Dynamic resource allocation and management in virtual networks and Clouds Houda Jmila To cite this version: Houda Jmila. Dynamic resource allocation and management in virtual networks and Clouds. Net- working and Internet Architecture [cs.NI]. Institut National des Télécommunications, 2015. English. NNT: 2015TELE0023. tel-01316894 HAL Id: tel-01316894 https://theses.hal.science/tel-01316894 Submitted on 17 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT CONJOINT TELECOM SUDPARIS et L’UNIVERSITE PIERRE ET MARIE CURIE Ecole doctorale : Informatique, Télécommunications et Electronique de Paris Présentée par Houda JMILA Pour obtenir le grade de DOCTEUR DE TELECOM SUDPARIS Dynamic resource allocation and management in virtual networks and Clouds Soutenue le 21 décembre 2015 devant le jury composé de : Rapporteurs : Pascal Lorenz Professeur Université de Haute Alsace, France. Luis Muñoz Professeur Université de Cantabrie, Santander. Examinateurs : Steven Martin Professeur Université Paris 11, France. Lila Boukhatem Mdc. HDR Université Paris 11, France. Mourad Gueroui Mdc. HDR Université de Versailles, France. Nadjib Ait Saadi Mdc. Dr Université Paris 12, France. Directeur de thèse : Djamal Zeghlache Professeur Télécom SudParis. France. Thèse N° 2015TELE0023 JOINT THESIS BETWEEN TELECOM SUDPARIS AND UNIVERSITY OF PARIS 6 (UPMC) Doctoral School : Informatique, Télécommunications et Electronique de Paris Presented by Houda JMILA For the degree of DOCTEUR DE TELECOM SUDPARIS Dynamic resource allocation and management in virtual networks and Clouds Defence date : 21 December 2015 Jury Members : Reviewers : Pascal Lorenz Professor University of Haute Alsace, France. Luis Muñoz Professor University of Cantabria, Santander. Examiner : Steven Martin Professor Paris 11 University, France. Lila Boukhatem Mdc. HDR Paris 11 University, France. Mourad Gueroui Mdc. HDR University of Versailles, France. Nadjib Ait Saadi Mdc. Dr Paris 12 University, France. Thesis Supervidor : Djamal Zeghlache Professor Télécom SudParis. France. Thèse N° 2015TELE0023 In Honor of my grandfathers and grandmothers, I dedicate this work as a token of my deep love. To my parents Khemais and Zahida, I am particularly indebted for your sincere love, your unconditional trust and continuous support during my PhD study years. Thank you for everything! To my dear husband Mohamed, I am especially thankful for your love, your understanding and your continuous support. You gave me strengths on weak days and showed me the sun on rainy days. Thanks for always believing in me. To my son Mouadh, You are my sunshine, I hope you will be proud of your mom! To my brothers Aladain and Daly, Thanks for always standing by my side during difficult times and for the fun moments I have shared with you! To all JMILA, FEHRI and IBN KHEDHER family members, Thanks for your love, kind support and continuous encouragement! Acknowledgement I would like to express my deep and sincere gratitude to my supervisor, Prof. Djamal Zeghlache for his continuous support and constant guidance during my PhD study years in the SAMOVAR laboratory. Thank you for everything; it was a truly great experience working with you! My special appreciation goes to professors Pascal Lorenz, Luis Muñoz and Steven Martin, and to Dr. Lila Boukhatem, Dr. Mourad Gueroui and Dr. Nadjib Ait Saadi. I would like also to thank the staff of Telecom SudParis. Many thanks go to all my colleagues and friends inside and outside Telecom SudParis for the excellent and truly enjoyable ambiance. Abstract Cloud computing is a promising technology enabling IT resources reservation and utiliza- tion on a pay-as-you-go manner. In addition to the traditional computing resources, cloud tenants expect compete networking of their dedicated resources to easily deploy network functionsandservices. TheyneedtomanageanentireVirtualNetwork (VN)orinfrastruc- ture. Thus, Cloud providers should deploy dynamic and adaptive resource provisioning solutions to allocate virtual networks that reflect the time-varying needs of Cloud-hosted applications. Prior work on virtual network resource provisioning only focused on the problem of mapping the virtual nodes and links composing a virtual network request to the substrate network nodes and paths, known as the Virtual network embedding (VNE) problem. Little attention was paid to the resource management of the allocated resources to continuously meet the varying demands of embedded virtual networks and to ensure efficient substrate resource utilization. The aim of this thesis is to enable dynamic and preventive virtual network resources provisioning to deal with demand fluctuation during the virtual network lifetime, and to enhance the substrate resources usage. To reach these goals, the thesis proposes adaptive resource allocation algorithms for evolving virtual network requests. First, we will study in depth the extension of a virtual node, i.e. an embedded virtual node requiring more resources, when the hosting substrate node does not have enough available resources. Sec- ond, we will improve the previous proposal to consider the substrate network profitability. And finally we will deal with the bandwidth demand variation in embedded virtual links. Consequently, thefirstpartofthisthesisprovidesaheuristicalgorithmthatdealswith virtual nodes demand fluctuations. The main idea of the algorithm is to re-allocate one or more co-located virtual nodes from the substrate node, hosting the evolving node, to free resources(ormakeroom)fortheevolvingnode. Inadditiontominimizingthere-allocation cost, our proposal proposal takes into account an reduces the service interruption during migration. The previous algorithm was extended to design a preventive re-configuration scheme to enhance substrate network profitability. In fact, our proposal takes advantage of the resource demand perturbation to tidy up the SN at minimum cost and disruptions. When re-allocating virtual nodes to make room for the extending node, we shift the 1 2 most congested virtual links to less saturated substrate resources to balance the load among the SN. Our proposal offers the best trade off between re-allocation cost and load balancing performance. Finally, a distributed, local-view and parallel framework was devised to handle all forms of bandwidth demand fluctuations of the embedded virtual links. It is composed of a Controller and three algorithms running in each substrate node in a distributed and parallel manner. The framework is based on the self-stabilization approach, and can manage many and different forms of bandwidth demand variations simultaneously. Contents List of Figures v List of Tables vii Acronyms viii 1 Introduction 1 1.1 The Cloud Computing paradigm . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 The Cloud service models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The Cloud environment actors . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Resource provisioning in the NaaS model . . . . . . . . . . . . . . . . . . . 5 1.5 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 State of the art: Virtual Network resource provisioning 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Network Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Substrate Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Virtual Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 Virtual Network Resource Provisioning . . . . . . . . . . . . . . . . 13 2.3 Virtual Network Embedding strategies . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Initial VNE strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1.2 Overview of existing approaches . . . . . . . . . . . . . . . 17 2.3.2 Dynamic Resource Management strategies . . . . . . . . . . . . . . . 19 2.3.2.1 Management of Virtual Networks resource demand fluctu- ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2.2 Management of the Substrate Network usage . . . . . . . . 26 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Virtual Networks Adaptation: Node Reallocation 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 i
Description: