energies Article Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet He-YongXu*,Chen-LiangQiaoandZheng-YinYe NationalKeyLaboratoryofScienceandTechnologyonAerodynamicDesignandResearch, NorthwesternPolytechnicalUniversity,Xi’an710072,China;[email protected](C.-L.Q.); [email protected](Z.-Y.Y.) * Correspondence:[email protected];Tel.:+86-29-884-933-04 AcademicEditors:LanceManuelandRuppCarriveau Received:18March2016;Accepted:30May2016;Published:2June2016 Abstract: Dynamic stall control of a S809 airfoil is numerically investigated by implementing a co-flow jet (CFJ). The numerical methods of the solver are validated by comparing results with thebaselineexperimentaswellasaNACA6415-basedCFJexperiment,showinggoodagreement in both static and dynamic characteristics. The CFJ airfoil with inactive jet is simulated to study the impact that the jet channel imposes upon the dynamic characteristics. It is shown that the presenceofalongjetchannelcouldcauseanegativeeffectofdecreasingliftandincreasingdrag, leadingtofluctuatingextremeloadsintermsofdragandmoment. Themainfocusofthepresent researchistheinvestigationofthedynamiccharacteristicsoftheCFJairfoilwiththreedifferentjet momentumcoefficients,whicharecomparedwiththebaseline,givingencouragingresults. Dynamic stallcanbegreatlysuppressed,showingaverygoodcontrolperformanceofsignificantlyincreased lift and reduced drag and moment. Analysis of the amplitude of variation in the aerodynamic coefficients indicates that the fluctuating extreme aerodynamic loads are significantly alleviated, whichisconducivetostructuralreliabilityandimprovedlifecycle. Theenergyconsumptionanalysis showsthattheCFJconceptisapplicableandeconomicalincontrollingdynamicstall. Keywords: dynamicstall;windturbine;flowcontrol;numericalsimulation;co-flowjet 1. Introduction The depletion of fossil-fuel reserves, stricter environmental regulations and the world’s ever-growingenergydemandhavegreatlypromotedtheusageofalternativerenewableenergysources. Amongthevariousrenewableenergyalternatives,windenergyisoneofthemostpromisingandthe fastestgrowinginstalledalternative-energyproductiontechnologyduetoitswideavailability[1]. IntheHalfYearReportofWorldWindEnergyAssociation[2],itwasreportedthatthegrowthofthe windenergyindustrywillcontinuewiththerapidincreaseinenergydemand,thereforemoreefforts are stillneededto increase the efficiencyof windenergy generationinordertokeep windenergy economicallycompetitivecomparedwithtraditionalfossilfuelsandotherrenewableenergysources suchashydroelectricenergy,solarenergyandbio-energy. Twofactorsthataffectthecostofwindenergyarelifetimeenergycaptureandmaintenancecost. Therefore,sincethebeginningofthecommercialwindindustry,therotordiameterandturbinesize havegraduallyincreasedinordertocapturemoreenergyduringthelifetime. Asturbinesgrowinsize, thestructuralandfatigueloadsbecomemorenoticeable. Theextremestructuralandfatigueloadsare importantfactorsinturbinedesignandmostoftheseloadsresultfromthedynamicstall. Adynamic stallphenomenontakesplacewhenthewindturbinebladesectionissubjectedtounsteadyvariation ofangleofattack. Duetothecomplicatedatmosphericenvironmentatwindfarms, windturbine bladesusuallyexperienceadverseconditionsunderwhichthelocalangleofattackofaparticularblade Energies2016,9,429;doi:10.3390/en9060429 www.mdpi.com/journal/energies Energies2016,9,429 2of25 sectionwillvarywithtime,includinggroundboundarylayereffects,horizontalorverticalwindshear, towershadowing,yawandtiltmisalignment,andunsteadyinflowduetoatmosphericturbulence or wake from other turbines. All these conditions can give rise to the dynamic stall phenomenon. Theunsteadyaerodynamicloadproducedbydynamicstallisalsoamainsourceofthevibration[3] andaero-acousticnoise[4]. Withincreasingdeployment,morewindturbineswillbelocatedwithin residentialareas,wheretheaerodynamicnoiseemittedbytherotorsmayhaveanegativeimpacton thecomfortoflivinginthevicinity. Tominimizethesefactors,reducemaintenancecosts,prolongthe turbinelifetimeandreducenoiselevel,oneeffectivewayistoexploreeffectiveflowcontrolmethods, passiveoractive,toalleviatethefluctuationsofaerodynamicloads. Ontheotherhand,windfarms innaturalconditionsmayfrequentlyexperienceadverseworkingconditionswherethewindspeed isverylowandhenceconventionalwindturbinesgeneratelittleornousablepower. Thisissuehas limitedthedeploymentofwindturbinestorelativelyfewsiteswherefavorablewindconditionsexist. Therefore,thereisademandtodevelopeffectiveflowcontrolmethodswhichcansignificantlyincrease theliftofthebladeatlowwindspeedsandallowtheturbinetocut-inearlierandcaptureadditional energy. Hence,foraflowcontrolmethod,itisimportanttoprovidethebladewithboth,goodstatic anddynamic,aerodynamicperofmance. Variousflowcontrolmethodshavebeeninvestigatedtoenhancewindturbinebladeperformance, includingtrailingedgeflaps[5],microtabs[6,7],vortexgenerators[8],blowingjets[9,10],circulation control[11],Gurneyflaps[11],syntheticjets[12],andplasmaactuators[13]. Hannsetal.[10]carried outanexperimentalstudytoexploreconstantblowingasaflowcontrolconceptforwindturbine blades. Theirresultsshowedthatcontrolfromtheleading-edgeslothadasignificantpotentialforload controlapplications,whilecontrolfromthemid-chordslotsignificantlyenhancedliftatpre-stallangles ofattackbutwasineffectiveforsuppressingleading-edgestall. Tongchitpakdeeetal.[11]studiedand comparedthestaticaerodynamicperformancesofawindturbinerotorequippedwithtrailing-edge blowing and Gurney flaps. The results indicated that for attached flow conditions, trailing-edge blowingandGurneyflapbothcanproduceanetincreaseinpowergenerationcomparedwiththe baselineturbinerotor. However,theresultsalsoindicatedthatathigh-windspeedconditionswhere theflowseparates,thetrailing-edgeblowingandtheGurneyflapbothbecameineffectiveinincreasing thepoweroutput. YenandAhmed[12]implementedsyntheticjetstostudythewindturbinedynamic stallcontrolanddemonstratedthatsyntheticjetscouldimprovelowspeedvertical-axiswindturbine performancebutwithoutsubstantiallyalleviatingstallseparation. Greenblattetal.[13]experimentally measuredtheeffectsofplasmapulsationondynamicstallcontrolontheupwindhalfofaturbineand alsolimitedphase-lockedparticleimagevelocimetrymeasurementswereperformedunderbaselineas wellastwocontrolledconditions. Itwasfoundthatatlowermaximumanglesofattack,theeffectof pulsationsonthedynamicstallwasgreater,butseparationwasnotfullycontrolled,andthepower requiredtodrivetheactuatorswassignificantlylargerthantheresultingturbinepowerincrease. Zhaetal.[14–20]havedevelopedanewflowcontrolmethodbyimplementingaco-flowjet(CFJ) on the suction surface, which has been proved an effective way to significantly increase lift, stall marginanddragreductionforstationaryairfoilsandenhancetheperformanceofpitchingairfoils in the aircraft research field. The working mechanism of a CFJ is different from the conventional circulationcontrolwhichreliesonlarge-radiusleadingedgeortrailingedgetoinducetheCoanda effectandenhancecirculation. TheCFJreliesonthejetmixingwiththemainflowtoenergizethemain flowandovercometheadversepressuregradient. Moreover,thejetsuctioneffectnearthesuction slotfurtherenhancesflowstabilitytoremainattachedtothesurfaceathighanglesofattack(AoA), thusinducingmuchhighercirculationthanconventionalcirculationcontrolwithoutjetsuction. Ina previousstudy,Xuetal.[21]introducedthisconcepttowindturbineairfoilapplication,focusingon thestaticperformancewithactiveaswellasinactiveCFJ.Theresultsshowedthatsteadyco-flowjethad agreatpositiveeffectinliftenhancement,stallmarginexpansion,anddragreduction.Forcaseswithjet momentumcoefficientslargerthan0.12,thetotaldragevenbecamenegativeduetothejetreactionforces. Energies2016,9,429 3of25 Inthepresentstudy,theCFJconceptisextendedtothedynamicstallcontrolonawindturbine Energies 2016, 9, 429 3 of 25 airfoil. TheprimarypurposeistoinvestigatethedynamicperformanceoftheCFJinsuppressing Energies 2016, 9, 429 3 of 25 wwiinndd tuturbrbinineea iarfiorfiolidl ydnyanmaimcsicta lsltaanlld acnodn sceoqnuseenqtluyeanltlleyv iaaltlienvgiafltuincgtu afltuincgtuaaetriondgy anearmodicylnoaamdsi.cE lnoeardgsy. cEwoninnesrdug mytu ecrdobnbisnyuetm haeeirdCf obFiJyl ptdhuyemn CpamFiJsi cpa nusamtlaypllz eiasd naadnn adclyocznoesmdeq pauanerden dtcloywm iatphllaetrhveeidaa twimnigoth u fntlhuteco tfaugmaatoiinnuegnd t aeoenfr eogrdagiyynnetaodm aesincse erlsogsaytd htsoe. eaEcsnoseenrsogsmy t hyceoo nefcsiuomnmpoelmedmy b eoynf t tihimneg pCltFehmJe peCunFmtJinopgn i stth haeen CawlFyiJnz odednt utahrnbedi wn ceointmodp ctaournrebtdrion wled ittoyh n ctaohmnet iarcomsl todaulyln.nta omf igca sitnaelld. energy to assess the economy of implementing the CFJ on the wind turbine to control dynamic stall. 2. DesignoftheCFJAirfoil 2. Design of the CFJ Airfoil 2. DeTshigenN oRfE thLeS C80F9J wAiinrfdotiul rbineairfoilisusedinthepresentstudyasthebaselineanditsdetailed The NREL S809 wind turbine airfoil is used in the present study as the baseline and its detailed parametersaregivenin[22]. ThecorrespondingCFJconceptualairfoilisshowninFigure1,withan paramTheete NrsR aEreL gSi8v0e9n wini n[2d2 t]u. rTbhien ec oarirrfeosipl oisn duisnegd CinF tJh ceo npcreepsetunta ls tauirdfyo ial sis t hshe obwasne liinn Fe iagnudre i t1s, dweittahi laend injection slot near the leading edge and a suction slot near the trailing edge on the airfoil suction ipnajeractmioente srlso at rnee gairv ethne i nle [a2d2i]n. gT heed gcoer arensdp oan sduicntgio CnF sJl ocot nnceeaprt uthael atirrafioliinl gis esdhgowe non i nt hFeig auirrefo 1il, wsuitchti oann surface. Theseslotsareformedbytranslatingdownwardaportionofsuctionsurface,givingriseto sinujrefcatcioe.n T shloest en selaort st haere l efoardminegd ebdyg ter aannsdla ati nsug cdtioown nswloat rnde aa rp tohreti otrna iolfin sgu cetdiogne sounr ftahcee ,a girivfoinilg s uricstei otno thepresenceofajetchannel. Whentheco-flowjetisactivated,ajetisinjectedtangentiallyintothe tshuer fparcees. eTnhcees eo fs lao jtest acrhea fnonrmel.e Wd bhye ntr tahnes lcaot‐inflgo wd ojewt nisw aacrtdiv aa tpeodr,t aio jne to ifs siuncjeticotend s utarnfagceen, tgiaivlliyn gin rtios et htoe mainflow,andasameamountofmassflowissuckedintothesuctionslot,formingaclosed-loopjet mthaei np rfelosewn,c aen odf aa sjaetm ceh aamnnoeul.n Wt ohf emn atshse f cloow‐fl iosw su jectk eisd a icnttiov athteed s, uac tjeiot nis s ilnojte, cftoerdm tianngg ae ncltoiaslelyd ‐ilnotoop t jheet circuit. Apumpcanbeusedtopowertheco-flowjetflow. Byusingaclosed-loopjetrecirculation, cmiraciuni tf.l oAw p, uanmdp a c saanm bee a umseodu ntot opfo mwaesrs tfhloew co i‐sf lsouwck jeedt filnotwo .t hBey s uuscitniogn a s clolot,s feodr‐mloionpg jae tc lroesceirdc‐ulolaotpio jnet, theflowattachmentonthesuctionsurfacewillbegreatlystrengthened,allowinganattractiveability tchirec fuliotw. A a tptaucmhmp ecnant obne tuhsee sdu ctoti opno wsuerrf atchee wcoil‐lf lboew