ebook img

Dynamic Vulnerability Assessment and Intelligent Control: For Sustainable Power Systems PDF

436 Pages·2018·16.855 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Vulnerability Assessment and Intelligent Control: For Sustainable Power Systems

(cid:2) DynamicVulnerability (cid:2) (cid:2) (cid:2) (cid:2) Dynamic Vulnerability Assessment and Intelligent Control for Sustainable Power Systems Editedby ProfessorJoséLuisRueda-Torres DelftUniversityofTechnology TheNetherlands ProfessorFranciscoGonzález-Longatt LoughboroughUniversity Leicestershire,UnitedKingdom (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2018 ©2018JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions. TherightofJoséLuisRueda-TorresandFranciscoGonzález-Longatttobeidentifiedastheauthorsofthe editorialmaterialinthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis (cid:2) (cid:2) referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthe publisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide orrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData: Names:Rueda-Torres,JoséLuis,1980-author.|González-Longatt,Francisco, 1972-author. Title:Dynamicvulnerabilityassessmentandintelligentcontrolfor sustainablepowersystems/editedbyProfessorJoséLuisRueda-Torres, ProfessorFranciscoGonzález-Longatt. Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,2018.| Includesbibliographicalreferencesandindex.| Identifiers:LCCN2017042787(print)|LCCN2017050856(ebook)|ISBN 9781119214977(pdf)|ISBN9781119214960(epub)|ISBN9781119214953 (cloth) Subjects:LCSH:Electricpowerdistribution–Testing.|Smartpowergrids. Classification:LCCTK3081(ebook)|LCCTK3081.D962018(print)|DDC 621.31/7–dc23 LCrecordavailableathttps://lccn.loc.gov/2017042787 CoverdesignbyWiley Coverimage:©agsandrew/Gettyimages Setin10/12ptWarnockProbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 (cid:2) TrimSize:170mmx244mm SingleColumn (cid:2) Torres ftoc.tex V2-12/15/2017 5:35pm Pagev v Contents ListofContributors xv Foreword xix Preface xxi 1 Introduction:TheRoleofWideAreaMonitoringSystemsinDynamic VulnerabilityAssessment 1 JaimeC.CepedaandJoséLuisRueda-Torres 1.1 Introduction 1 1.2 PowerSystemVulnerability 2 1.2.1 VulnerabilityAssessment 2 (cid:2) 1.2.2 TimescaleofPowerSystemActionsandOperations 4 (cid:2) 1.3 PowerSystemVulnerabilitySymptoms 5 1.3.1 RotorAngleStability 6 1.3.1.1 TransientStability 6 1.3.1.2 OscillatoryStability 6 1.3.2 Short-TermVoltageStability 7 1.3.3 Short-TermFrequencyStability 7 1.3.4 Post-ContingencyOverloads 7 1.4 SynchronizedPhasorMeasurementTechnology 8 1.4.1 PhasorRepresentationofSinusoids 8 1.4.2 SynchronizedPhasors 9 1.4.3 PhasorMeasurementUnits(PMUs) 9 1.4.4 DiscreteFourierTransformandPhasorCalculation 10 1.4.5 WideAreaMonitoringSystems 10 1.4.6 WAMPACCommunicationTimeDelay 12 1.5 TheFundamentalRoleofWAMSinDynamicVulnerabilityAssessment 13 1.6 ConcludingRemarks 16 References 17 2 Steady-stateSecurity 21 EvelynHeylen,StevenDeBoeck,MartenOvaere,HakanErgun,andDirkVanHertem 2.1 PowerSystemReliabilityManagement:ACombinationofReliability AssessmentandReliabilityControl 22 2.1.1 ReliabilityAssessment 23 2.1.2 ReliabilityControl 24 (cid:2) TrimSize:170mmx244mm SingleColumn (cid:2) Torres ftoc.tex V2-12/15/2017 5:35pm Pagevi vi Contents 2.1.2.1 CredibleandNon-CredibleContingencies 25 2.1.2.2 OperatingStateofthePowerSystem 25 2.1.2.3 SystemStateSpaceRepresentation 28 2.2 ReliabilityUnderVariousTimeframes 31 2.3 ReliabilityCriteria 33 2.4 ReliabilityandItsCostasaFunctionofUncertainty 34 2.4.1 ReliabilityCosts 34 2.4.2 InterruptionCosts 35 2.4.3 MinimizingtheSumofReliabilityandInterruptionCosts 36 2.5 Conclusion 37 References 38 3 ProbabilisticIndicatorsfortheAssessmentofReliabilityandSecurity ofFuturePowerSystems 41 BartW.Tuinema,NikoletaKandalepa,andJoséLuisRueda-Torres 3.1 Introduction 41 3.2 TimeHorizonsinthePlanningandOperationofPowerSystems 42 3.2.1 TimeHorizons 42 3.2.2 OverlappingandInteraction 42 3.2.3 RemedialActions 42 3.3 ReliabilityIndicators 45 3.3.1 Security-of-SupplyRelatedIndicators 45 (cid:2) (cid:2) 3.3.2 AdditionalIndicators 47 3.4 ReliabilityAnalysis 49 3.4.1 InputInformation 49 3.4.2 Pre-calculations 50 3.4.3 ReliabilityAnalysis 50 3.4.4 Output:ReliabilityIndicators 53 3.5 ApplicationExample:EHVUndergroundCables 53 3.5.1 InputParameters 54 3.5.2 ResultsofAnalysis 56 3.6 Conclusions 58 References 60 4 AnEnhancedWAMS-basedPowerSystemOscillationAnalysis Approach 63 QingLiu,HassanBevrani,andYasunoriMitani 4.1 Introduction 63 4.2 HHTMethod 65 4.2.1 EMD 65 4.2.2 HilbertTransform 65 4.2.3 HilbertSpectrumandHilbertMarginalSpectrum 66 4.2.4 HHTIssues 67 4.2.4.1 TheBoundaryEndEffect 69 4.2.4.2 ModeMixingandPseudo-IMFComponent 70 4.2.4.3 ParameterIdentification 71 (cid:2) TrimSize:170mmx244mm SingleColumn (cid:2) Torres ftoc.tex V2-12/15/2017 5:35pm Pagevii Contents vii 4.3 TheEnhancedHHTMethod 71 4.3.1 DataPre-treatmentProcessing 71 4.3.1.1 DCRemovalProcessing 72 4.3.1.2 DigitalBand-PassFilterAlgorithm 72 4.3.2 InhibitingtheBoundaryEndEffect 75 4.3.2.1 TheBoundaryEndEffectCausedbytheEMDAlgorithm 75 4.3.2.2 InhibitingtheBoundaryEndEffectsCausedbytheEMD 76 4.3.2.3 TheBoundaryEndEffectCausedbytheHilbertTransform 76 4.3.2.4 InhibitingtheBoundaryEndEffectCausedbytheHT 79 4.3.3 ParameterIdentification 80 4.4 EnhancedHHTMethodEvaluation 81 4.4.1 CaseI 81 4.4.2 CaseII 84 4.4.3 CaseIII 85 4.5 ApplicationtoRealWideAreaMeasurements 88 Summary 92 References 93 5 PatternRecognition-BasedApproachforDynamicVulnerability StatusPrediction 95 JaimeC.Cepeda,JoséLuisRueda-Torres,DeliaG.Colomé,andIstvánErlich 5.1 Introduction 95 (cid:2) 5.2 Post-contingencyDynamicVulnerabilityRegions 96 (cid:2) 5.3 RecognitionofPost-contingencyDVRs 97 5.3.1 N-1ContingencyMonteCarloSimulation 98 5.3.2 Post-contingencyPatternRecognitionMethod 100 5.3.3 DefinitionofData-TimeWindows 103 5.3.4 IdentificationofPost-contingencyDVRs—CaseStudy 104 5.4 Real-TimeVulnerabilityStatusPrediction 109 5.4.1 SupportVectorClassifier(SVC)Training 112 5.4.2 SVCReal-TimeImplementation 113 5.5 ConcludingRemarks 115 References 115 6 PerformanceIndicator-BasedReal-TimeVulnerability Assessment 119 JaimeC.Cepeda,JoséLuisRueda-Torres,DeliaG.Colomé,andIstvánErlich 6.1 Introduction 119 6.2 OverviewoftheProposedVulnerabilityAssessmentMethodology 120 6.3 Real-TimeAreaCoherencyIdentification 122 6.3.1 AssociatedPMUCoherentAreas 122 6.4 TVFSVulnerabilityPerformanceIndicators 125 6.4.1 TransientStabilityIndex(TSI) 125 6.4.2 VoltageDeviationIndex(VDI) 128 6.4.3 FrequencyDeviationIndex(FDI) 131 6.4.4 AssessmentofTVFSSecurityLevelfortheIllustrativeExamples 131 6.4.5 CompleteTVFSReal-TimeVulnerabilityAssessment 133 (cid:2) TrimSize:170mmx244mm SingleColumn (cid:2) Torres ftoc.tex V2-12/15/2017 5:35pm Pageviii viii Contents 6.5 SlowerPhenomenaVulnerabilityPerformanceIndicators 137 6.5.1 OscillatoryIndex(OSI) 137 6.5.2 OverloadIndex(OVI) 141 6.6 ConcludingRemarks 145 References 145 7 ChallengesAheadRisk-BasedACOptimalPowerFlowUnder UncertaintyforSmartSustainablePowerSystems 149 FlorinCapitanescu 7.1 ChapterOverview 149 7.2 Conventional(Deterministic)ACOptimalPowerFlow(OPF) 150 7.2.1 Introduction 150 7.2.2 AbstractMathematicalFormulationoftheOPFProblem 150 7.2.3 OPFSolutionviaInterior-PointMethod 151 7.2.3.1 ObtainingtheOptimalityConditionsInIPM 151 7.2.3.2 TheBasicPrimalDualAlgorithm 152 7.2.4 IllustrativeExample 154 7.2.4.1 DescriptionoftheTestSystem 154 7.2.4.2 DetailedFormulationoftheOPFProblem 155 7.2.4.3 AnalysisofVariousOperatingModes 156 7.2.4.4 IterativeOPFMethodology 157 7.3 Risk-BasedOPF 158 (cid:2) 7.3.1 MotivationandPrinciple 158 (cid:2) 7.3.2 Risk-BasedOPFProblemFormulation 159 7.3.3 IllustrativeExample 160 7.3.3.1 DetailedFormulationoftheRB-OPFProblem 160 7.3.3.2 NumericalResults 161 7.4 OPFUnderUncertainty 162 7.4.1 MotivationandPotentialApproaches 162 7.4.2 RobustOptimizationFramework 162 7.4.3 MethodologyforSolvingtheR-OPFProblem 163 7.4.4 IllustrativeExample 164 7.4.4.1 DetailedFormulationoftheWorstUncertaintyPatternComputationWith RespecttoaContingency 164 7.4.4.2 DetailedFormulationoftheOPFtoCheckFeasibilityinthePresenceof CorrectiveActions 166 7.4.4.3 DetailedFormulationoftheR-OPFRelaxation 166 7.4.4.4 NumericalResults 168 7.5 AdvancedIssuesandOutlook 169 7.5.1 ConventionalOPF 169 7.5.1.1 OverallOPFSolutionMethodology 169 7.5.1.2 CoreOptimizers:ClassicalMethodsVersusConvexRelaxations 171 7.5.2 BeyondtheScopeofConventionalOPF:Risk,Uncertainty,Smarter SustainableGrid 172 References 173 (cid:2) TrimSize:170mmx244mm SingleColumn (cid:2) Torres ftoc.tex V2-12/15/2017 5:35pm Pageix Contents ix 8 ModelingPreventiveandCorrectiveActionsUsingLinear Formulation 177 TomVanAckerandDirkVanHertem 8.1 Introduction 177 8.2 SecurityConstrainedOPF 178 8.3 AvailableControlActionsinACPowerSystems 178 8.3.1 GeneratorRedispatch 179 8.3.2 LoadSheddingandDemandSideManagement 179 8.3.3 PhaseShiftingTransformer 179 8.3.4 SwitchingActions 180 8.3.5 ReactivePowerManagement 180 8.3.6 SpecialProtectionSchemes 180 8.4 LinearImplementationofControlActionsinaSCOPFEnvironment 180 8.4.1 GeneratorRedispatch 181 8.4.2 LoadSheddingandDemandSideManagement 182 8.4.3 PhaseShiftingTransformer 183 8.4.4 Switching 184 8.5 CaseStudyofPreventiveandCorrectiveActions 185 8.5.1 CaseStudy1:GeneratorRedispatchandLoadShedding(CS1) 186 8.5.2 CaseStudy2:GeneratorRedispatch,LoadSheddingandPST(CS2) 187 8.5.3 CaseStudy3:GeneratorRedispatch,LoadSheddingandSwitching (CS3) 190 (cid:2) 8.6 Conclusions 191 (cid:2) References 191 9 Model-basedPredictiveControlforDampingElectromechanical OscillationsinPowerSystems 193 DaWang 9.1 Introduction 193 9.2 MPCBasicTheory&DampingControllerModels 194 9.2.1 WhatisMPC? 194 9.2.2 DampingControllerModels 196 9.3 MPCforDampingOscillations 198 9.3.1 OutlineofIdea 198 9.3.2 MathematicalFormulation 199 9.3.3 ProposedControlSchemes 200 9.3.3.1 CentralizedMPC 200 9.3.3.2 DecentralizedMPC 200 9.3.3.3 HierarchicalMPC 202 9.4 TestSystem&SimulationSetting 204 9.5 PerformanceAnalysisofMPCSchemes 204 9.5.1 CentralizedMPC 204 9.5.1.1 BasicResultsinIdealConditions 204 9.5.1.2 ResultsConsideringStateEstimationErrors 206 9.5.1.3 ConsiderationofControlDelays 208 (cid:2) TrimSize:170mmx244mm SingleColumn (cid:2) Torres ftoc.tex V2-12/15/2017 5:35pm Pagex x Contents 9.5.2 DistributedMPC 209 9.5.3 HierarchicalMPC 209 9.6 ConclusionsandDiscussions 213 References 214 10 VoltageStabilityEnhancementbyComputationalIntelligence Methods 217 WorawatNakawiro 10.1 Introduction 217 10.2 TheoreticalBackground 218 10.2.1 VoltageStabilityAssessment 218 10.2.2 SensitivityAnalysis 219 10.2.3 OptimalPowerFlow 220 10.2.4 ArtificialNeuralNetwork 220 10.2.5 AntColonyOptimisation 221 10.3 TestPowerSystem 223 10.4 Example1:PreventiveMeasure 224 10.4.1 ProblemStatement 224 10.4.2 SimulationResults 225 10.5 Example2:CorrectiveMeasure 226 10.5.1 ProblemStatement 226 10.5.2 SimulationResults 227 (cid:2) 10.6 Conclusions 229 (cid:2) References 230 11 Knowledge-BasedPrimaryandOptimization-BasedSecondary ControlofMulti-terminalHVDCGrids 233 AdedotunJ.Agbemuko,MarioNdreko,MarjanPopov,JoséLuisRueda-Torres,and MartA.M.MvanderMeijden 11.1 Introduction 234 11.2 ConventionalControlSchemesinHV-MTDCGrids 234 11.3 PrinciplesofFuzzy-BasedControl 236 11.4 ImplementationoftheKnowledge-BasedPower-VoltageDroopControl Strategy 236 11.4.1 ControlSchemeforPrimaryandSecondaryPower-VoltageControl 237 11.4.2 Input/OutputVariables 238 11.4.2.1 MembershipFunctionsandLinguisticTerms 239 11.4.3 KnowledgeBaseandInferenceEngine 241 11.4.4 DefuzzificationandOutput 241 11.5 Optimization-BasedSecondaryControlStrategy 242 11.5.1 FitnessFunction 242 11.5.2 Constraints 244 11.6 SimulationResults 245 11.6.1 SetPointChange 245 11.6.2 ConstantlyChangingReferenceSetPoints 246 11.6.3 SuddenDisconnectionofWindFarmforUndefinedPeriod 246 11.6.4 PermanentOutageofVSC3 247 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.