ebook img

Dynamic Modeling and Boundary Control of Flexible Axially Moving System PDF

249 Pages·2023·4.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Modeling and Boundary Control of Flexible Axially Moving System

Yu Liu · Fengjiao Liu · Yanfang Mei · Xiangqian Yao · Wei Zhao Dynamic Modeling and Boundary Control of Flexible Axially Moving System Dynamic Modeling and Boundary Control of Flexible Axially Moving System · · · Yu Liu Fengjiao Liu Yanfang Mei · Xiangqian Yao Wei Zhao Dynamic Modeling and Boundary Control of Flexible Axially Moving System YuLiu FengjiaoLiu SchoolofAutomationScience SchoolofAutomationScience andEngineering andEngineering SouthChinaUniversityofTechnology SouthChinaUniversityofTechnology Guangzhou,Guangdong,China Guangzhou,Guangdong,China YanfangMei XiangqianYao SchoolofElectronicsandInformation SchoolofAutomationScience GuangdongPolytechnicNormalUniversity andEngineering Guangzhou,Guangdong,China SouthChinaUniversityofTechnology Guangzhou,Guangdong,China WeiZhao SchoolofAutomationScience andEngineering SouthChinaUniversityofTechnology Guangzhou,Guangdong,China ISBN 978-981-19-6940-9 ISBN 978-981-19-6941-6 (eBook) https://doi.org/10.1007/978-981-19-6941-6 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Contents 1 Introduction .................................................. 1 1.1 ControloftheAxiallyMovingStructures .................... 1 1.2 OutlineoftheBook ....................................... 5 References .................................................... 6 2 MathematicalPreliminaries .................................... 7 2.1 TheHamiltonPrinciple ................................... 7 2.2 FunctionalandVariation .................................. 8 2.2.1 FunctionalVariatio(cid:2)nRu(cid:3)les .(cid:4)........................ 8 2.2.2 TheExpansionof t2δ 1w2 dt .................... 8 t1 2 t 2.2.3 DefinitionofVariation ............................. 9 2.3 DiscreteSimulationMethod ............................... 9 2.3.1 Discretization of the Vibration Displacement w(x,t) .......................................... 10 2.3.2 SeveralDiscretizationMethods ..................... 10 2.3.3 DiscretizationofBoundaryConditions ............... 11 2.4 S-CurveAcceleration/Deceleration(Sc-A/D)Method .......... 11 2.5 Preliminaries ............................................ 12 References .................................................... 13 3 PDEModelingfortheAxiallyMovingStructures ................ 15 3.1 PDEModeling ........................................... 15 3.2 SimulationExample ...................................... 21 Appendix1: SimulationProgram ............................... 23 References .................................................... 25 4 BoundaryControlofanAxiallyMovingSystemwithHigh Acceleration/Deceleration ...................................... 27 4.1 Introduction ............................................. 27 4.2 PDEDynamicModel ..................................... 28 4.3 BoundaryControllerDesign ............................... 28 4.3.1 BoundaryControl ................................. 28 v vi Contents 4.3.2 StabilityAnalysis ................................. 35 4.4 SimulationExample ...................................... 36 Appendix1: SimulationProgram ............................... 39 References .................................................... 43 5 Robust Boundary Control of an Axially Moving System with High Acceleration/deceleration and Disturbance Observer ..................................................... 45 5.1 Introduction ............................................. 45 5.2 PDEDynamicModel ..................................... 45 5.3 BoundaryControllerDesign ............................... 47 5.4 StabilityAnalysis ........................................ 48 5.5 SimulationExample ...................................... 55 Appendix1: SimulationProgram ............................... 60 References .................................................... 65 6 AdaptiveBoundaryControlofanAxiallyMovingSystem withHighAcceleration/Deceleration ............................ 67 6.1 Introduction ............................................. 67 6.2 PDEDynamicModel ..................................... 67 6.3 BoundaryControllerDesign ............................... 69 6.4 StabilityAnalysis ........................................ 69 6.5 SimulationExample ...................................... 75 Appendix1: SimulationProgram ............................... 79 References .................................................... 84 7 AdaptiveBoundaryControlofanAxiallyMovingSystem with High Acceleration/Deceleration and Disturbance Observer ..................................................... 85 7.1 Introduction ............................................. 85 7.2 PDEDynamicModel ..................................... 85 7.3 BoundaryControllerDesign ............................... 87 7.4 StabilityAnalysis ........................................ 88 7.5 SimulationExample ...................................... 95 Appendix1: SimulationProgram ............................... 99 References .................................................... 104 8 Boundary Control of an Axially Moving Accelerated/DeceleratedBeltSystem ............................ 105 8.1 Introduction ............................................. 105 8.2 PDEDynamicModel ..................................... 106 8.3 BoundaryControllerDesign ............................... 108 8.3.1 StepOne ........................................ 108 8.3.2 StepTwo ........................................ 113 8.4 StabilityAnalysis ........................................ 116 8.5 SimulationExample ...................................... 119 Appendix1: SimulationProgram ............................... 123 References .................................................... 127 Contents vii 9 StabilizationofanAxiallyMovingAccelerated/Decelerated SystemviaanAdaptiveBoundaryControl ....................... 129 9.1 Introduction ............................................. 129 9.2 PDEDynamicModel ..................................... 130 9.3 BoundaryControllerDesign ............................... 131 9.3.1 StepOne ........................................ 132 9.3.2 StepTwo ........................................ 136 9.4 StabilityAnalysis ........................................ 139 9.5 SimulationExample ...................................... 142 Appendix1: SimulationProgram ............................... 146 References .................................................... 150 10 AdaptiveOutputFeedbackBoundaryControlforaClass ofAxiallyMovingSystem ...................................... 151 10.1 Introduction ............................................. 151 10.2 PDEDynamicModel ..................................... 152 10.3 BoundaryControllerDesign ............................... 152 10.3.1 StepOne ........................................ 153 10.3.2 StepTwo ........................................ 156 10.4 StabilityAnalysis ........................................ 159 10.5 SimulationExample ...................................... 163 Appendix1: SimulationProgram ............................... 167 References .................................................... 171 11 Vibration Control and Boundary Tension Constraint ofanAxiallyMovingStringSystem ............................. 173 11.1 Introduction ............................................. 173 11.2 PDEDynamicModel ..................................... 174 11.3 BoundaryControllerDesign ............................... 176 11.4 StabilityAnalysis ........................................ 177 11.5 SimulationExample ...................................... 183 Appendix1: SimulationProgram ............................... 188 References .................................................... 193 12 BoundaryControlforanAxiallyMovingSystemwithInput RestrictionBasedonDisturbanceObservers ..................... 195 12.1 Introduction ............................................. 195 12.2 PDEDynamicModel ..................................... 196 12.3 BoundaryControllerDesign ............................... 196 12.3.1 DisturbanceObserverDesign ....................... 196 12.3.2 BacksteppingDesign .............................. 198 12.4 StabilityAnalysis ........................................ 202 12.5 SimulationExample ...................................... 205 Appendix1: SimulationProgram ............................... 210 References .................................................... 215 viii Contents 13 Adaptive Neural Network Vibration Control for an Output-Tension-Constrained Axially Moving BeltSystemwithInputNonlinearity ............................ 217 13.1 Introduction ............................................. 217 13.2 PDEDynamicModel ..................................... 218 13.3 BoundaryControllerDesign ............................... 218 13.3.1 StepOne ........................................ 219 13.3.2 StepTwo ........................................ 222 13.4 StabilityAnalysis ........................................ 225 13.5 SimulationExample ...................................... 228 Appendix1: SimulationProgram ............................... 234 References .................................................... 243 14 Conclusions ................................................... 245 Chapter 1 Introduction 1.1 ControloftheAxiallyMovingStructures Precisionelectronicmanufacturingequipmentspansmanydisciplinessuchaselec- tronics,machinery,automation,optics,computers,andinvolvescoretechnologies, such as precision visual inspection, precision machining, high-speed and high- precision control, and computer integrated manufacturing. It plays a vital role in thesecurityofnationaleconomy,finance,andnationaldefenseinformationsystems, and is also the core support of mainstream high-tech industries such as solar cells andoptoelectronicdevices.Asanimportantpartofhigh-speedandhigh-precision electronicmanufacturingequipment,thevibrationphenomenoncausedbyitselastic deformation will directly affect the production performance of the equipment and theproductionqualityofproductsintermsoftimeandspacescale[1,2].Therefore, howtoquicklyeliminatethevibrationphenomenonoftheaxiallymovingstructure inprecisionelectronicmanufacturingequipmenthasbecomeabottleneckproblem thatrestrictsprecisionelectronicmanufacturing,especiallythepackagingprocessof integratedcircuits(IC). The axially moving structure, as an essentially typical distributed parameter system (DPS) with strong coupling, nonlinearity, and infinite dimensions, can be modeled by a nonlinear partial differential equation (PDE) and a set of ordinary differential equations (ODEs). This hybrid dynamic model makes it difficult to developaneffectivecontrolstrategyduetoitsinfinite-dimensionality.Theconven- tional control methods for PDE system are based on truncated finite-dimensional modes by using the finite-element method, Galerkin’s method, or assumed modes method[3–5].However,threemainshortcomingsexistinthecontroldesignofthis truncatedsystem[6–8].Oneisthatthecontrolorderneedstobeincreasedandthe numberofflexiblemodesneedstobeconsideredtoachievehigh-precisioncontrol performance.Theotheristhatthedistributedcontrolforceisrequiredtoovercome the difficulty of calculating the infinite-dimensional gain matrix. These two draw- backs make the control difficult to achieve from an engineering perspective. The third disadvantage is that the control design is restricted to a few key modes and ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2023 1 Y.Liuetal.,DynamicModelingandBoundaryControlofFlexibleAxiallyMovingSystem, https://doi.org/10.1007/978-981-19-6941-6_1 2 1 Introduction ignoresthehighfrequencymodes,whichleadstothecontrolspilloverinstabilityof thesystem. To overcome the aforementioned disadvantages, the boundary control design, which is to be implemented based on original infinite-dimensional model of the systems, has been developed for vibration suppression of flexible systems. Comparing with distributed control, boundary control is considered to be more economicalandpracticalinvibrationcontrolofflexiblestructuresbecauseitneeds fewer sensors and actuators. And the kinetic energy, the potential energy, and the work done by the nonconservative forces used for modeling can be directly used to construct a Lyapunov function for system stability analysis. In recent years, the boundary control integrated with other intelligent control methodologies, such as sliding-mode control, neural network control, robust adaptive control, iterative learning control, and fuzzy control, has obtained many achievements. But among theseresults,mostoftheresearchobjectsareaboutflexiblemanipulators. For axially moving systems, scholars have also made many attempts. In [9], a robust adaptive boundary control for a class of flexible axially moving string-type systemsunderunknowntime-varyingdisturbanceisdevelopedtoguaranteeallthe signals in the closed-loop system are uniformly ultimately bounded. In [10], an adaptiveisolationschemeforanaxiallymovingsystemisintroducedtocontrolthe transversevibrationofthecontrolledspantozeroasymptotically.In[11],byusing Lyapunov’smethodandenergyapproach,anenergy-basedrobustadaptiveboundary controlisdevelopedforanaxiallymovingbeamtosuppressthevibration.In[12], robust and adaptive boundary control is developed to stabilize the vibration of a stretchedstringonamovingtransporter.Simultaneouscontroloftwo-dimensional vibration, namely longitudinal and transverse, for vibration suppression of axially movingstringisstudiedin[1].In[13],aniterativelearningboundarycontroltech- niqueisappliedtoanaxiallymovingsystemtodampoutanystringoscillationduring transportation. However, most of the research results above assume that the motion of the axially moving structure is a uniform motion, which obviously means only the simplest motion mode is considered. In practice, for high-precision electronics manufacturing equipments, the axially moving structures work with not only a variable speed motion, but usually also a high-acceleration/deceleration and high- speedmovementforimprovingtheefficiencyunderboththedistributeddisturbance and boundary disturbance in almost all cases. Therefore, the structure has strong geometricnonlinearcharacteristics,andthecurrentdynamicmodelsandactivevibra- tioncontrolmethodsforaxiallymovingstructuresathomeandabroadaredifficultto applytothevibrationcontroloflargeaccelerationanddecelerationaxiallymoving structures[14]. ThebacksteppingmethodisarecursivealgorithmbasedonLyapunovstability. ThefeedbackcontrollerisobtainedbyrecursivelyconstructingtheLyapunovfunc- tion of the closed-loop system, which makes the derivative of the Lyapunov func- tion along the trajectory of the closed-loop system have some performance, and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.