g rjeeat tfllyo wst.r eBnyg tuhseinnged a, aclloloswedin‐lgo oapn ajettt rraecctiirvceu alabtiiloitny, toresistsevereadversepressuregradientsathighanglesofattack. Thesourceofjetflowisprovided ttoh er efsloiswt saetvtaecrhe madevnet rosne tphree sssuucrteio gnr asudriefanctes wati hlli bgeh garnegaltelsy ostfr aetntagcthk.e Tnehde ,s aolulorwcei nogf jaent falottwra cist ipvreo avbiidlietdy bysuckinganequalamountofflowmassfromthesuctionslotratherthantheengine,whichmakes btoy rseusciskti nsegv aenre e aqduvael rasme pourensts uofr ef lgorwa dmieanstss farto mhig thh ea nsugcletiso onf saltotta crakt.h Tehre t hsoaun rtchee o efn jegti nfleo, ww ihsi cphr omvaidkeeds theco-flowjetazeronetmassflow. tbhye scuoc‐kflionwg ajent eaq zuearlo a nmeto munats os ff lfoloww. mass from the suction slot rather than the engine, which makes the co‐flow jet a zero net mass flow. Figure 1. Co‐flow jet conceptual airfoil. Figure1.Co-flowjetconceptualairfoil. Figure 1. Co‐flow jet conceptual airfoil. The computational model of S809 CFJ airfoil is shown in Figure 2a, which includes the cavities ThecomputationalmodelofS809CFJairfoilisshowninFigure2a,whichincludesthecavities of injTechteio cno manpdu stautciotinoanl imn oodrdele ro ft oS 8m0a9k CeF tJh aei rsfiomilu ilsa tsihoonw mno irne Freigaulirseti c2.a T, wheh liochca itniocnlu odfe isn tjhecet icoanv istlioest ofinjectionandsuctioninordertomakethesimulationmorerealistic. Thelocationofinjectionslot AofC i nisje scetito ant a6n.0d% scu fcrtoiomn tihne o lredaedri ntog medagkee, ptheer pseimnduilcautiloanr tmo othree rloeacalils tsiuc.r fTahcee wloictaht iao nh eoifg hintj eocft 0io.6n5 s%loct. ACissetat6.0%cfromtheleadingedge,perpendiculartothelocalsurfacewithaheightof0.65%c. TAhCe islo sceatt iaotn 6 .o0f% scu fcrtoiomn tshleo tl eBaDdi nisg seedt gaet, 2p0e.r0p%ecn dfricoumla rth teo ttrhaei llioncga le sdugref,a cpee rwpietnhd ai chueliagrh tto o ft h0e.6 l5o%cacl. ThelocationofsuctionslotBDissetat20.0%cfromthetrailingedge,perpendiculartothelocalsurface sTuhref alcoec awtiiothn ao hf esiugchtti oonf 1s.l3o8t% BcD. T ios esnest uarte 2th0.a0t% thce f jreotm is ttahneg ternaitliianl gto e tdhgee s, uprefarcpee,n ad jiectu clhara ntno etlh lein lkoicnagl withaheightof1.38%c. Toensurethatthejetistangentialtothesurface,ajetchannellinkingthe tshuer fiancjee cwtiiothn aa nhdei gsuhct toiof n1 .3sl8o%tsc .i sT oca ernesfuulrley tdheast itghnee jdet bisy ttarnagnesnlattiianl gto d tohwe snuwrfaarcde ,a an dje ts clihgahntlnye lr olitnaktiinngg injectionandsuctionslotsiscarefullydesignedbytranslatingdownwardandslightlyrotatingthe tthhee pinojretcitoino nA aBn odf sthuec tbioanse slilnoets s iusc ctiaornef suullryfa dcee stiog ntheed tbaryg tertaends lloatciantgio dno CwDn.w Foarrd th aen cda sseli gohf tilnya crtoitvaattinedg portion AB of the baseline suction surface to the targeted location CD. For the case of inactivated cthoe‐f lpoowrt jieotn, tAheBr eo fi st hnee abralyse nlion me sauscst filoonw s tuhrrfoauceg hto t hthee s tloartsg,e ttheed h liogcha‐tpiornes CsuDr.e F aonrd t hloew ca‐psere osfs uinrae cctaivvaittieeds co-flowjet,thereisnearlynomassflowthroughtheslots,thehigh-pressureandlow-pressurecavities acore‐f eloxwclu jedte, tdh feorre sisim nepalirclyit yn,o a ms sahsos wflonw in t hFrioguugreh 2thb.e slots, the high‐pressure and low‐pressure cavities areexcludedforsimplicity,asshowninFigure2b. are excluded for simplicity, as shown in Figure 2b. (a) (b) (a) (b) Figure 2. The computational models of S809 CFJ airfoil: (a) Jet‐on; (b) Jet‐off. Figure 2. The computational models of S809 CFJ airfoil: (a) Jet‐on; (b) Jet‐off. Figure2.ThecomputationalmodelsofS809CFJairfoil:(a)Jet-on;(b)Jet-off. 3. Methodology 3. Methodology 3. Methodology 3.1. Numerical Methods 33..11.. NNuummeerriiccaall MMeetthhooddss The unsteady Reynolds‐Averaged Navier‐Stokes equations and Spalart‐Allmaras one‐equation turbuTTlhehneec uuenn mssttoeedaadedlyy a RrReee yuynsneoodlldd isns-‐ AtAhvveee prraraeggseeeddn NtN ianav‐vhiieoerru-‐SsSteto ockkoeedsse e etqqouu caaattriirooynn sosu aatnn tddh eSS pnpauallmaarrett-r‐AiAclallllmm staaurradasys .oo Mnneeo-‐reeeqq uduaeatttaiiooilnns tatuubrrobbuuutll etehnnecc eeg momvooeddreneliln aagrre ee uqususeeaddti ioinnn ttshh aeen ppdrr ebessoeeunnnttd iinna-‐rhhyoo cuuossneed cciootiddoeen tstoo c accaanrr brryye ofoouuuttn tthhdee i nnn uu[2mm1]ee.rr Tiicchaaell ssdttuuuaddlyy‐.t.i MMmoeo rrseete ddpeepttaainiillgss amabbeootuuhtto ttdhh e[e2 gg3oo] vvisee rranndiinongpgt eeeqqduu taaott iiaoodnnvssa aannncdde btbhooeuu ntnidmdaaerry‐ya cccocounnrddaiitctiyioo nsnossl cucaatnino bnbe ew ffooituuhnn pdds ieinnu [d[22o11 ]]t..i mTThheee m ddauuraacllh-‐ttiiinmmgee b ssytte empppepaiinnnggs omf etthheo dL U[2‐3S]G isS amdeotphtoedd t[o24 a]d. vTahnec Re othe es tcihmeem‐aec [c2u5r]a cwyi tsho lau ttihoinrd w oitrhd eprs eMuUdoS CtiLm ree mcoanrscthriuncgti boyn m[2e6a] niss uofs etdh et oL Ud‐iSscGrSet imzee tthhoed i[n2v4i]s.c Tidh ef lRuxoees s cahnedm see c[o25n]d w cietnht raa tl hdiridff eorrednecri nMg UisS CuLse dre cfoonr sctorumcptiuonti n[g26 t]h ies vuissecdo utso flduixscerse. tOizpee tnhMe Pin pvairsaclilde l fcluoxmeps uatnindg steeccohnndiq uceen [t2r7a]l isd iafpfeprleinedci ntog aicsc eulseeradt ef othr ec soimmpuulatitniogn .t he viscous fluxes. OpenMP parallel computing technique [27] is applied to accelerate the simulation. Energies2016,9,429 