ebook img

Dynamic behaviour of ceramic armour systems PDF

47 Pages·2015·4.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic behaviour of ceramic armour systems

FFI-rapport 2015/01485 Dynamic behaviour of ceramic armour systems Dennis B. Rahbek and Bernt B. Johnsen Forsvarets FFI forskningsinstitutt Norwegian Defence Research Establishment FFI-rapport 2015/01485 Dynamic behaviour of ceramic armour systems Dennis B. Rahbek and Bernt B. Johnsen Norwegian Defence Research Establishment (FFI) 10 November 2015 FFI-rapport 2015/01485 1301 P: ISBN 978-82-464-2608-2 E: ISBN 978-82-464-2609-9 Keywords Ballistikk Beskyttelse Keramikk Materialteknologi Mekanismer Approved by Rune Lausund Research Manager Svein Rollvik Director of Research Jon E. Skjervold Director 2 FFI-rapport 2015/01485 English summary Protection against high-velocity impact from objects such as projectiles is of major concern for bothmilitary and civilian purposes. Lightweight body armour systems for ballistic protection of personnel can be designed by combining different materials with different properties. These hybrid systems typically have a hard ceramic strike face that blunts, fractures and erodes the projectile, and a soft backing, made from ballistic fibres, that absorbs the residual energy. FFI has for many years been involved in the development of, and research on, body armour for protection of military personnel. In the period from 2004 to 2007, the technology behind an armour plate was developed in cooperation with industry. For future developments, however, it is necessary to have knowledge about the mechanisms that are acting under ballistic impact. Today, this topic is studied in several projects at FFI, and this report was written as a part of that work. The most common ceramics for armour purposes are - in order of improved performance - aluminium oxide, silicon carbide and boron carbide. The ceramics generally have relatively low density and high hardness. These, and other properties, make them useful in armour applications. The mechanisms by which a ceramic armour fails is quite complex, and involve failure mechanisms such as radial cracking, cone cracking and comminution due to micro-cracking. To what extent they appear and the relative timing of these mechanisms, depends on factors such as the impact velocity, the ceramic and projectile properties, and the dimensions of the ceramic and projectile. To improve the ballistic performance of the ceramic armour system, it is desirable to delay the failure of the ceramic for as long as possible. This allows more time for deformation and erosion of the projectile. It has been shown in the literature, and by work conducted at FFI, that the ballistic performance, both in terms of single-hit and multi-hit capacity, can be improved by radially confining the ceramic tile, by covering it with a sheet of another material, and/or by tuning the interfacial strength between the cover and the ceramic. The main aim of this report is to give an overview of the mechanisms that are involved in ballistic, or dynamic, failure of ceramics and ceramic-based hybrid armour. The failure mechanisms, the factors that govern the failure mechanisms, and what can be done to delay the failure of the ceramic, are discussed on the basis of some of the available literature on the topics. FFI-rapport 2015/01485 3 Sammendrag Beskyttelse mot anslag fra blant annet prosjektiler ved høy hastighet er et viktig tema innen både militære og sivile anvendelser. Lettvektsløsninger for ballistisk beskyttelse av personell kan designes ved å kombinere ulike materialer med ulike egenskaper. Disse hybridsystemene har typisk en hard plate av keramikk som avrunder, bryter opp og eroderer prosjektilet, samt en myk ’backing’ laget av ballistiske fibre som absorberer den gjenværende energien. FFI har i mange år vært involvert i utvikling av og forskning på ballistisk beskyttelse for militært personell. I perioden 2004 til 2007 ble teknologien bak en beskyttelsesplate for soldater utviklet i samarbeid med norsk industri. For videre utvikling av teknologien er det imidlertid nødvendig med en bedre forståelse av hvilke mekanismer som finner sted ved ballistiske anslag. Dette er et tema som for tiden studeres i flere prosjekter ved FFI, og denne rapporten ble skrevet som en del av dette arbeidet. Keramikk har generelt lav tetthet og høy hardhet. Disse, og andre, egenskaper gjør materialet anvendbart for ballistisk beskyttelse. De vanligste keramikktypene som er benyttet i beskyttelsesløsninger er – i stigende rekkefølge med tanke på økt ytelse - aluminiumoksid, silisiumkarbid og borkarbid. Mekanismene som keramikk bryter sammen med ved høyhastighets anslag er relativt komplekse. De involverer feilmekanismer som for eksempel dannelse av radielle sprekker, dannelse av en kjegle gjennom keramikkplaten og fragmentdannelse som følge av mikrosprekker under anslagspunktet. Hvor mye hver enkelt mekanisme bidrar, og i hvilken rekkefølge de opptrer, avhenger av faktorer som anslagshastigheten, egenskapene til keramikken og prosjektilet, samt dimensjonene til keramikken og prosjektilet. For å bedre ytelsen til et ballistisk beskyttelsessystem basert på keramikk, er det ønskelig å forsinke nedbrytningen av keramikken så lenge som mulig. Dette gir lenger tid til deformasjon og erosjon av prosjektilet. Det har blitt rapportert i litteraturen, og erfart gjennom arbeid utført ved FFI, at ulike metoder kan benyttes for å bedre den ballistiske ytelsen. Egenskapene ved ett eller flere anslag kan bedres ved å legge et annet materiale (for eksempel et fiberkompositt) rundt kanten av keramikken, ved å dekke keramikken med et lag av et annet materiale, og/eller ved å endre heften i grenseflaten mellom dette laget og keramikken. Hovedmålet med denne rapporten er å gi en oversikt over mekanismene som er involvert i nedbrytning av keramikk, og beskyttelsesløsninger basert på keramikk, ved ballistiske anslag (det vil si ved dynamiske påvirkninger). Feilmekanismene, hvilke faktorer som kontrollerer feilmekanismene, og hva som kan gjøres for å forsinke nedbrytningen av keramikken, blir gjennomgått med grunnlag i utvalgt litteratur om disse temaene. 4 FFI-rapport 2015/01485 Contents List of abbreviations 6 1 Introduction 7 2 Armour ceramics 9 2.1 Materialparameters 9 2.2 Ceramicmicrostructure 10 2.3 Commonlyusedarmourceramics 11 3 Methods for ballistic testing 14 3.1 Completearmoursystems 14 3.2 Armourcomponents 15 4 Failure mechanisms of ceramics 19 4.1 Dynamicfailure 19 4.2 Quasi-staticfailure 22 4.3 Damageevolution 22 5 Confinement and covering of ceramics 25 5.1 Coveringoftheceramic 25 5.2 Longrodpenetrationinthickceramicdiscs 26 5.3 Impactwithregularprojectiles 28 5.4 Coveringwithfibre-composites 30 6 Effect of adhesive and interfacial bonding 36 6.1 Adhesionandbondlinethickness 36 6.2 Multi-hit 37 6.3 Surfacetreatment 38 6.4 Interlayer 38 7 Conclusion 39 Bibliography 41 FFI-rapport2015/01485 5 List of abbreviations Al O aluminiumoxide. 2 3 AP armourpiercing. B C boroncarbide. 4 BEV ballisticefficiencyvalue. DOP depthofpenetration. FEM finiteelementmethod. FFI Forsvaretsforskningsinstitutt. FOI Totalfo¨rsvaretsforskningsinstitut. HP hotpressed. HV Vickershardness. PC polycarbonate. PU polyurethane. RB reactionbonded. SAPI smallarmsprotectiveinsert. SiC siliconcarbide. SPS sparkplasmasintering. TNO theNetherlandsOrganisationforAppliedScientificResearch. UD uni-directional. UHMWPE ultra-highmolecularweightpolyethylene. WC tungstencarbide. 6 FFI-rapport2015/01485 1 Introduction Protection against high-velocity impact from objects such as projectiles is a major issue in many militaryandalsocivilianapplications. Inmanycases,hybridarmoursystemsconsistingofahard ceramic strike face and a comparatively soft metal or composite backing are used for ballistic protectioninbothvehiclesandbodyarmour. Theroleoftheceramicistoerodeandbluntthehardtip oftheprojectile,whiletheroleofthebackingmaterialistoabsorbtheresidualenergyoftheeroded projectileandthefragmentsofthefracturedceramic. Oneoftheadvantagesofemployingceramics in hybrid armour, compared to materials such as steel and aluminium, is that more lightweight systemscanbedesigned. Theloadonthevehicleorthesoldierisreducedandthemobilityisthereby improved. Forsvarets forskningsinstitutt (FFI) has for many years been involved in the development of, and research on, lightweight body armour for ballistic protection of military personnel. In the period from2004to2007,thetechnologyforaSAPIplatewasdevelopedinacooperationbetweenFFI andindustry. Thistechnologyisnowusedinarmoursystemsthatareemployedbyarmedforces bothnationallyandinternationally. Forfuturedevelopmentsofbodyarmour,itisnecessarytohave knowledgeaboutthemechanismsthatareactingunderballisticimpactofthearmour. Knowledge