the in- (2002) vestigation of the interplay of these transitions in polymeric 8 F. Sciortino, P. Tartaglia, E. Zaccarelli. Phys. Rev. Lett. 91 268301 suspensions,wherethetransitionaredrivenbyanincreaseof (2003) the cross–linker concentrationand the polymer volume frac- 9 X.H.Lu,S.G.J.Mochrie,S.Narayanan,A.R.Sandy,andM.Sprung Phys.Rev.Lett.100,045701(2008) tion.Here,wehaveperformedsuchaninvestigation,focusing 10 P. I. Hurtado, L. Berthier, and W. Kob, Phys. Rev. Lett. 98 135503 ontheglassydynamicswithinthegelphaseandontheirmu- (2007);P.Chaudhuri,L.Berthier,P.I.Hurtado,andW.Kob,Phys.Rev. tualinterference. E81,040502(R)(2010) 6| 1–7 11 M.P.AllenandD.J.Tildesley,ComputerSimulationofLiquids,Oxford UniversityPress(1987) 12 B.D.Lubachevsky,JournalofComputationalPhysicsVolume94,255 (1991) 13 NingXu,ThomasK.Haxton,AndreaJ.Liu,andSidneyR.Nagel,Phys. Rev.Lett.103,245701(2009) 14 L.BerthierandT.A.Witten,Phys.Rev.E80,021502(2009) 15 P.Chaudhuri,L.Berthier,andS.Sastry,Srikanth,Phys.Rev.Lett.104, 165701(2010) 16 C.S.O’Hern,S.A.Langer,A.L.Liu,andS.R.Nagel,Phys.Rev.Lett. 88,075507(2002) 17 P.J.Flory,ThePhysicsofPolymerChemistry(CornellUniversityPress, Ithaca,NY,1954) 18 P.G.deGennes,ScalingConceptsinPolymerPhysics(CornellUniver- sityPress,Ithaca,NY,1993) 19 D.StaufferandA.Aharony,Introductiontopercolationtheory(Taylor &Francis,London,1992). 20 J.E.MartinandJ.P.Wilcoxon, Phys.Rev.Lett.61,373(1988);J.E. Martin,J.Wilcoxon,andJ.Odinek,Phys.Rev.A43,858(1991) 21 P.LangandW.Burchard,Macromolecules24,814(1991) 22 S.Z.RenandC.M.Sorensen,Phys.Rev.Lett.70,1727(1993) 23 E.DelGado,A.Fierro,L.deArcangelis,andA.Coniglio,Phys.Rev.E 69,051103(2004) 24 T.Abete,A.deCandia,E.DelGado,A.Fierro,A.Coniglio,Phys.Rev. Lett.98088301(2007) 25 T.Abete,A.deCandia,E.delGado,A.Fierro,andA.Coniglio,Phys. Rev.E78,041404(2008) 26 A.FierroandT.AbeteandA.Coniglio,J.Chem.Phys.13119(2009) 27 M.Goldbart,H.E.Castillo,andA.Zippelius,Adv.Phys.45,393(1996); C.Wald,P.M.Goldbart,andA.Zippelius,J.Chem.Phys.124,214905 (2006) 28 A. Fierro, T.Abete, A. de Candia, E. Del Gado, and A. Coniglio, J. Phys.:Condens.Matter21,504110(2009) 29 H.A.Lorentz,Proc.Amst.Acad.7,438(1905). 30 J.Kurzidim,D.Coslovich,andG.Kahl,J.Phys.: Consens.Matter23, 234122(2011) 31 S.Babu,J.C.Gimel,andT.Nicolai,J.Phys.Chem.B112,743(2008) 1–7 |7 1.0 0.8 0.6 ) t , k ( s F 0.4 0.2 0.0 -2 -1 0 1 2 3 10 10 10 10 10 10 10 time

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.