4of25 method[23]isadoptedtoadvancethetime-accuracysolutionwithpseudotimemarchingbymeansof theLU-SGSmethod[24]. TheRoescheme[25]withathirdorderMUSCLreconstruction[26]isusedto discretizetheinviscidfluxesandsecondcentraldifferencingisusedforcomputingtheviscousfluxes. OpenMPparallelcomputingtechnique[27]isappliedtoacceleratethesimulation. Theinflowandoutflowspecifiedatthefar-fieldboundaryarebasedonthecharacteristicsofthe flow. Fortheinletandexitboundaries,EFandGH,inthehigh-pressurecavityandlow-pressurecavity showninFigure2a,theflowconditionsaredefinedindifferentwaysinordertoeasilyimplementthe CFJconcept. AttheinletboundaryEF,thetotalpressureP ,totaltemperatureT ,flowangleαare t t specifiedandinflowvelocityuisextrapolatedfromtheinterior. AttheexitboundaryGH,thestatic pressureP isspecified,andthreeprimitiveflowvariablesu,vandρareextrapolatedfromtheinterior s domain. Inthesimulation,thetotalpressureP atboundaryEFandstaticpressureP atboundary t s GHaresubjecttochangeduringthenumericaliterationuntilthedesiredjetmomentumcoefficient isachievedatbothinletEFandoutletGH.Thesolidsurfaceofairfoilandthecavitiesaredefinedas non-slipwallboundaries. Densityandpressureonthesurfaceareobtainedbyextrapolationfrom theinteriorsolution. Forthejet-offcase,thejetslotsACandBDareassumedtobewallboundaries, andthehigh-pressureandlow-pressurecavitiesarenotincludedinthecomputation. 3.2. PitchOscillationMotionandRelevantParameters The present study investigates the unsteady aerodynamic characteristics of the NREL S809 baselineandCFJairfoilsundergoingsinusoidalpitchoscillationsaboutthequarterchordpointwith variousjetmomentumcoefficients. Thepitchoscillationmotionofanairfoilcanbedescribedina sine-waveformexpressionwhichisdefinedintermsoftheinstantaneousangleofattackby: αptq“α `α sinpωtq (1) 0 1 whereα andα arethemeanangleandpitchoscillationamplituderespectively. ω “ 2πf,withf 0 1 beingthefrequencyoftheoscillation. Foroscillatingairfoils,thereducedfrequencyκisusuallyused todescribetheunsteadymotion,whichisdefinedas: ωc κ “ (2) 2V8 where c is the chord length, and V8 is the velocity of the free stream. This parameter represents theinteractionbetweentheoscillationmotionaboutpitchaxisandthemainflowinthechord-wise direction. Themagnitudeoftheparameterreflectsthedegreeoftheimpactthattheoscillationmotion imposesuponthemainflow. 3.3. RelevantParametersinCFJAirfoilSimulation Theimplementationofaco-flowjetisusuallycharacterizedbyasimilarityparameterC ,known µ asthemomentumcoefficient,whichisdefinedas: . m V j j C “ (3) µ 0.5ρ8V82S . wheremj istheco-flowjetmassflowrate,Vjistheinjectionjetvelocity,ρ8isthefree-streamdensity, V8isthefree-streamvelocity,andSisequaltocforthepresenttwodimensionalcases. IntheCFJconcept,thepowerrequiredtopumpthejetisdeterminedbythejetmassflowrate andtotalpressureratiotoovercomethetotalpressurelossoftherecirculatedjet. Thepowerisusually describedbyanon-dimensionalsimilarityparametercalledpowercoefficientP ,whichisdefinedas: c . »ˆ ˙γ´1 fiO” ı Pc “ mcfηjcpT01 – PP02 γ ´1fl 0.5ρ8V83S (4) cfj 01 cfj Energies2016,9,429 5of25 whereη isthepumpefficiency,c isspecificheatatconstantpressure,P istotalpressureatpump cfj p 01 inletGH,P isthetotalpressureatpumpexitEF,andT istotaltemperatureatpumpinletGH. 02 01 3.4. DynamicMeshStrategy The pitch oscillation motion of an airfoil is a classic unsteady flow problem which needs a dynamic mesh to simulate the motion of the airfoil. The dynamic mesh is necessary for handling theunsteadyproblemsinvolvinggeometricdeformationorrelativemotionbetweenmultiplebodies. Usuallythedynamicmeshstrategiesaredividedintoseveralcategories,includingmeshdeformation, meshregeneration,slidingmesh,andoversetmesh. Thecurrentauthorshavealsodevelopedanew kindofrotationaldynamicoversetmesh,andsimulatedtheNACA0012pitchoscillation[28]aswell asothercaseswithrelativelymovingbodies[29–33]. Alltheabovefourdynamicgridstrategiescan beappliedtotheairfoiloscillationsimulation,butmoremanipulationisneededtoobtainaccurate results. Inthepresentstudy,onlythesingleairfoilundergoingarigidoscillationmotionisconsidered withoutregardinganyotherrelativelymovingbodies. Henceamoresimpledynamicmeshstrategy thatdoesnotfallintotheabovefourcategoriesisappropriateforthepresentstudy,whichiscalled rigidmovingmesh. Themeshperformsarigidrotationabouttheairfoilquarter-chordpointaccording totheoscillationmotionandthegridvelocitycanbecalculatedinastraightforwardwaybydividing themoveddistancefromonephysicaltimesteptothenextbytheintervaltimestep. 4. ResultsandDiscussion 4.1. BaselineSimulationandValidation The static prediction precision of the solver has been validated in a previous study [21] by comparing the numerical results of NREL S809 airfoil static characteristics with the experiment conductedintheDelftUniversityofTechnology[34]. Here,thedynamicpredictionprecisionofthe solverwillbevalidatedbycomparingresultswithexperimentconductedatOhioStateUniversity (OSU)[22]. Thepitchoscillation, aswellasstaticcharacteristics, arebothinvestigatedintheOSU experimentinordertoaidinthedevelopmentsofnewairfoilperformancecodesthataccountfor unsteadybehavior. TheOSU-measuredsectionalstaticaerodynamiccoefficientsoftheS809airfoil withangleofattackwillalsobesimulatedandcanbeusedtocomparewiththedynamiccounterparts. 4.1.1. StaticAerodynamicCharacteristicsandGrid-ResolutionStudy Intheexperiment,theoriginalsharptrailingedgeofa457-mmchordS809airfoilwasthickened to1.25-mmforfabricationpurposes. Thisthicknesswasaddedtotheuppersurfaceoverthelast10% ofthechord. Inthepresentsimulation,thisminormodificationistakenintoaccountformodelingand gridgeneration. Foralocallyblunttrailingedge,O-meshisabetterchoicethanC-meshwhichisused forapreviousstaticperformancestudy[21]onasharptrailingedgeS809airfoil,sinceO-meshcan easilyensurethemeshorthogonalityinthevicinityofablunttrailingedge. The static simulation conditions are set in correspondence with its counterpart of oscillation simulation,withMa=0.076,Re=1.0ˆ106.First,thegrid-resolutionstudyiscarriedoutforAoA=4.1˝. Three different mesh resolutions are tested: a course mesh of 1.28 ˆ 104 cells, a medium mesh of 2.88ˆ104 cells, andafinemeshof5.12ˆ104 cells. Relevantdimensionsandspacingofthethree meshesaregiveninTable1. Themeshrefinementiscarriedoutintheairfoil’snormaldirectionaswell asthewrappingdirection. Thefirstlayerspacingisequaltoorlessthan1ˆ10´5toensurethatthey+ islessthan1. Figure3showsthemediummesh. ThecomparisonsofaerodynamiccoefficientsfordifferentmeshlevelsarelistedinTable2. Thelift andmomentcoefficientshaveafairlygoodagreementwiththeexperimentalresults, whereasthe numericaldragcoefficientsaremuchlarger. Thisdiscrepancybetweennumericalandexperimental dragcoefficientsisprobablybecausethenumericalsimulationsarecarriedoutundertheassumption offullturbulencewhichcausesthedraglargerthanthatofalaminarflow. Intheexperimentthere Energies2016,9,429 6of25 probablyexiststransitionatacertainlocationonthesuctionsurface,beforewhichtheflowislaminar, and hence the resulting drag is lower than the assumed full turbulent flow. The introduction of a transitionmodelintothesimulationisexpectedtoreducethediscrepancy. Fromanoverallviewof Table2,theaerodynamiccoefficientspredictedwithafinermeshareclosertotheexperimentalresults, andthereisasmalldifferencebetweenthemediumandfinemesh. Therefore, allthesimulations are performed using the medium mesh. The jet-off CFJ airfoil mesh is obtained by adding the correspondingpartofthejetchannelmeshtothebaselinemediummesh. Similarly,thejet-onCFJ airfoilmeshisobtainedbyaddingthecorrespondingpartsofthejetchannelmesh,thehigh-pressure andlow-pressurecavitiesmeshestothebaselinemediummesh. Table1.DetailsofthegridemployedfortheS809baselineairfoil. Parameters CoarseGrid MediumGrid FineGrid Farfieldradius/c 50.0 50.0 50.0 NormallayersinO-mesh 80 120 160 Wrap-aroundpoints 160 240 320 Leading-edgespacing/c 0.0038 0.0025 0.0018 Trailing-edgespacing/c 0.0017 0.0010 0.0008 Firstlayerspacing/c,ˆ10´5 1.0 1.0 0.5 Spacingincreasingratio 1.20 1.13 1.08 Totalnumberofcells,ˆ104 1.28 2.88 5.12 Energies 2016, 9, 429 6 of 25 Figure 3. O‐mesh for S809 airfoil (medium level). Figure3.O-meshforS809airfoil(mediumlevel). The comparisons of aerodynamic coefficients for different mesh levels are listed in Table 2. Table2.Comparisonofaerodynamiccoefficientsfordifferentmeshlevels[Ma=0.076,Re=1ˆ106, The lift and moment coefficients have a fairly good agreement with the experimental results, whereas AoA=4.1˝]. the numerical drag coefficients are much larger. This discrepancy between numerical and experimental drag coefficients is probably because the numerical simulations are carried out under Parameters CoarseGrid MediumGrid FineGrid Experiment the assumption of full turbulence which causes the drag larger than that of a laminar flow. In the experiment there pCrLobably exis0ts.5 t2r8a3nsition at a c0e.5r4ta0i6n location 0o.n5 4t6h4e suction 0s.u55r0fa0ce, before which C 0.0206 0.0161 0.0155 0.0050 the flow is laminarD, and hence the resulting drag is lower than the assumed full turbulent flow. C ´0.0371 ´0.0380 ´0.0383 ´0.0461 The introduction oMf a transition model into the simulation is expected to reduce the discrepancy. From an overall view of Table 2, the aerodynamic coefficients predicted with a finer mesh are closer Themediummeshisfurtherusedtosimulateawiderangeofanglesofattackfrom´20˝to24˝ to the experimental results, and there is a small difference between the medium and fine mesh. formorevalidations. Thecomputedaerodynamicforceandmomentcoefficientsarecomparedwith Therefore, all the simulations are performed using the medium mesh. The jet‐off CFJ airfoil mesh is experimentalresultsinFigure4. AllthesimulationsarecarriedoutatsameMachnumber0.076and obtained by adding the corresponding part of the jet channel mesh to the baseline medium mesh. ReSyinmoilldasrlny,u tmheb jeert‐1o.n0 CˆF1J 0a6i.rfTohile mpersehs eisn otbsttaatinicedre bsuy latsddwiinlgl btheeu csoerdretsopcoonmdipnagr epawrtisth oft htheen jeext tchdaynnnaeml ic stamllersehsu, tlhtse whihgihc‐hprveasrsyurine aanrda nlogwe‐opfreasnsgulrees coafvaittiteasc kmbesehtwese teon th4˝e banasdel2in4˝e. mFreodmiumFi gmueresh4., fortherange ofanglesofattackfrom´6˝to8˝,thenumericalresultsagreeratherwellwiththemeasurement.Afterthe flowseTpaabralet i2o.n Coomccpuarrriseonnc eo,f taheeroldiyftniasmaicl ictoteleffiociveenrt-sp forer ddiicffteerdenbt umtewshi tlhevinelsa [nMaac =c e0p.0t7a6b, lReed =e 1g r×e 1e0,6a, ndthe variatioAnotAre =n d4.1is°].w ellcaptured.Overall,thepresentnumericalresultsagreefairlywellwithexperiment. Parameters Coarse Grid Medium Grid Fine Grid Experiment CL 0.5283 0.5406 0.5464 0.5500 CD 0.0206 0.0161 0.0155 0.0050 CM −0.0371 −0.0380 −0.0383 −0.0461 The medium mesh is further used to simulate a wide range of angles of attack from −20° to 24° for more validations. The computed aerodynamic force