about how the ceramics functions as stand-alone materials, and also how ceramic-based armour systemsfunction,isimportant. Today,thistopicisstudiedinseveralprojectsatFFI,andthisreport iswrittenasapartofthatwork. Themainaimofthisreportistogiveanoverviewofthemechanismsthatareinvolvedinballistic (dynamic)failureofceramicsandceramic-basedhybridarmour. Hence,thereportisnotintendedto giveacompleteoverviewoftheliteratureinthefieldofballisticfailureofprotectionmaterials,butit discussessomeimportanttopicswithrespecttothedynamicbehaviourofceramicarmouronthe basisoftheavailableliterature. Ballistic protection systems Depending on scenario, the soldiers role and the mission, protection can be provided by several meansamongwhichaballisticprotectionsystemcanbeakeypart. Modernsystemsforballistic protectionofpersonnelismostoftenmodularsincedifferentpartsofthebodyneeddifferentlevels ofprotection,andsincenotallmissionsrequirethesamelevelofprotection. Forprotectionagainst fragments and projectiles, the main focus is on protecting the torso and the head, as an injury to these regions are generally more acute than injuries to other parts of the body. The protection againstdifferenttypesofthreatsthatonemightencounterisdividedintoprotectionlevelsinballistic teststandards. Theprotectionlevelisessentiallyrelatedtotheabilitytopreventaprojectilefrom perforatingthearmour. Inverygeneralterms,abasiclevelofprotectionisavestandahelmetthat protectsagainstfragmentsandmosthandgunprojectiles. Boththevestandthehelmetareusually made from sheets of ballistic fibres (polymers), such as aramid and ultra-high molecular weight polyethylene(UHMWPE).However,theyareproducedbydifferentmethodssothatthehelmetis stiffwhereasthevestisrelativelyflexible. Toincreasethesizeoftheprotectedarea,protectionto FFI-rapport2015/01485 7 the crotch might be added (also made from ballistic fibres). Unfortunately, when the threats are projectiles from rifles, the ballistic fibres do not provide the necessary stopping power and other materialsareneeded. Figure1.1 Schematicofthecross-sectionofaSAPIplate. Ahardceramicstrikefaceiscovered withastiffcompositematerial,oftenmadefromaglassfibre/epoxyfabric. Thecovered ceramictileisbackedbyseverallayersofaballisticfibrematerial,usuallyaramidor UHMWPE.Finally,thewholeplateiscoveredinatoughfabricclothtoprotectagainst UV-lightandwear. In order to stop armour piercing rifle rounds, a small arms protective insert (SAPI)-plate is often used in combination with the vest. Modern SAPI-plates are usually made from a combination of materialssuchasceramicsandballisticfibres/composites. AtypicallayoutofaSAPIplateisseenin Figure1.1. Thespecificcombinationofmaterials,ceramicandfibres/composites,dependsonthe typeofthreatstheplatehastobecapableofstopping. ThemaincomponentoftheSAPI-plateisa thin(approximately8mmthick)tilemadefromaveryhardceramic. Theceramicblunts,erodesor fracturesprojectiles(evenarmourpiercing)onimpact. Unfortunately,ceramicsareverybrittle,thus thetilecracksandbreaksintopiecesonimpact. Tokeeptheceramicfromcompletelyshattering, it is often covered in ballistic fibres or a composite material. Moreover, the ballistic fibres at the backabsorbthemajorityofthekineticenergyandpreventthedeformedprojectileandtheceramic fragmentsfromperforatingthearmour. Outline of the report Thereportisorganizedinsections. Thesectionscovertopicssuchasageneraldescriptionofarmour ceramics,relevanttestmethods, failuremechanisms, andtheeffectofconfinement,coveringand adhesivebondinginceramicarmour. Inthebeginningofeachsection,atextboxsummarisesthe mainfindingsofthatparticularsection. Mostoftheliteraturethatisdiscussedisonpersonalarmour systems. However, the materials and the dynamic failure mechanisms are also relevant for other applications,suchasvehiclesandaircraft. Inthereport,thereisafocusontheliteraturedealingwithballisticcharacterisation,i.e. dynamic failure,ofceramic-basedarmourmaterials. Resultsfromquasi-staticcharacterizationarecovered onlybriefly. Thereasonforthisisthatithasprovenverydifficulttopredicttheballisticbehaviourof materialsbasedonquasi-staticmaterialproperties. Thus,resultsobtainedfromballistictestingare muchmorerelevant. 8 FFI-rapport2015/01485

Description:
ballistic, or dynamic, failure of ceramics and ceramic-based hybrid armour. This was due to buckling of the pre-stressed ceramic tile when.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.