ebook img

Dynamic Fracture Toughness of a Unidirectional Graphite/Epoxy Composite C. LIU, AJ ROSAKIS ... PDF

13 Pages·2001·1.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Fracture Toughness of a Unidirectional Graphite/Epoxy Composite C. LIU, AJ ROSAKIS ...

LA-UR-01-3442 Approved for public release; distribution is unlimited. Dynamic Fracture Toughness of a Unidirectional Title: Graphite/Epoxy Composite Author(s): C. LIU, A.J. ROSAKIS & M.G. STOUT Submitted to: http://lib-www.lanl.gov/la-pubs/00818425.pdf Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty- free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. FORM 836 (10/96) ProceedingsoftheSymposiumon“DynamicEffectsinCompositeStructures” IMECE2001,ASME2001InternationalMechanicalEngineeringCongress&Exposition NewYork,NY,November11-16,2001 Dynamic Fracture Toughness of a Unidirectional Graphite/Epoxy Composite C.LIU(cid:214),A.J.ROSAKIS(cid:215)&M.G.STOUT(cid:214) (cid:214)MST-8,MaterialsScienceandTechnologyDivision,LosAlamosNationalLaboratory LosAlamos,NewMexico87545,USA (cid:215)GraduateAeronauticalLaboratories,CaliforniaInstituteofTechnology Pasadena,California91125,USA ABSTRACT In this investigation, we studied the process of dynamic crack propagation in a fiber-reinforced composite material using the optical Coherent Gradient Sensing (CGS) technique combined with high-speed photog- raphy. The mode-I fracture toughness of the unidirectional graphite/epoxy composite, IM7/8551-7, as a functionofthecrack-tipspeed,wasmeasuredquantitatively. ItwasfoundthatuptotheRayleighwavespeed of the composite material, the mode-I fracture toughness is a decreasing function of the crack-tip velocity. This behavior is similar to that observed in the dynamic crack propagation along interfaces between two homogeneoussolids. INTRODUCTION In recent years, we have seen the increasing use of fiber-reinforced composite materials in aeronautical, automotive,defenseandotherindustries. Theeverwidenappreciationoffiber-reinforcedcompositesisdue tothefactthatthesematerialshaveaveryhighstiffnesstoweightratio. Ontheotherhand,ithasalsobeen observedthatcrack-likedefectsdevelopeasilyinthesesolidsevenundernormalserviceloadingconditions anddefinitelyduringlow-velocityimpactevents. Failureprocessesinthesematerialsofteninitiatefromsuch damage. Toconclusivelyunderstandthemechanismsthatcontrolthefractureprocessinthesematerials,one must be able to experimentally measure the fracture toughness of fiber-reinforced composites subjected to differenttransientloadingconditions,andtodosoforbothstationaryandpropagatingcracks. Todate,mostoftheexperimentalmeasurementsofcompositefracturetoughnessarebasedonmechan- ical techniques, where far field loads and overall deformations are measured. The near-tip parameters that reallycontrolthefractureeventareinferredthroughnumericalcalibrationorotherindirectanalyticalmodels and methods [1, 2, 3, 4]. For quasi-static loading and for stationary cracks, such techniques can provide usefulinformationregardingthefractureresistanceofthematerial. However, whentheloadingandsubse- quentcrackgrowthtakeplaceinveryshorttimes,boundaryvaluemeasurementsareincapableofproviding meaningful information regarding material’s dynamic fracture behavior. The only alternative in such cases are optical methods that directly measure near-tip quantities when combined with appropriate high-speed photographymethods. Usingaprocedureforpreparingopticallyflatandspecularlyreflectivesurfacesoncomposites,developed attheCaliforniaInstituteofTechnologyandattheLosAlamosNationalLaboratory,Liuetal.[5]studiedthe quasi-staticfracturephenomenonincompositematerials. Inthisinvestigation,wewillexperimentallystudy thedynamicfractureprocessesinafiber-reinforcedcompositematerialusingtheopticalmethodofCoherent GradientSensing(CGS).Thedeformationfieldsurroundingthedynamicallygrowingcrackintheunidirec- tional fiber-reinforced composite is measured using high-speed photography. Based on an elastodynamic analysisofthedeformationfieldnearasteady-statepropagatingcracktip,inanorthotropicsolid,thevalue ofthedynamicstress-intensityfactorcanbeextractedfromtheCGSfringepatternateachmoment. Finally, therelationshipbetweenthemode-Idynamicfracturetoughnessandthecrack-tipvelocityisestablishedfor thegraphite/epoxyunidirectionalfiber-reinforcedcomposite,IM7/8551-7. 1 DEFORMATIONFIELDSURROUNDINGTHETIPOFAGROWINGCRACKINORTHOTROPICSOLID In order to interpret the CGS fringe patterns obtained from the experiment on the unidirectional fiber- reinforced composite, an analytic expression of the deformation field surrounding the tip of a dynamically propagatingcrackinanorthotropicmaterialisrequired. Generalresultsregardingdynamiccrackgrowthin anisotropicmaterialshavebeendiscussedbyWu[6]andbyYangetal.[7]. Inthissection, wesummarize the analytic results about the deformation field surrounding the tip of a dynamically propagating crack in anorthotropicmaterial. Specifically, theleadingtermsthatdominatethedeformationfieldsurroundingthe cracktiparepresentedexplicitly. ProblemDescription Consider the problem depicted in Figure 1, where a semi-infinite straight crack propagates dynamically in anorthotropicmaterial. Hereweonlyconsiderthatthecrackfront,oredge,isastraightlineparalleltothe x2 (cid:141)2 l(t) v x3 x1 (cid:141)2 (cid:141)1 Figure1: Asemi-infinitecrackpropagatesinanorthotropicsolid. x -axis. Thecoordinate(x , x , x )isafixedCartesiansystemandthex -axisispointinginthecrackgrowth 3 1 2 3 1 direction. Supposethatthedeformationiseitherplanestrainorplanestress.Thedeformationfieldcanbedescribed bythetwoin-planedisplacementcomponents,u (x , x , t)andu (x , x , t),thatarefunctionsofthetwoin- 1 1 2 2 1 2 plane coordinates x and x , and time t. Associated with this displacement field, we also have the stress 1 2 and strain fields, s and e (a, b = 1, 2). For infinitesimal deformation, the relationship between the ab ab displacementandstraincomponentsisgivenby 1 e (x , x , t)= u , (x , x , t)+u , (x , x , t) , (1) ab 1 2 29 ab 1 2 ba 1 2 = andintheabsenceofbodyforcedensity,theequationofmotionforplanardeformationcanbewrittenas s , (x , x , t)=•u¨ (x , x , t), (2) abb 1 2 a 1 2 where•isthemassdensityofthematerial. In this study, we only consider a homogeneous, linearly elastic, and orthotropic material. Meanwhile, (x , x , x )isalsotheprincipalaxesofthematerial. Forsuchamaterialundergoingplanardeformation,the 1 2 3 generalizedHooke’slawtakestheform b e =b s +b s , e =b s +b s , e = 66s , (3) 11 11 11 12 22 22 12 11 22 22 12 2 12 where b are the elastic compliances of the material. In terms of the elastic moduli, c , the generalized ij ij Hooke’slawcanberewrittenas s =c e +c e , s =c e +c e , s =2c e . (4) 11 11 11 12 22 22 12 11 22 22 12 66 12 Now,intermsofthedisplacementcomponentsu (x , x , t)andtheelasticmodulic ,theequationofmotion a 1 2 ij (2)canberewrittenas c u , +c u , +(c +c )u , =•u¨ , c u , +c u , +(c +c )u , =•u¨ . (5) 11 111 66 122 12 66 212 1 66 211 22 222 12 66 112 2 For planar deformations we may define three nondimensional material parameters in terms of b as ij follows: b 2b +b 30b b +b l= 11, r= 12 66, k= 11 22 12. (6) b 20b b 0b b -b 22 11 22 11 22 12 2 Noticethatforisotropicmaterials,landrequal1,whilek=(3-n)/(1+n)forplane-stressandk=3-4nfor plane-strain deformations respectively. In the degenerate case of an isotropic material, n denotes Poisson’s ratio. Thepositivedefinitenessofthestrainenergydensityrequiresthat b >0, b b -b2 >0, b >0. 11 11 22 12 66 Intermsofl,r,andk,theaboverequirementbecomes (cid:236)(cid:239)(cid:239)(cid:239)(cid:239)k>1, forr>1, l>0, r>-1, and (cid:237)(cid:239)(cid:239)(cid:239)(cid:239)1<k< 3+r, for -1<r<1. (cid:238) 1-r The dilatational wave speed along the x -direction, c, and the shear wave speed, c , are defined by the 1 l s following, c 1/2 c 1/2 c = 11 , c = 66 . (7) l J • N s J • N Severalparameterswillalsobeusedinthefollowingderivationsandtheyare v2 v2 c 2 k+1 (3-k)+r(k+1) a2(v)=1- , a2(v)=1- , h2 = l = , (8) l c2 s c2 Jc N Jk-1N 40l l s s where a(v) and a (v) are functions of crack-tip speed, v, while h is a material constant and for isotropic l s solids,h2 =(k+1)/(k-1). Steady-StateCrackGrowthandStrohRepresentation Becausesteadystateconditionsprevailveryclosetothemovingcracktip,thethreevariables(x , x , t)can 1 2 bereducedtotwo,i.e., u (x , x , t)=u (x -vt, x ) u (x , x , t)=u (x -vt, x ). (9) 1 1 2 1 1 2 2 1 2 2 1 2 AccordingtoStroh[8],thedisplacementfieldinthemovingcoordinate(x , x , x )canbeexpressedas 1 2 3 u1 =2Re9A11f1(x1+m1x2)+A12f2(x1+m2x2)=(cid:252)(cid:239)(cid:239)(cid:253)(cid:239)(cid:239), (10) u2 =2Re9A21f1(x1+m1x2)+A22f2(x1+m2x2)=(cid:254) where f (z)(a=1,2)aretwoarbitraryanalyticfunctionsandA andm areundeterminedconstants. Inthe a ab a aboveexpression, Re{(cid:215)}representstherealpartofanycomplexquantity. ByusingStrohrepresentationfor thedisplacementcomponents,(10),thestressfieldcanbeexpressedintermsof f (z)as a s11 =2Re9(c11A11+2c12m1A21)f1¢(x1+m1x2)+(c11A12+2c12m2A22)f2¢(x1+m2x2)=(cid:252)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239) ss22 ==22RRee9(cc12(AA11++22cm22Am1A)2f1¢()xf1¢(+x1m+xm1)x+2)c+((Ac12A+122+m2Ac22)mf2¢A(x22)+f2¢m(x1x+)m2x2)=(cid:253)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239). (11) 12 9 66 21 1 11 1 1 1 2 66 22 2 11 2 1 2 2 = (cid:254) For the existence of a nontrivial solution of the constants A , we have the following restriction on the pa- ab rameterm (a=1, 2), a c +c m2 -•v2 c +c m2 -•v2 -m2(c +c )2 =0. (12) I 11 66 a MI 66 22 a M a 12 66 Byusingthedefinitionsgivenin(6)and(8),theaboveconditionbecomes m4+ a2(v)h2+ a2s(v) - (1+g)2 m2+ a2l(v)a2s(v) =0, g=0lh2 3-k . (13) : l h2l h2l > l J1+kN Wehavedroppedthesubscriptofm inwriting(13). Inamoreconvenientform,(13)canberewrittenas a lh4a2(v)+a2(v)-(1+g)2 a(v)a (v) m4+2s(v)z(v)m2+z2(v)=0, s(v)= l s , z(v)= l s . (14) 20lh2a(v)a (v) 0l l s Onceagain,s(v)andz(v)arefunctionsofthecrack-tipspeed,aswellastheelasticconstantsoftheorthotropic material. 3 SubsonicCrackPropagation Whenthecrack-tipspeedvisintherangeof0 < v < c < c,thecrackissaidtopropagateinthesubsonic s l regime,inwhichwehave v2 v2 a2(v)=1- >0, and a2(v)=1- >0, l c2 s c2 l s anda(v),a (v),s(v),andz(v)areallreal. Wealsohavez(v)>0ands(v)>-1. Onecanshowthatequation l s (14)hasnorealsolutionsandthecomplexsolutionsthathavepositiveimaginarypartsare (cid:236)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)i0z(v);2s(v)2+1 –2s(v)2-1?, fors(v)>1, ma(v)=(cid:237)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)0z(v) –21-s(v) +i21+s(v) , for -1<s(v)<1, (a=1, 2). (15) (cid:238) ; 2 2 ? Thechoiceofthepositiveimaginarypartwillensurethattheuppercomplex(x +m x )-planecorresponds 1 a 2 tothephysicalplanewherex >0. In(15),wespelloutthefactthatm dependsonthecrack-tipspeedv. 2 a With either solution for m (v) given in (15), the nontrivial solution for the coefficients A can be ob- a ab tained. Onesetofsuchsolutionsis 1 h2a2(v)+m2(v) A =1, A =-l (v), A =- , A =1, l (v)= l a , a=1,2. (16) 11 21 1 12 l (v) 22 a (1+g)m (v) 2 a Now,accordingto(10),thedisplacementfieldnearthemovingcracktipcanbewrittenas 1 u =2Re f (z )- f (z ) , u =2Re -l f (z )+ f (z ) , (17) 1 : 1 1 l 2 2 > 2 : 1 1 1 2 2 > 2 andaccordingto(11),thestressfieldnearthemovingcracktipcanbesimilarlywrittenas s11 =2c66Re:Ih2-gm1l1Mf1¢(z1)- h2g--lgl2mh22lm2lf2¢(z2)> (cid:252)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239) ss22 ==22cc66RRee:I(gm--llh2)mf1¢l(z1M)f-1¢(zm12)--l2 f¢(lz2) 2 2 f2¢(z2)>(cid:253)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239), (18) 12 66 : 1 1 1 1 l 2 2 > (cid:254) 2 wherez = x +m x (a = 1,2). Inordertodeterminethedeformationfieldsurroundingthemovingcrack a 1 a 2 tip,weneedtodeterminetheformsofthetwoanalyticalfunctions f (z )and f (z ). 1 1 2 2 Byassumingthatcracksurfaceremainstractionfree,themostgeneralsolutionfor f(z)={f (z), f (z)}¤ 1 2 canbeobtainedas f¢(z)=L-1 z-1/2a(z)+b(z) , f¢(z)=L-1 z-1/2a(z)-b(z) , (19) 9 = 9 = wherea(z)andb(z)aretwoarbitraryentirefunctionsthatsatisfythefollowingrequirement a(z)=a(z), b(z)=-b(z). (20) ThematrixLisdefinedthrough L=c66ØŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒºg-m1l-h2lm11l1 -g--m2lll-h22lm22l2øœœœœœœœœœœœœœœœœß. 2 The complete solution for f¢(z) can be obtained by expanding a(z) and b(z) into a Taylor series. However, if attention is focused in the region very close to the moving crack tip, we only need to consider the most 4 singular term in the solution for f¢(z), i.e., f¢(z) = L-1a /0z, where a is a real vector. By definition, the 0 0 dynamic mode-I and mode-II stress-intensity factors, K and K , at the moving crack tip, are related to the I II tractionvector,{s (x , 0), s (x , 0)}aheadofthemovingcracktip,through 12 1 22 1 ¤ 1 ¤ k” K , K = lim 2px s (x , 0), s (x , 0) . (21) 9 II I= xfi0+ 19 12 1 22 1 = 1 Asaresult,a = k/(202p)andfinally,themostsingularsolutionsforthetwoanalyticfunctions f¢(z )and 0 1 1 f¢(z )aredeterminedtobe 2 2 f1¢(z1)= 2c661R(v)Jml12--ll22 (cid:215) 0K2Ip - g-l1l-h2lm22l2 (cid:215) 0K2IIpN01z1(cid:252)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239) f2¢(z2)= 2clR2(v)Jml1--ll1 (cid:215) 0K2Ip - g-ll-h2lm1l1 (cid:215) 0K2IIpN01z (cid:253)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:254), (22) 66 1 2 1 2 2 whereR(v)isthegeneralizedRayleighwavefunctiongivenby 0lh2a(v)+g2a (v) R(v)=0lh2a(v)a (v)- l s . (23) l s 0lh2a(v)+a (v) l s TheRayleighwavespeedoftheorthotropicsolid,c ,issuchthatR(c )=0. Onecanshowthatforisotropic R R materials,R(v)degeneratestothefollowing, D(v) R(v)= , D(v)=4a(v)a (v)- 1+a2(v) 2. (24) 1-a(v)a (v) l s 9 s = l s The displacement field and the stress field surrounding the moving crack tip are summarized in the following, u1 = c66R2(v)Re:J-ml12Jg---lll221l2-h2lm2z22p1l2-2ml112z--p1 ll-21g2-l2z1lp2-hN2KlmI21l122zp2NKII> (cid:252)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239) u2 = c66R2(v)Re:+-JJll11mgl12-l--lll-h222lm22l2z2p12-2zlp12ml-11l--2gll21-l2l-h2z2p2lmN1KlI122zp2NKII>(cid:253)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239), (25) 1 2 1 2 (cid:254) and ss1212 == RR11((vv))RRee::-JJmmllJ122g-----lllll1l222-h2(cid:215)(cid:215)lmhg222l-0-02l22g(cid:215)hppmh2zzm1210l1-1l21g-pm-z11mllm1l111-----lll2l1g1(cid:215)-l(cid:215)h1l2g-h0--202lmglp212mhlzp2221lzm(cid:215)22lNhK220IN-K2Igpmz22l2NKII>, (cid:252)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239) s12 = R1(v)Re:--JmlJJ112gg----llll11ll222--hh22(cid:215)llmmm022221ll2-22p(cid:215)(cid:215)zl11gm01--120-plml2zlh111p12--zm-11lll121g1(cid:215)--lm01l22g-h2-2-pllmzl12l122l-hN12Klm(cid:215)I21ml02122-(cid:215)pgzl22-0NKl2IhIp2>zm22l2NKII>(cid:253)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:239)(cid:254). (26) 5 Another crack-tip parameter is the energy release rate G. By using Irwin’s closure integral [9], the energy releaserateGcanbeevaluatedby 1 (cid:243)a G= lim s (x, 0)d (x, 0)+s (x, 0)d (x, 0) dx, (27) (cid:243)afi02(cid:243)a(cid:224)0 : 12 1 22 2 > whered (x, 0)=u (x-(cid:243)a, 0+)-u (x-(cid:243)a, 0-)(a=1, 2and06x6(cid:243)a)isthecrack-openingdisplacement. a a a Intermsofthetwostress-intensityfactors,K andK ,theenergyreleaserateGcanbeexpressedas I II G= h 1- 1+g 2 1/2 a(v)K2+0la (v)K2 . (28) 2c R(v): J0lh2a(v)+a (v)N > I l I s IIM 66 l s Onceagain,onecanshowthatforisotropicsolids,energyreleaserateGin(28)reducesto 1-a2 G= s aK2+a K2 , D=4aa -(1+a2)2, (29) 2c DI l I s IIM l s s 66 which is the same as that given in Freund [10]. On the other hand, for a stationary crack in an orthotropic solid,onecanshowthattheenergyreleaserateGin(28)becomes 2 1+r G=b l-3/4K +l-1/4K . (30) 11 2 I I IIM ThisexpressionisthesameasthatinHutchinsonandSuo[11]. CGSTECHNIQUEANDITSAPPLICATIONTODYNAMICFRACTUREOFCOMPOSITES CGS,ortheCoherentGradientSensingmethodisafullfield,lateralshearinginterferometrictechniquewith anon-linefilter.Thismethod,whenusedinareflectivemode,measuresthein-planegradientsofout-of-plane surfacedisplacementsaroundthecracktip.Thebasicgoverningequationsofthemethodforareflectivesetup, arethefollowing[12], ¶u (x , x ) n p ¶u (x , x ) n p 3 1 2 = 1 , 3 1 2 = 2 , (31) ¶x 2D ¶x 2D 1 2 whereu (x , x )istheout-of-planedisplacementofthespecimensurface. Parameters pandDarethepitch 3 1 2 and separation of the two high density gratings, and finally, n and n are the fringe orders for the x , x 1 2 1 2 gradientcontoursrespectively. Therefore, eachCGSfringeisalocusofpointsthathavethesameslopein eitherx -orx -direction,dependingontheorientationofthetwohighdensitygratings. 1 2 Foranisotropicsolidsubjectedtoplanestressdeformation,theout-of-planedisplacementu (x , x )can 3 1 2 directly be related to the first stress invariant. However, for anisotropic materials, the relation is not that simple. Fororthotropicsolid,accordingtotheconstitutiverelation, e =b s +b s +b s , (32) 33 31 11 32 22 33 33 where b , b , and b are elastic constants. For plane stress deformation, s = 0. Also, according to 31 32 33 33 thegeneralizedplanestressconditions,theout-of-planesurfacedisplacementu (x , x )canberelatedtothe 3 1 2 in-planestresscomponentsthrough h u (x , x )= b s (x , x )+b s (x , x ) . (33) 3 1 2 29 31 11 1 2 32 22 1 2 = Byusingthestressfieldnearthemovingcracktip, themostsingulartermfortheout-of-planesurfacedis- placementcanbeexpressedintermsofthedynamicstress-intensityfactorsby h m -l b -b m l m -l b -b m l u = Re 2 2 (cid:215) 1 2 1 1 - 1 1 (cid:215) 1 2 2 2 K 3 2R(v) :Jl -l 02pz l -l 02pz N I 1 2 1 1 2 2 g-lh2m l b -b m l g-lh2m l b -b m l - 2 2 (cid:215) 1 2 1 1 - 1 1 (cid:215) 1 2 2 2 K , (34) J l -l 02pz l -l 02pz N II> 1 2 1 1 2 2 6 where b = b h2 +b g and b = b g+b lh2. Note that b and b are two material constants. The 1 31 32 2 31 32 1 2 governingequationfortheCGStechnique,(31),wouldthusbecome p p F (x , x )K +F (x , x )K =n , F (x , x )K +F (x , x )K =n , (35) 11 1 2 I 12 1 2 II 1J2DN 21 1 2 I 22 1 2 II 2J2DN where h m -l b -b m l m -l b -b m l F =- Re 2 2 (cid:215) 1 2 1 1 - 1 1 (cid:215) 1 2 2 2 , 11 402pR(v) :l -l (x +m x )3/2 l -l (x +m x )3/2> 1 2 1 1 2 1 2 1 2 2 h g-lh2m l b -b m l g-lh2m l b -b m l F = Re 2 2 (cid:215) 1 2 1 1 - 1 1 (cid:215) 1 2 2 2 , 12 402pR(v) : l -l (x +m x )3/2 l -l (x +m x )3/2> 1 2 1 1 2 1 2 1 2 2 h m (m -l ) b -b m l m (m -l ) b -b m l F =- Re 1 2 2 (cid:215) 1 2 1 1 - 2 1 1 (cid:215) 1 2 2 2 , 21 402pR(v) : l -l (x +m x )3/2 l -l (x +m x )3/2> 1 2 1 1 2 1 2 1 2 2 h m (g-lh2m l ) b -b m l m (g-lh2m l ) b -b m l F = Re 1 2 2 (cid:215) 1 2 1 1 - 2 1 1 (cid:215) 1 2 2 2 . 22 402pR(v) : l -l (x +m x )3/2 l -l (x +m x )3/2> 1 2 1 1 2 1 2 1 2 2 If one knows the CGS fringe orders, n or n , and the coordinates of the point (x , x ) on the fringes, the 1 2 1 2 dynamicstress-intensityfactors,K andK ,canbecalculatedusingeitheroftheequationsin(35). I II MEASURINGTHEDYNAMICFRACTURETOUGHNESSOFTHEUNIDIRECTIONALFIBER-REINFORCED IM7/8551-7GRAPHITE/EPOXYCOMPOSITE CompositeMaterial,SpecimenPreparation,andExperimentalProcedure A unidirectional graphite/epoxy composite, IM7/8551-7, was used in this study. The microstructure of the unidirectionalcompositeisshowninFigure2,acollectionofopticalmicrographsshowingthethreeorthog- onalmaterialorientations. Thediameterofthecontinuousfibersisapproximately5mmandthethicknessof alaminateisontheorderof100mm. Thefibervolumefractionisapproximately60%;itmightbenotedthat thematrixisarubber-toughened(meanparticlesize10–75mm)epoxy. x 3 x 2 50„m x 1 Figure2: Micrographsofthegraphite/epoxyunidirectionalfiber-reinforcedcomposite,IM7/8551-7. ACartesiancoordinatesystemhasbeenchosensuchthatthex -axisisalongthefiberdirection,thex - 1 2 axisliesinthelaminateplaneandnormaltothefibers,andthex -axisisnormaltothelaminateplane. Since 3 thematerial,asshowninFigure2,issymmetricwithrespecttothethreecoordinateplanesitcanbemodeled as an orthotropic solid, and (x , x , x ) are the principal axes of the material. The elastic constants of the 1 2 3 Table1: MaterialElasticConstants E E E 11 22 33 Young’sModuli(GPa) 148.60 8.40 8.28 m m m 12 23 13 ShearModuli(GPa) 5.45 3.03 4.34 n n n 12 23 13 Poisson’sRatios 0.32 0.37 0.35 unidirectionalgraphite/epoxycompositehavebeenmeasuredwithrespecttotheprincipalaxes(x , x , x ), 1 2 3 andtheresultsarelistedinTable1. 7 The specimen geometry we chose for this experimental study, was the single-edge-crack specimen as shown in Figure 3. The nominal dimensions of the specimen, shown in Figure 3, are: 2l = 150mm, b = Specimen P(t) º Gratings p h Crack b a Filter Lens Camera 2l Collimator Laser Figure3: SchematicofCGSsetupandsingle-edge-crackspecimen. 75mm, h = 6.5mm, and a = 25mm. In this experimental study, we concentrate on the situation where thecrackisparalleltothefibersandthespecimenplaneisparalleltothelaminates. ACartesiancoordinate systemischosenwithitsoriginlocatedatthecracktip. Theaxesofthissystemarealignedwiththeprincipal axesoftheorthotropicmaterialasshowninFigure2,sothatthedeformationplaneisthe(x , x )-plane,with 1 2 crack propagating along the x -axis. In this plane, the elastic compliances are listed in Table 2. Based on 1 Table2: MaterialElasticCompliance b (GPa-1) b (GPa-1) b (GPa-1) b (GPa-1) b (GPa-1) b (GPa-1) 11 22 12 66 31 32 6.73·10-3 1.19·10-1 -2.15·10-3 1.83·10-1 -2.36·10-3 -4.40·10-2 thesevalues,thethreenondimensionalmaterialparameterscanbecalculatedtobel = 0.0565,r = 3.1676, andk = 2.7172,respectively. Meanwhile,thedilatationalwavespeedalongthefiber(x -axis),c,theshear 1 l wavespeedinthe(x , x )-plane,andtheRayleighwavespeedonasurfaceparalleltothe(x , x )-planeand 1 2 1 3 inthedirectionoffiber(x -axis),c ,aregiveninTable3. 1 R Table3: CharacteristicWaveSpeeds c (m/sec) c (m/sec) c (m/sec) l s R 9819.84 1874.62 1852.50 A very high quality surface preparation is required in order to apply the CGS technique to composite materials. However, because of the microscopic nature of the composite, we cannot polish the specimen surfacetomakeitopticallyflatandreflective,norcanwedirectlydepositareflectivealuminumfilmonthe specimenbyvacuumdeposition. Instead,thefollowingprocedurewasdevelopedandused. Anopticallyflat glass plate is coated with a thin aluminum film, having a thickness of only several angstroms. A layer of segregationmaterialisintentionallymaintainedbetweenthecoatingandtheglass,topreventstrongadhesion betweenthealuminumfilmandtheglass.Thismaterialwastheresidueofliquidsoapusedtocleantheglass. The coated glass is then affixed to the sample using an epoxy adhesive, which glues the coated surface of theopticallyflatglasstothesample. TheepoxyadhesivewasaPC-1Bipaxofepoxyresinandadiethylen- etriaminehardenerobtainedfromthePhotoelasticDivision,MeasurementsGroup,Inc.,Raleigh,NC.After theepoxycured,theglasswaspeeledoff. Becausethebondingbetweenthealuminumfilmandtheglassis ratherweak, thealuminumcoatingistransferredontothesamplesurface. Thetotalthicknessoftheepoxy layerandthecoatingisjustacoupleofmicrons. Comparedwiththesamplethickness,thislayerisverythin andwillnotaffectthedeformationstateinsidethespecimen. Thespecimenwasmountedinadropweighttower(Dynatup-8100A)witha200kgfree-fallingweight, whichisabletoprovideimpactsatlowtointermediateloadingrates. Aftertheimpact,intensivestresswaves emanate from the loading point and propagate toward the stationary crack. Stress fields are thus built up surroundingthecracktipandwhentheintensityofthestressfieldreachesacertainlevel,thestationarycrack 8 startstopropagatedynamicallyalongthefiberdirection. TorecordtheCGSimagesduringtheexperiment,a rotatingmirrorhigh-speedcamera(Cordinmodel330A)isusedwithaSpectra-PhysicsArgon-ionpulselaser (model 166) as the light source. The duration of the laser pulse is about 30 nsec, which is able to produce a sharp interference pattern even for fast running cracks. The interframe time (controlled by the interval betweenpulses)istypically1.5msec. Thelaserpulseistriggeredbyastraingagemountedtothespecimen that senses the impact. The composite specimen is supported by resting its lower corners on two very thin glassslides. Ithasbeendeterminedthattheseglassslidescanonlysustain20Nofloadbeforetheybreak. This suggests that the bottom surface of the specimen can be considered traction free throughout the crack propagationevent. ExperimentalObservations AsequenceofhighspeedCGSinterferogramsfromathree-pointbendtestoftheunidirectionalgraphite/epoxy IM7/8551-7compositespecimenisshowninFigure4. Thenominalimpactspeedwas4m/secandthetime 62.63 (cid:181)sec 64.30 (cid:181)sec 65.97 (cid:181)sec 67.64 (cid:181)sec 69.31 (cid:181)sec 70.98 (cid:181)sec 72.65 (cid:181)sec 74.32 (cid:181)sec 75.99 (cid:181)sec 77.66 (cid:181)sec Figure4: SelectedsequenceofCGSinterferogramsfromaunidirectionalcompositethree-pointbenddrop- weighttowertest. shown in Figure 4 is measured from the moment of impact. The interframe time for this specific test was 1.67 msec. The two high-density gratings, shown in Figure 3, were perpendicular to the crack, so that the information regarding the quantity ¶u /¶x was obtained. The grating pitch was p = 0.025 mm and the 3 1 distancebetweenthetwohigh-densitygratingswassetatD = 46.5mm. TheangularsensitivityoftheCGS interferometerwiththesesettingsisabout0.015º/fringe. ThefirsttwointerferogramsshowninFigure4representtheCGSfringepatternsforthestationarycrack. Thesizeofthefringepatternsurroundingthestationarycracktipcharacterizestheintensityofthenear-tip stressfield. Atatimeclosetot =65.97msec,thestressfieldsurroundingthetipreachedalevelsuchthatthe stationarycrackstartstopropagate. Sincetheunidirectionalcompositespecimenwasloadedsymmetrically andthedeformationsurroundingthetipofthestationarycrackispredominantlymode-I,thegrowingcrack remainsmode-Ianditpropagatesalongthefiberdirection. Thisisalsobecausethestrengthofthegraphite fibersissohighthatthecrackisconstrainttopropagatealongthefibers. Meanwhile,asthecrackpropagates dynamicallythroughthematerial,thesizeofthefringeloopandthenumberoffringeschangeindicatingthe evolutionoftheintensityofthestressfieldsurroundingthegrowingcracktip. Onealsoobservesthatafter crack initiation, stress waves emanate from the growing crack tip. They are visible in Figure 4 as discrete kinksoftheCGSfringes. SuchdiscretekinksdonotappearintheCGSfringepatternsassociatedwiththe stationarycrackasshowninthefirsttwointerferogramsinFigure4. Thecrack-tiplocationateachmomentcanbeidentifiedfromtheCGSfringepattern. Consequently,the crack-tipvelocitycanbecalculatedbasedonthevariationofcracklengthasafunctionoftime.Forthethree- pointbendtestoftheunidirectionalgraphite/epoxycompositespecimenshowninFigure4,thevariationof the amount of crack growth Da and the variation of crack-tip speed a˙ as functions of time t are presented in Figure 5. After initiation, the crack tip accelerates rapidly. In a very short period of time (~ 6msec) the 9

Description:
The mode-I fracture toughness of the unidirectional graphite/epoxy composite, IM7/8551-7, as a In recent years, we have seen the increasing use of fiber-reinforced .. Filter Lens .. and the coherent gradient sensor (CGS),” Experimental Techniques in Fracture, edited by J. Epstein, 3, Chapter 10,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.