and moment coefficients are compared with experimental results in Figure 4. All the simulations are carried out at same Mach number 0.076 and Reynolds number 1.0 × 106. The present static results will be used to compare with the next dynamic stall results which vary in a range of angles of attack between 4° and 24°. From Figure 4, for the range of angles of attack from −6° to 8°, the numerical results agree rather well with the measurement. After the flow separation occurrence, the lift is a little over‐predicted but within an acceptable degree, and the variation trend is well captured. Overall, the present numerical results agree fairly well with experiment. Figure 5 gives the comparison of surface pressure coefficient distributions with measurements for several AoA conditions, also showing rather good agreements except for large angles of attack over 20°. Energies2016,9,429 7of25 Figure5givesthecomparisonofsurfacepressurecoefficientdistributionswithmeasurementsfor severalAoAconditions,alsoshowingrathergoodagreementsexceptforlargeanglesofattackover20˝. Energies 2016, 9, 429 7 of 25 Energies 2016, 9, 429 7 of 25 (a) (b) (a) (b) (c) (c) Figure 4. Comparisons of computed static aerodynamic coefficients with experiment: (a) Lift coefficient; Figure4.Comparisonsofcomputedstaticaerodynamiccoefficientswithexperiment:(a)Liftcoefficient; (b)F Digruarge 4c.o Cefofmicipeanrtis; o(cn)s Mofo cmomenptu cteode fsftiactiiecn ate.r odynamic coefficients with experiment: (a) Lift coefficient; (b)Dragcoefficient;(c)Momentcoefficient. (b) Drag coefficient; (c) Moment coefficient. (a) (b) (a) (b) Figure 5. Cont. Figure 5. Cont. Figure5.Cont. Energies2016,9,429 8of25 Energies 2016, 9, 429 8 of 25 Energies 2016, 9, 429 8 of 25 (c) (d) Figure 5. Comparisons of surface pressure coefficient distributions with experiment: (a) AoA = 6.1°; Figure5.Comparisonsofsurfacepressurecoefficientdistributionswithexperiment:(a)AoA=6.1˝; (b)(bA)o AAoA= 1=2 1.22˝.2;°(;c ()c)A AooAA(= c=)1 188..11˝°;; ((dd)) AAooAA == 2244°˝. . (d) 4.1.2. DFiygnuarem 5i.c C Cohmapraarcisteorniss toifc ssu arnfadce T pimreses‐uRree scooleufftiicoienn St tduisdtryi butions with experiment: (a) AoA = 6.1°; 4.1.2. DynamicCharacteristicsandTime-ResolutionStudy (b) AoA = 12.2°; (c) AoA = 18.1°; (d) AoA = 24°. In the OSU experiment, unsteady data were obtained for the S809 airfoil model undergoing In the OSU experiment, unsteady data were obtained for the S809 airfoil model undergoing si4n.u1s.2o.i Ddayln paimtcihc oCshcailrlaacttioernisst wicsit han ad c Tomimper‐eRheesnosluivtieo sne St toufd teys t conditions, including two angle of attack sinusoidal pitch oscillations with a comprehensive set of test conditions, including two angle of amplitudes, ±5.5° and ±10°; four Reynolds numbers, 0.75, 1.0, 1.25, and 1.4 million; three pitch attack amInp tlhiteu OdeSsU, ˘ex5p.5er˝imanendt,˘ u1n0s˝te;afdoyu rdaRteay wnoerled sobntuaimnebde rfso,r 0t.h7e5 ,S810.09, a1i.r2fo5i,l amnodd1e.l4 umndilelrigooni;ngth ree oscillation reduced frequencies, 0.026, 0.052, and 0.077; and three mean angles of attack, 8°, 14°, and pitchsinouscsiolildaatilo pnitrcehd ousccieldlatfiroenqsu wenitchi ae sc,o0m.0p2r6e,h0e.n0s5iv2,e asnetd o0f .t0es7t7 c;oannddittiohnres,e inmcleuadninagn tgwleos aonfgalet toafc akt,ta8c˝k, 14˝, 20°. In the present study, the following conditions are selected for all of the validation simulations as andwaoe2msl0lc˝ pial.llsiaI tnttuhiodtehne s esru,e pbd±rs5uee.sc5qee°udn ea tnfnrstdet ucq ou±dm1ey0n,p°ct;ahi erfesao,tfu io0vr.l 0elRo2 sw6et,yu i0nnd.o0giel5dsc2:so, mnanndeudiamt ni0ob .a0nen7rss7ga,;l era0e n.o7sdf5e a,tl hte1tcra.e0tcee,k d m1 α.f20eo 5a=r,n a1 aal4nln°do,g fal1ents.hg4 eo lemfv aoaitlfltl iiaadoctnatkat;, ic 8otkh°n ,ra e1sme4im °pp,l uaiittlnucadhdti eo ns asαw12 e=0l °l1.a 0Is°n,t tRhheeey spnurobelssdeesnq ntu suetmnutdbcyeo,r mt Rhpee af=or 1all.to0iwv meinislgtlui ocdonin,e dasni:tdmio rneesad nauraecne sdge llfeerceotqefdua etftnoarcc yak lκlα o=0f =0t.h01e74 7v˝.a, Tlaihndeag tlaieoironff osaiilmt ptaueclrakftoiaormmnsps altisht ue de α1s=iwn1ue0sl˝lo ,aiRds eathyl epn iostulcdhbss oensqucuimlelnabtte icoronRm aepb=aoru1at.t0 iivtmse qsiltuluiaodrnitee,sra: cnmhdeoarrendd apunocgienldet .o frf eaqttuaecnkc αy0 κ= 1=40°,. 0a7n7g.leT ohfe aatitrafcoki lapmeprlfioturmdes the sinusoiTdhael pistcimhuolsactiilolantsi onaraeb oupteritfsorqmueadrt erucshinogr dpthorienet . different non‐dimensional time steps α1 = 10°, Reynolds number Re = 1.0 million, and reduced frequency κ = 0.077. The airfoil performs the (nsoTinnhu‐edsoimidseiamnl spuioiltnachtai looizsnecsdill abatyiro ecn/ Vap∞b)oe rudftto =irt sm0 q.0eu0da8r,t e0ur.0s ci1hn0og, r0d. 0tp1ho2ri,en ert.e spdeicffteivreelnyt, inn oornd-edri mtoe innsvieosntiaglatet itmhee timstee ps (nosnte-pd ismeTnehsneit siivositinmya bulialzaseteiddon obsn y thacre/e aV e8rpoe)drfydontram=medi0c .c0ou0e8sfi,fnicg0i .e0n1tth0sr.,e Fe0o .u0dr1 ic2fof,enrrseeensctpu eticnvtoeinv c‐eydlcyilm,esei nnarseioo snrudaflef ircitetimonte it nov sotebestptaisig n a te thea t(pinmeorneio‐sddtieimcp essonelsuniotsiniotainlvi,z iateynddb b aiyns e ctd/hVeo∞ )np drteth s=ee n0a.te0 rs0ot8ud, d0yy.n0 1ap0mlo, it0ct.e0cd1o2 ce, ufrfirevcsipeesen cattsrive. eFoloybu,t airninc ooerdnd sfeerroc utmot iitvnhevee cfsyotciuglreatsthea ctryhecesl euti.mf fiTehc iee nt tocoobsmtteappin asreainsospintei rvoiioft ydn biucamsseoedrlu ioctnail ot hnaee, raaoendrdoydniynanmtahimce icpco rceeofsefeifcfniicetinestntsut sdw. yFitohpu lreo cxtotpenedsreimccuuetrnivvteeas lc yamcrleeeasos aubrrteae sminueeffndictsife rnaortm eto g tohivbeteanfion iu nr th cycFliaeg .upTreehr ieo6d,c ioschm soopwlauirtniiogsno a,n aronefdan sionun mtahbeelr ypic rageloseaonedtr osatdgurydenyea mpmleonitctte.c doH ecyfusfirtvceiereesn saitsrse wi so biptthareiensxeedpn tef rriionmm te htneht eaa lfeormuordetayhsn cuayrmcelmiec. eTfnohtresc ea re givceocneofmifnicpiFaeirngitsu ocrnue ro6vf,e nss huaomsw ewriienclgal la aas erterhoaeds oymnnoaammbleiycn tgc ooceoofedfficfaiiceginertenset mwcuietrhnv tee..x HpItey irssitm earelsenost iasslh imoswepanrse utshreeanmtt seimnntasth llaeerrea tegirmiovede nys tnienap ms ic haFvigeu lirtet le6 ,e sffheocwtsi onng tah er eaacscounraabcyly o gf othoed reasgureltesm, aenndt. hHenysctee trhesei sm iisd dplree stiemnte isnte tph oe fa detr =o d0.y0n1a0m isi cs efloercctee d forcecoefficientcurvesaswellasthemomentcoefficientcurve. Itisalsoshownthatsmallertimesteps toc coaerffriyc ioeuntt acullr tvhees sausb wseeqllu aesn tt hpei tmcho omsecniltl actoioenff iccaiesnest fcourr vbeo.t hIt tihs ea jlesto‐ osfhfo awnnd tjehta‐to nsm coalnlefirg tuimraeti ostnesp. s havelittleeffectsontheaccuracyoftheresults,andhencethemiddletimestepofdt=0.010isselected have little effects on the accuracy of the results, and hence the middle time step of dt = 0.010 is selected tocarryoutallthesubsequentpitchoscillationcasesforboththejet-offandjet-onconfigurations. to carry out all the subsequent pitch oscillation cases for both the jet‐off and jet‐on configurations. (a) (b) (a) Figure 6. Cont. (b) Figure 6. Cont. Figure6.Cont. Energies 2016, 9, 429 9 of 25 Energies2016,9,429 9of25 Energies 2016, 9, 429 9 of 25 (c) (c) FiguFrieg ur6e. 6C. oCmopmapriasroisno no fo f aeareoroddyynnaammiicc ccooeeffffiicciieenntt lolooopps s fofro rr erdeudcuedce dfr efqrueeqnuceyn cκy =κ 0.=0 770:. 0 77: Figure 6. Comparison of aerodynamic coefficient loops for reduced frequency κ = 0.077: (a) Lift (a) L(aif)t L ciofte cffoiecfifeicnite;n (tb; )( bD) rDarga gc oceofeffifciiceiennt;t ;( (cc)) MMoommeenntt ccooeefffifcicieiennt.t . coefficient;(b)Dragcoefficient;(c)Momentcoefficient. In FInig Fuirgeu r7e, 7t,h eth ec aclcaulclualtaetded reressuultltss ooff bbootthh ssttaattiicc aanndd o socsicllialltaintign gm omtiootniso nast tahtr eteh rreeed urceeddu ced freqfurIneeqnFucieigenuscr i0ee.s70 ,02t.60h,2 e06c.,0 a05l.c02u5, 2l0a,. t00e7.d077r 7ae rsaeur elpt pslolootftttebedod t thtoogsgteeattthhiceerra,, n iindn ooorsrdcdeilerl rat ottio nc lgcelameraloyrtl iyeox nehxsibhaiittb ttihhtr ete heefefr eeecdftfu eoccfe to doscff irolelsaqctuiinlelgna tciinesg 0m.0o2t6mio,on0t. i0oa5nn2 d,a 0nr.de0 d7ru7edcaeurdcee pdfrl eofrqtetueqedunetcnoycg yeo tonhn et rht,heie n aaoiirrrffdooeiillr aateoerrocolddeyaynrnalaymmeicxi chp ipebreiftroftrohmremaenafcfnee.c ceItt. ocIfta oncs abcneil lbfaoetui nfnogdu mtnhdoa tti tohthnaet a tnhde redumceodtiofrne oqfu aeinrfcoyil oanndt htheea pirafroaimlaeeterro dofy rneadmuciecdp ferrefqouremncayn chea.vIet ac asunbbsetafnotuianl dimtphaacttt ohne tmheo ftlioown foiefladi.r foil motion of airfoil and the parameter of reduced frequency have a substantial impact on the flow field. andTthhee posacriallmatientger mooftrieodn ulecaedds ftroe qthuee napcypehaaravnecae souf bhsytsatenrteiasilsi mlooppasc tfoorn atllh aeeflroodwynfiaemldic. Tcoheeffoicsiecniltlsa,t ing The oscillating motion leads to the appearance of hysteresis loops for all aerodynamic coefficients, motiaonnd lae aladrsgetro rtehdeucaepdp feraerqaunecnecyo lfehadyss tteor eas liasrlgoeor pospefonirnagl lina ethroe dhyynstaemreiscisc looeofpfisc. iTenhets ,hiagnhdesta llifatr ger and a larger reduced frequency leads to a larger opening in the hysteresis loops. The highest lift coefficient obtained during oscillation is correspondingly much higher than its static counterpart. The reducedfrequencyleadstoalargeropeninginthehysteresisloops. Thehighestliftcoefficientobtained coefficient obtained during oscillation is correspondingly much higher than its static counterpart. The higher the reduced frequency, the higher the highest lift coefficient. It is also shown that a higher duringoscillationiscorrespondinglymuchhigherthanitsstaticcounterpart. Thehigherthereduced higher the reduced frequency, the higher the highest lift coefficient. It is also shown that a higher reduced frequency can generate even larger drag and moment peaks at high angles of attack, causing frequency, the higher the highest lift coefficient. It is also shown that a higher reduced frequency reduced frequency can generate even larger drag and moment peaks at high angles of attack, causing a greater extreme aerodynamic load which could lead to structural fatigue or even worse the total cangenerateevenlargerdragandmomentpeaksathighanglesofattack,causingagreaterextreme a grdeaamtear geex otrfe tmhee satreuroctduyren.a Omniec plouardpo wseh oicf hth ceo purleds elenat dre tsoe asrtcrhu cist utora rle fdauticgeu teh ios rk ienvde no fw flourcstue atthineg t otal aerodynamicloadwhichcouldleadtostructuralfatigueorevenworsethetotaldamageofthestructure. dameaxgtree mofe taheer osdtyruncatmuirce .l oOadn eb yp uimrppolesme eonft itnhge ap croe‐sfelonwt rjeets eoanr cthhe i sa irtofo irle sduucctieo nth siusr kfaicned a nodf fwluilclt ubea ting Onepurposeofthepresentresearchistoreducethiskindoffluctuatingextremeaerodynamicloadby extrpemresee naeterdo dlaytenra. mic load by implementing a co‐flow jet on the airfoil suction surface and will be implementingaco-flowjetontheairfoilsuctionsurfaceandwillbepresentedlater. presented later. (a) (b) Figure 7. Cont. (a) (b) Figure 7. Cont. Figure7.Cont. Energies2016,9,429 10of25 Energies 2016, 9, 429 10 of 25 (c) Figure 7. Comparison of aerodynamic coefficient loops for the static and oscillating motions under Figure7. Comparisonofaerodynamiccoefficientloopsforthestaticandoscillatingmotionsunder three reduced frequencies: (a) Lift coefficient; (b) Drag coefficient; (c) Moment coefficient. threereducedfrequencies:(a)Liftcoefficient;(b)Dragcoefficient;(c)Momentcoefficient. 