ebook img

Dynamic Asset Allocation PDF

323 Pages·2017·13.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamic Asset Allocation

Downloaded from orbit.dtu.dk on: Jan 15, 2023 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Nystrup, P. (2018). Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios. DTU Compute. DTU Compute PHD-2017 Vol. 465 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.  Users may download and print one copy of any publication from the public portal for the purpose of private study or research.  You may not further distribute the material or use it for any profit-making activity or commercial gain  You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Ph.D.Thesis DoctorofPhilosophy Dynamic Asset Allocation IdentifyingRegimeShiftsinFinancialTimeSeriestoBuild Robust Portfolios Peter Nystrup KongensLyngby November2017 TechnicalUniversityofDenmark DepartmentofAppliedMathematicsandComputerScience RichardPetersensPlads,Building324 2800KongensLyngby,Denmark Phone+4545253031 [email protected] www.compute.dtu.dk Short Contents Short Contents i Abstract iii Resumé v Preface vii Acknowledgments ix Publications xi Acronyms xiii Contents xv 1 Introduction 1 2 Contribution 9 3 Conclusion 23 References 27 A StylizedfactsoffinancialtimeseriesandhiddenMarkovmod- els in continuous time 37 B Long memory of financial time series and hidden Markov models with time-varying parameters 59 C Regime-based versus static asset allocation: Letting the data speak 85 ii ShortContents D Dynamic allocation or diversification: A regime-based ap- proach to multiple assets 99 E Detecting change points in VIX and S&P 500: A new ap- proach to dynamic asset allocation 119 F Greedy Gaussian segmentation of multivariate time series 141 G Dynamic portfolio optimization across hidden market regimes173 H Multi-period trading via convex optimization 203 I Multi-period portfolio selection with drawdown control 263 Abstract Long-terminvestorscanoftenbeartheriskofoutsizedmarketmovementsortail events more easily than the average investor; for bearing this risk, they hope to earn significant excess returns. Rebalancing periodically to a fixed benchmark allocation,however,isnotthewaytodothis. Inthepresenceoftime-varyingin- vestmentopportunities,portfolioweightsshouldbeadjustedasnewinformation arrives to take advantage of favorable regimes and reduce potential drawdowns. This thesis contributes to a better understanding of financial markets’ behavior in the form of a model-based framework for dynamic asset allocation. Regime-switchingmodelscanmatchfinancialmarkets’tendencytochangetheir behaviorabruptlyandthephenomenonthatthenewbehavioroftenpersistsfor several periods after a change. Regime shifts lead to time-varying parameters and, in addition, the parameters within the regimes and the transition proba- bilities change over time. Using recursive and adaptive estimation techniques to capture this, we are able to better reproduce the volatility persistence that dynamic asset allocation benefits from. With this approach it is sufficient to distinguish between two regimes in stock returns in order for it to be profitable to change asset allocation based solely on the inferred regimes, both in a single- and multi-asset universe. We advocate the use of model predictive control for translating forecasts into a dynamicstrategyandcontrollingdrawdownsbysolvingamulti-periodoptimiza- tionproblem. Weimplementthisbasedonforecastsfromamultivariatehidden Markov model with time-varying parameters. Our results show that a substan- tialamountofvaluecanbeaddedbyadjustingtheassetallocationtothecurrent market conditions, rather than rebalancing periodically to a static benchmark. By proposing a practical approach to drawdown control, we demonstrate the theoretical link to dynamic asset allocation and the importance of identifying and acting on regime shifts in order to limit losses and build robust portfolios. Keywords: Risk management; Regime switching; Adaptive estimation; Fore- casting; Model predictive control; Portfolio optimization; Drawdown control. iv Resumé Langsigtede investorer kan ofte bære risikoen for store markedsudsving eller ekstreme hændelser bedre end den gennemsnitlige investor. Som kompensation foratpåtagesigdennerisikohåberdeatopnåbetydeligemerafkast. Periodevis rebalancering til en statisk benchmark-allokering er imidlertid ikke måden at opnå dette. Ved tilstedeværelse af tidsvarierende investeringsmuligheder bør porteføljevægtene tilpasses, efterhånden som ny information bliver tilgængelig, foratdragefordelafgunstigeregimerogreducerepotentielletab. Denneafhand- ling bidrager til en bedre forståelse af finansielle markeders opførsel i form af et modelbaseret fundament for dynamisk aktivallokering. Regimeskiftmodeller kan genskabe finansielle markeders tendens til pludseligt at skifte opførsel og det fænomen, at den nye opførsel ofte varer ved længe efter et skift. Regimeskift fører til tidsvarierende parametre, men også parametrene inden for regimerne og overgangssandsynlighederne ændrer sig over tid. Ved at bruge rekursive og adaptive estimationsmetoder til at fange dette er vi i stand til bedre at genskabe den volatilitetspersistens, som dynamisk aktivallokering udnytter. Med denne tilgang er det tilstrækkeligt at skelne mellem to regimer i aktieafkast, før end det er profitabelt at ændre aktivallokering udelukkende baseretpådeudledteregimeriuniverserbeståendeafetenkeltellerflereaktiver. Viadvokererforbrugenafmodelprædiktivreguleringtilatomsætteforudsigelser tilendynamiskstrategiogkontrolleretabgennemløsningafetflerperiodeopti- meringsproblem. Vi implementerer dette baseret på forudsigelser fra en skjult Markov model med tidsvarierende parametre. Vores resultater viser, at be- tydelig værdi kan tilføres ved at tilpasse aktivallokeringen til de nuværende markedsforhold frem for at rebalancere periodevist til et statisk benchmark. Ved at foreslå en praktisk tilgang til tabskontrol demonstrerer vi den teoretiske forbindelsetildynamiskaktivallokeringogvigtighedenafatidentificereogagere på regimeskift for at begrænse tab og bygge robuste porteføljer. Nøgleord: Risikostyring;Regimeskift;Adaptivestimation;Forudsigelse;Model- prædiktiv regulering; Porteføljeoptimering; Tabskontrol. vi Preface This thesis was prepared in the Department of Applied Mathematics and Com- puter Science at Technical University of Denmark in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) in Engineering. It consists of a collection of nine papers written during the course of my Ph.D. study. The research study was carried out in collaboration with Danish pension fund SampensionandLundUniversityinSweden,withsupportfromInnovationFund Denmark under Grant No. 4135-00077B. As part of the study, I spent the sum- mer of 2016 as a visiting student researcher in the Department of Electrical Engineering at Stanford University in California. InadditiontoahandfulofvisitstoStanford,thefinancialsupportfromSampen- sionandInnovationFundDenmarkhasallowedmetoparticipateinconferences and seminars in London, Frankfurt, Rennes, Aarhus, Paris, New York, Austin, Cairns, and Brussels. Thisthesisdealswithdifferentaspectsofmathematicalmodelingofthestylized behavior of financial returns using regime-switching models with the aim of developing a model-based framework for dynamic asset allocation. The idea for the study emanated from my Master’s thesis (Nystrup 2014), which established the potential for model-driven, regime-based asset allocation. In continuation of this work we initially focused on adaptive estimation of regime-switching models. Before pursuing with a multi-period optimization approach based on model predictive control, demonstrating the connection between dynamic asset allocationanddrawdowncontrol,wetestedstrategieswheretheassetallocation was fully determined by the identified market regime. Copenhagen, November 2017 Peter Nystrup

Description:
allocation and drawdown control, we tested strategies where the asset allocation For optimization, we use Python and the library CVXPY (Diamond and ics, and the behavior of hedge funds. Journal of Alternative Investments, vol. replicated and possibly improved by trading the VIX itself.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.