4.2. CFJ Simulation and Validation 4.2. CFJSimulationandValidation A CFJ airfoil based on the NACA 6415 airfoil was tested by Dano et al. [17] in the University of A CFJ airfoil based on the NACA 6415 airfoil was tested by Dano et al. [17] in the University Miami 24″×24″ wind tunnel facilities. The CFJ airfoil was a NACA 6415 with the injection and suction ofMiami24”ˆ24”windtunnelfacilities. TheCFJairfoilwasaNACA6415withtheinjectionand located at 7.5% and 88.5% of the chord, respectively. The injection and suction slot heights were 0.65% suctionlocatedat7.5%and88.5%ofthechord,respectively. Theinjectionandsuctionslotheightswere and 1.42% of the chord. In the experiment, the CFJ is provided by a separated high pressure source 0.65%and1.42%ofthechord. Intheexperiment,theCFJisprovidedbyaseparatedhighpressure for the injection and a low pressure vacuum sink for the suction. The injection and suction flow sourcefortheinjectionandalowpressurevacuumsinkforthesuction. Theinjectionandsuctionflow conditions were independently controlled. A compressor supplied the injection flow and a vacuum conditionswereindependentlycontrolled. Acompressorsuppliedtheinjectionflowandavacuum pump generates the necessary low pressure for suction. Both mass flow rates in the injection and pump generates the necessary low pressure for suction. Both mass flow rates in the injection and suction slots were measured using orifice mass flow meters. More experiment details can be found suctionslotsweremeasuredusingorificemassflowmeters. Moreexperimentdetailscanbefound in [17]. The free stream Mach number was 0.03, and the chord‐based Reynolds number was 195,000. in[17]. ThefreestreamMachnumberwas0.03,andthechord-basedReynoldsnumberwas195,000. The leading edge trip was used to achieve full turbulent boundary layer to be consistent with the The leading edge trip was used to achieve full turbulent boundary layer to be consistent with the CCFFDD aannaallyyssiiss.. TThhee ooppeenn sslloott ccaassee iinn tthhee eexxppeerriimmeenntt wwiitthh mmoommeennttuummc cooeefffifcicieiennttC Cμ == 00..0088 iiss cchhoosseenn ttoo µ validate the present solver for CFJ simulation. validatethepresentsolverforCFJsimulation. Based on the grid‐resolution study in Section 4.1.1, the computational mesh for the present Basedonthegrid-resolutionstudyinSection4.1.1,thecomputationalmeshforthepresentNACA NACA 6415 CFJ airfoil is generated in a similar way according to the medium mesh for the NREL 6415 CFJ airfoil is generated in a similar way according to the medium mesh for the NREL S809 S809 CFJ airfoil. The computed lift, drag and power coefficients are presented in Figures 8 and 9, and CFJairfoil. Thecomputedlift,dragandpowercoefficientsarepresentedinFigure8andFigure9, athned ftlhoewfl foiewldfi aetl dAaotAA =o 1A5°= i1s 5s˝hioswsnh oinw FniginurFeig 1u0r. eT1h0e. pTrheesepnrte nseunmtenruicmale rriecsaullrtse saurlet scoamrepcaormedp awreitdh experimental as well as CFD results by Lefebvre et al. [18], showing fairly good agreements, especially with experimental as well as CFD results by Lefebvre et al. [18], showing fairly good agreements, for the power coefficient. For the lift coefficient, good agreement is achieved up to the highest AoA especially for the power coefficient. For the lift coefficient, good agreement is achieved up to the hoifg 3h0e°s,t eAxcoeApto Af3o0A˝, oefx 2ce5p° twAhoeAreo tfh2e5 l˝iftw ihs eurnedthereplrifetdiiscutendd beryp trheed ipcrteedsebnyt sthoelvperre asse nwteslol lavse rLaesfewbverllea est al. [18]. The computed drag coefficient is underpredicted when the AoA is greater than 15°. Among Lefebvreetal.[18]. ThecomputeddragcoefficientisunderpredictedwhentheAoAisgreaterthan 1th5˝e. cAommponargistohnesc, othmep caormisopnust,etdh epocwomerp cuoteedffipcioewnte ragcroeeefsfi cthieen tbeasgtr eweisthth tehbe eesxtpweritihmtehnet.e Txhpee rriemaesonnt. may be that the total pressure and total temperature are integrated parameters using mass average, Thereasonmaybethatthetotalpressureandtotaltemperatureareintegratedparametersusingmass which is easier to predict accurately than the drag that is determined by skin friction and pressure average,whichiseasiertopredictaccuratelythanthedragthatisdeterminedbyskinfrictionand distribution. Overall, it is demonstrated that the present solver can predict the CFJ flow with a fairly pressuredistribution. Overall,itisdemonstratedthatthepresentsolvercanpredicttheCFJflowwith good precision, and it is reliable to be used for the present numerical study of CFJ. afairlygoodprecision,anditisreliabletobeusedforthepresentnumericalstudyofCFJ.
Description: