ebook img

Dust-to-gas ratio, $X_{\rm CO}$ factor and CO-dark gas in the Galactic anticentre: an observational study PDF

0.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dust-to-gas ratio, $X_{\rm CO}$ factor and CO-dark gas in the Galactic anticentre: an observational study

Mon.Not.R.Astron.Soc.000,1–??(2014) Printed16January2015 (MNLATEXstylefilev2.2) Dust-to-gas ratio, X factor and CO-dark gas in the Galactic CO anticentre: an observational study 5 1 B.-Q. Chen,1‹: X.-W. Liu,1,2‹ H.-B. Yuan,2: Y. Huang1 and M.-S. Xiang1 0 2 1DepartmentofAstronomy,PekingUniversity,Beijing100871,P.R.China 2KavliInstituteforAstronomyandAstrophysics,PekingUniversity,Beijing100871,P.R.China n a J 5 Accepted???.Received???;inoriginalform??? 1 ] A ABSTRACT We investigate the correlationbetween extinction and H i and CO emission at intermediate G and high Galactic latitudes (|b| ą 10˝) within the footprintof the Xuyi SchmidtTelescope . h Photometric Survey of the Galactic anticentre (XSTPS-GAC) on small and large scales. In p Paper I (Chen et al. 2014), we present a three-dimensional dust extinction map within the - footprint of XSTPS-GAC, covering a sky area of over 6,000deg2 at a spatial angular res- o olution of 6arcmin. In the current work, the map is combined with data from gas tracers, r t including H i data from the Galactic Arecibo L-band Feed Array H i survey and CO data s a from the Planck mission, to constrain the values of dust-to-gas ratio DGR “ AV{NpHq [ and CO-to-H2 conversion factor XCO “ NpH2q{WCO for the entire GAC footprint exclud- ing the Galactic plane, as well as for selected star-forming regions (such as the Orion, 1 Taurus and Perseus clouds) and a region of diffuse gas in the northern Galactic hemi- v sphere.Forthe whole GACfootprint,we find DGR “ p4.15˘0.01qˆ10´22magcm2 and 6 X “ p1.72˘0.03qˆ1020cm´2pKkms´1q´1.We havealsoinvestigatedthedistribution 0 CO 6 of“CO-dark”gas(DG)withinthe footprintofGACandfounda linearcorrelationbetween 3 the DG column density and the V-band extinction: NpDGq » 2.2ˆ1021pAV ´ AcVqcm´2. 0 ThemassfractionofDGisfoundtobe fDG „ 0.55towardtheGalacticanticentre,whichis . respectivelyabout23and124percentoftheatomicandCO-tracedmoleculargasinthesame 1 region. This result is consistent with the theoretical work of Papadopoulos et al. but much 0 5 largerthanthatexpectedintheH2cloudmodelsbyWolfireetal. 1 Keywords: ISM:dust,extinction–ISM:molecules–ISM:clouds : v i X r a 1 INTRODUCTION Heteronuclear diatomic molecule CO is the most abundant molecule in the ISM after H . The 12CO J “ 1 Ñ 0 tran- Theinterstellarmedium(ISM)makesupbetween10to15percent 2 sition has a ∆E {k about 5.5K and can be easily excited even ofbaryonicmassoftheMilkyWay.About99percentofthemate- 10 in cold molecular clouds and observed from the ground. As a rialisingasformandtherestisinsoliddustgrains.Observationof consequence, CO has become the primary tracer of the inter- theinterstellardustandgasisaprimarytoolstotracethestructure stellar molecular gas. The molecular abundance ratio CO{H is anddistributionofmoleculeclouds,wherethestarformationtakes about 10´4. The CO (J “1Ñ0) survey of Dameetal. (20201) place.ThedominantmoleculargasintheISMisH ,ahomonuclear 2 is the most complete survey which covers the Milky Way of diatomicmoleculewithnopermanentdipolemomentandallowed Galactic latitudes |b| ď 30˝. There are a large number of other dipolerotationaltransitions.ThemosteasilyexcitedH transition 2 CO surveys covering small sky regions around the individual is the quadrupole Sp0q: J Ñ J “ 2 Ñ 0, which has an exci- u l molecular clouds, such as the Orion and the Monoceros clouds tationenergy∆E {k „ 510K,morethananorder of magnitude 20 (Hartmannetal. 1998; Magnanietal. 2000; Wilsonetal. 2005). higherthanthetypicalkinetictemperatureT „ 10–50Kofthe kin PlanckCollaborationetal. (2013) have extracted the full-sky CO ISM.Asaconsequence,H ishardtoexciteandobserve,andone 2 emissioninthreelines,theJ “1Ñ0,J “2Ñ1andJ “3Ñ2lines hastotracethemoleculargasanddeterminetheH columnden- 2 at 115, 230, and 345GHz from the Planck data using a compo- sity,NpH q,byotherindirectmethods.Twoofthemostcommonly 2 nent separation method. The 12CO(J “1Ñ0) emission at wave- usedtracersareCOgasemissionanddustextinction. length λ “2.6mm is then utilized to determine the total col- umn density of molecular gas assuming a CO-to-H conversion 2 factor, the so-called X factor, which relates the surface bright- ‹ E-mail:[email protected](BQC);[email protected](XWL). ness of CO emission and the column density of molecular gas, : LAMOSTFellow. 2 B.Q. Chen et al. X “ NpH q{W (cf. Bolattoetal. 2013 for a review), where There isanumber of wellknown largestar-formingregions CO 2 CO W is the velocity-integrated brightness temperature of 12CO within the footprint of XSTPS-GAC, such as the Perseus, Tau- CO J “ 1 Ñ 0. The X factor works best for cloud ensemble rus and Orion clouds. They form parts of the Gould Belt. Those CO averages. The minimum averaging scale would be that of a sin- cloudsareinthesouthernGalacticplane,locatedatrelativelysmall gle Giant Molecular Cloud (GMC), „10–100pc (Dickmanetal. distances (d ă 800pc; Chenetal. 2014). We study the correla- 1986; Young&Scoville 1991; Bryant&Scoville 1996; Regan tionbetweentheinterstellardustandgasfortheseregions.Within 2000;Papadopoulosetal.2002).ThemostquotedvalueofXfac- these regions there exist diffuse, non self-gravitating clouds as tor for the Milky Way is X „ 2 ˆ 1020cm´2pKkms´1q´1 well as dense, massive, self-gravitating, star-forming clouds like CO (Frerkingetal.1982;Dameetal.2001;Lombardietal.2006). the Orion. Several studies on the dust and gas correlation have The visual interstellar extinction A has been found to have beencarriedoutforthoseindividualclouds.Pinedaetal.(2008a), V a linear relationship with the total column density of hydrogen Goldsmithetal. (2008) and Pinedaetal. (2010) study the Tau- nuclei NpHq.The relationship isacornerstone of the modern as- rusmolecularcloud,whilePinedaetal.(2008b),Leeetal.(2012) trophysics. The classic value of the constant of proportionality, and Leeetal. (2014) focus on the Perseus cloud and Digeletal. i.e. the dust-to-gas ratio, DGR “ A {NpHq, derived from the (1999), Ackermannetal. (2012) and Rippleetal. (2013) on the V measurements of the ultraviolet (UV) absorption of the H i Lyα Orioncloud. lineandtheH Lymanbandtowardasmallnumberofearly-type One can measure the amount and distribution of the atomic 2 starswiththeCopernicussatellite(Savageetal.1977;Bohlinetal. and molecular gas as well as the dust grains by combining var- 1978), is DGR “ 5.34 ˆ 10´22magcm2. More recently, Liszt ious tracers. In this paper, we combine the dust extinction to- (2014a) andLiszt(2014b) trace NpHIqand EpB´Vqacrossthe gether withgasdistributiontraced byH idatafromtheGALFA- skyof Galacticlatitudes|b| =20–60˝.Theyconsider dataonly HI (Peeketal. 2011) and CO data from the Planck mission of relatively low extinction, 0.015 ă EpB ´ Vq ă 0.075mag, (PlanckCollaborationetal.2013),toconstrainthevaluesofDGR for which the hydrogen should mostly be in the form of neutral and X at a high angular resolution of 6arcmin. The exis- CO atoms and thus the corrections of NpHIq for saturation and H2 tence of molecular gas of low CO abundance has been noted formation are unlikely important. From the data, they obtain a previously in theoretical models (vanDishoeck&Black 1988; DGRvalue(3.73ˆ10´22magcm2)thatissmallercomparedtothe Papadopoulosetal.2002),inobservationsofdiffusegasandhigh- reference value. The column density of atomic hydrogen, NpHIq latitudeclouds(Lada&Blitz1988)andinobservationsofirregular can bedetermined by measuring theH i 21cmemission. Thus if galaxies(Maddenetal.1997).ThevaluesofDGRandX deter- CO one can accurately determine the extinction and value of DGR, mined inthecurrent work allow usto further tracethis so-called then the H column density can be derived using the relation, “CO-darkgas”(DG;Reachetal.1994;Meyerdierks&Heithausen 2 NpH2q “ AV{DGR´NpHIq. There are several successful large 1996;Grenieretal.2005;Abdoetal.2010)atbothsmallandlarge H i 21cm emission surveys of the Galaxy, including the Leiden- scales.Wearenotthefirstoneonthistopicofcourse.Forexample, Argentine-Bonn (LAB) full-skysurvey (Kalberlaetal. 2005),the PlanckCollaborationetal. (2011) has obtained an all-skymap of internationalGalacticPlaneSurvey(IGPS,Tayloretal.2003),the dust opticaldepth andcompared itwiththeobserved distribution GalacticAllSkySurvey(GASS,McClure-Griffithsetal.2005)in ofgascolumndensity.Theresultsareusedtoconstrainthecorrela- the southern hemisphere, and the Galactic Arecibo L-band Feed tionbetweenthedustandgas,pτ {N qref,aswellasthevaluesof D H ArrayHisurvey(GALFA-HI,Peeketal.2011)targetingboththe X ,andtoconstructadistributionmapofDGathighandinterme- CO Galacticplaneandhighlatituderegions. diateGalacticlatitudes(|b| ą 10˝).Paradisetal.(2012)carryout Dust grainscan betraced by extinction inthevisibleand in asimilarstudyusingtheextinctiondatadeduced fromthecolour thenear-infrared(IR).Chenetal.(2014)estimatevaluesofextinc- excess of the 2MASS photometry instead of those derived from tionanddistancetoover13 millionstarscatalogued bytheXuyi thefar-IRopticaldepth.BoththeworkofParadisetal.(2012)and 1.04/1.20m Schmidt Telescope photometric survey of the Galac- PlanckCollaborationetal.(2011)arelimitedbytheangularreso- tic anticentre (XSTPS-GAC; Zhangetal. 2013, 2014; Liuetal. lutionoftheLAB21cmHiemissionsurvey(Kalberlaetal.2005), 2014). They derive the extinction by fitting the spectral energy whichis36arcmin.Inthecurrentworkwehaveadopteddatafrom distribution(SED)forasampleof30millionstarsthathavesup- the GALFA-HI survey. As a consequence, the angular resolution plementary IR photometry from the Two Micron All Sky Survey hasbeenimprovedsignificantly. (2MASS; Skrutskieetal. 1997) and the Wide-FieldInfrared Sur- The paper is structured as the following. In Section2 we veyExplorer(WISE,Wrightetal.2010).Togetherwiththephoto- present the 2D extinction map integrated to a distance of 4kpc. metricdistancesdeducedfromthedereddenedXSTPS-GACopti- Section3describesthedataofgastracersusedinthecurrentanal- calphotometry,Chenetal.(2014)constructa3Dr-bandextinction ysis. The correlations between extinction and gas content are in- map within the GAC footprint at a spatial resolution, depending vestigatedinSection4withthemainresultsdiscussedinSection5. onthelatitude, that variesbetween 3–9arcmin. The3D mapof WesummarizeinSection6. Chenetal.(2014)hasalsobeenusedtoconstructa2Dextinction map,integratedtoadistanceof4kpc,approximatelythemaximum distance that dwarf starsinthesample can tracewithsufficiently 2 THEEXTINCTIONMAP highphotometricaccuracy.Thedustextinctionwithinthisdistance iswellconstrained.Themaphasanangularresolutionof6arcmin The photometric extinction and distance catalogue of Chenetal. andisalsopubliclyavailable1.Inthecurrentwork,this2Dextinc- (2014)isfirstusedtoconstructa2Dextinctionmapintegratedtoa tionmapisusedtoinvestigatethedust-to-gasratioandtheXfactor distanceof4kpcforthefootprintofXSTPS-GAC.Thecatalogue withinthefootprintofXSTPS-GAC. contains more than 13 million stars with estimates of r-band ex- tinctionandphotometricdistance.Toensuregoodphotometricac- curacy,onlyobjectsflaggedwithaqualityflag‘A’,i.e.withaverage 1 http://162.105.156.249/site/Photometric-Extinctions-and-Distances. photometricerrorslessthan0.05magforalltheeightbandsused Dust-to-gasrationof GAC 3 toderivetheextinctionanddistance(g, r,andifromtheXSTPS- GAC, J, H and K from the 2MASS, and W1 and W2 from the S WISE),areincluded(SampleAofChenetal.2014).Possiblecan- didates of giants, flagged as ‘G’, are excluded because their dis- tancesmayhavebeengrosslyunderestimated.Thisleavesjustover 7 million stars and they are divided into sub-fields of size 6 ˆ 6arcmin2. For each sub-field, a sliding window of depth 450pc, steppingbystepsof150pc,isusedtoobtainthemedianvalueof extinction for each distance bin. The extinction as a function of distance,Aipdq “ fpdq,whereiistheindexofsub-fields,isthen r i obtained after applying aboxcar smoothing of width450pc. The extinctionversusdistancerelationsofallsub-fields(sightlines)are usedtoconstructa3Dextinctionmap,whichisthenintegratedout toadistanceofd=4kpctoyielda2Dextinctionmaptobeusedin thecurrentanalysis.Mostofthesamplestarsarewithinadistance of4kpcandtheextinctionouttothisdistanceiswellconstrained. The4kpcintegratedmapcanbetreatedasalowerlimitofextinc- tionmapalongthesightlines. Fig. 1 presents the 4kpc dust extinction map thus derived. It has a spatial resolution of 6arcmin. The resolution is chosen to ensure that most of the subfields have a sufficient number of stars (ą 10) to derive a robust relation of extinction as a func- tion of distance. For a small fraction of sub-fields (less than 1.5 Figure1.A2Dextinction map,integrated toadistance of4kpcforthe percent) ofhighGalacticlatitudesorsufferingfromhighextinc- footprintofXSTPS-GAC.Themaphasanangularresolutionof6arcmin. tion,therearenotenoughnumbersofstarsofhighphotometryac- curacies available. For those fields, we have adopted some stars of lower accuracy from the catalogue (SampleC of Chenetal. thanzero.Theassumptioncouldintroducesomebiases,inpartic- 2014). Those sub-fields are flagged by ‘C’. The V-band extinc- ularforsightlinesofverylow,closetozero,extinction.Inprinci- tionAV isconvertedfromArusingtheextinctionlawofYuanetal. ple,both thebest SEDfitalgorithmof Chenetal.(2014) aswell (2013),AV “ 1.172Ar,assumingatotal-to-selectiveextinctionra- astheBayesianapproachofGreenetal.(2014)couldleadtosys- tio RV “ 3.1. The uncertainties of the map are estimated from tematicallyover-estimatedvaluesof extinctionforregionsoflow thestarslocated withinthedistancebinof width450pccentered extinction(Berryetal.2012;Chenetal.2014;Schlaflyetal.2014; at 4kpc and in a width of 450pc. The typical uncertainties are Greenetal.2014).Photometricerrorsobviously contributetothe 0.18mag in AV, or about 0.06mag in EpB´Vq. The uncertain- uncertainties. Other potential sources of error include the colour- tiesaremainlydeterminedbythestellardensityanddepthofthe reddeningdegeneracy.Thosesystematicsmightbethecauseofthe sample. Under favorableconditions, theuncertaintiescouldbeas significantnon-Gaussianityseeninthedistributionofdifferencesof lowas0.04maginAV.Some“stripe-like”artifactscanbeseenon valuesasgivenbyourmapandthoseofSFD(Fig.2).Bycontrast, themap.Theyarecausedbythenightlyvaryingsurveydepthand thedistributionofdifferencesofvaluesbetweenoursandthoseof photometricaccuracyoftheXSTPS-GAC.Anotableemptypatch Schlaflyetal.(2014)followscloselyaGaussianone,reflectingthe aroundl„160˝ andb„20˝ isduetotheabnormallylargephoto- factthatbothuseasimilarmethodtoestimatetheextinction. metricerrorsofXSTPS-GACinthatarea. Forhighextinctionregions[EpB´Vqą0.8mag],SFDred- Chen et al. (2014) have compared their SampleA me- dening values are systematically higher than ours while those of dian extinction map with those of Schlegeletal. (1998) and Schlaflyetal.(2014)maparelower.Mostofthosehighlyreddened Froebrichetal.(2007),andfoundsomesystematicoffsetsamongst regionsforwhichourestimatesofreddeningaresignificantsmaller them.Partsofthedifferencesareclearlycausedbythedifference than given by the SFD map are actually from low Galactic lati- in distance traced by the three maps [2–3kpc for SampleA me- tudes.Infact,ifwerestricttheplotsofFig.2toabsolutelatitudes dianextinctionmapofChenetal.,essentiallyinfinitefortheSFD higher than 20˝ (|b| ą 20˝), then the systematic differences be- map and about 1kpc for that of Froebrichetal. (2007), respec- tween ours and the SFD values disappear. Thus it is very likely, tively]. The 4kpc extinction map presented here should have in- forthosehighlyreddened,lowlatituderegions,theintegrationdis- cluded almost all the dust extinction alone thesightlines for sub- tanceof4kpcusedtoderiveourcurrent2Dextinctionmapisnot fieldsofintermediateandhighGalacticlatitudes(|b|ą10˝),thus deep enough. The systematic lower values given by the map of should be directly comparable with that of SFD. In addition, it Schlaflyetal.(2014)compared tooursforthosehighlyextincted shouldalsobecomparablewiththe4.5kpcreddeningmapnewly regionsismuchmoredifficulttounderstand,asbothanalysesuse derivedfromthePanSTARRS(Kaiseretal.2010) photometry by similar methods, although the results are based on different data Schlaflyetal. (2014). Fig. 2 compares values of extinction from set.TheintegrationoftheSchlaflyetal.mapis500pcfurtherthan our 4kpc extinction map with those of SFD and Schlaflyetal. ours. But instead of giving higher values, the map of Schlafly et (2014) for sightlines of Galactic latitude |b| ą 10˝. Values of al. actually yields lower values compared to ours. Schlaflyetal. A are converted to EpB´Vq assuming R “ 3.1. Except for (2014)noticethatwhentheirmapiscomparedtothatofSFD,their V V someoutliers,ourvaluesagreeswellwithboththoseofSFDand map yields systematic lower values even for regions of latitudes Schlaflyetal.(2014)forEpB´Vqă0.8mag.Inderivingtheex- |b| ą 30˝.ItispossiblethatSchlaflyetal.(2014)mayhavesys- tinction,bothouranalysesandthoseofSchlaflyetal.(2014)have tematically underestimated the reddening values for some of the made the assumption that all reddening values should be no less highlyextinctedregions.ForthewholeXSTPS-GACfootprintof 4 B.Q. Chen et al. highestangularresolutionsandbestsignal-to-noiseratios(SNRs) areemployedinthiswork. 3.1 Hidata WeusetheHidatafromtheGALFA-HIsurveytotracethecontent ofatomicgas.TheGALFA-HIsurveyusesAreciboL-bandFeed Array,aseven-beamarrayofreceiversmountedatthefocalplane of the 305m Arecibo telescope, to map the H i 21cm emission in the Galaxy (Peeketal. 2011). The survey aims to cover both the Galactic plane as well as the high Galactic latitudes with an angularresolutionof3.4arcmin.TheGALFA-HIfirstdatarelease (DR1)hasbeenpresentedbyPeeketal.(2011).TheDR1datacov- ers7520deg2 ofthesky,producedfrom3046hrworthofdataob- tainedfor12individualprojects.Thelocalstandardofrest(LSR) velocity of the emission ranges from ´700 to `700kms´1. The rms noise in a 1kms´1 channel ranges from 140mK to 60mK, withamedianof80mK.TheDR1datacanbedownloaded from https://purcell.ssl.berkeley.edu/. TheGALFA-HIDR1datadoesnotcovertheentirefootprint of XSTPS-GAC,but only the region of 3h ă RA ă 9h and 0 ă Dec ă 39deg. This unfortunately restricts the sky cov- erage of thecurrent work. Weuse the data of velocity resolution 0.8kms´1. The H i column density NpHIq is derived from the profileofbrightnesstemperatureafterapplyingasmallcorrection fortheopticaldeptheffectsassumingaspintemperatureof145K, asadoptedbyLiszt(2014a,b).Thetemperaturecorrespondstothe meanratioofHi21cmemissionandabsorption(Lisztetal.2010) measured by the Millennium H i Emission-Absorption Survey of Heiles&Troland(2003).ValuesofNpHIqderivedfortheXSTPS- GACfootprintrangefrom1.5ˆ1020to1.2ˆ1022cm´2,withame- dianof1.4ˆ1021cm´2.ThedistributionofNpHIqthusdeducedis shownintheleftpanelofFig.3. 3.2 COdata Figure2.Comparisonsofextinctionvaluesasgivenbyourmapandthose givenbytheSFDmap(toptwopanels),andbythemapofSclaflyetal. We use the CO-integrated intensity image produced by (2014;lowertwopanels).Theredplusesinthefirstandthirdpanelsrep- PlanckCollaborationetal. (2013), which is based on the resentmedianvaluesintheindividualbins.Ablackstraightlinedenoting Planck first 15.5month survey data (two full-sky scans) and completeequalityisalsooverplottedtoguidetheeyes.Inthesecondand uses the full-sky maps of the nine Planck frequency bands, fourthpanels,theblackcurveisaGaussianfittothedistributionofdiffer- encesofvalues. and also the 100, 217 and 353GHz full-sky bolometer maps. PlanckCollaborationetal. (2013) provide all sky maps of the velocity-integratedemissionoftheCO J “ 1 Ñ 0, J “ 2 Ñ 1 |b| ą 10˝, our map gives on average only marginally larger val- andJ “3Ñ2transitions.Theyproducethreetypesofmaps.We choose the Type 3 map generated from the multi-line approach. uescomparedtothoseofSFDandSchlaflyetal.(2014),by0.013 and0.015mag,respectively.Thescattersofdifferencesbetweenthe The approach assumes fixed CO line ratios in order to achieve the highest possible signal-to-noise ratios, and has an angular valuesareabout0.06maginEpB´Vq,comparabletothetypical uncertaintiesestimatedforourmap(0.18maginA ). resolutionof „ 5.5arcmin. Thestandard deviation of theType 3 V CO(1Ñ0)map, whenusedatanangular resolutionof 15arcmin, is typically 0.16K, compared to 1.77 and 0.45K for the Type 1 and2maps,respectively.Forcomparison,theCOsurveyofDame (2011) has a typical uncertainty of 0.6K. We choose the Planck 3 GASTRACERS Type 3 CO (1Ñ0) map because of its high angular resolution The interstellar gas can either be atomic, molecular or ionized. andhighSNR.Type3mapisalsomoresuitableforintermediate Those three phases are commonly traced by the H i 21cm emis- and high-Galactic latitudes (cf. PlanckCollaborationetal. 2013 sion, themolecular CO pure rotational transitions and by the H i formoredetail).Thereissome13COcontaminationinthePlanck Hα recombination line, respectively. Theionized gas can also be CO(1Ñ0)map.Tocorrectforthis,wehavedividedthedatabya traced by thefree-freeemission of thermal electrons. Thecontri- factorof1.16(PlanckCollaborationetal.2013). butionoftheionized gas,whicharemostlyrestrictedtotheindi- Dameetal.(2001)combinedataofCOsurveysoftheGalac- vidual,isolatedHiiregions,tothetotalgascontentisneglectedin ticplaneandlocalmolecularcloudsandproduceacompositemap thecurrentstudy.Onlymostrecentlypublisheddatathathavethe ofanangularresolutionof8.4arcmin.Thedatawereobtainedwith Dust-to-gasrationof GAC 5 Figure3.Contours of NpHIq(leftpanel) andWCO (rightpanel) inthefootprint ofXSTPS-GAC.Thegrey-scale background imageillustrates the4kpc extinctionmap.Thesquaresdenotedifferentregionsanalyzedinthecurrentwork.Themapshaveanangularresolutionof6arcmin. the1.2mtelescopeoftheHarvard-SmithsonianCenterforAstro- fittingstrategysimilartothatof Paradisetal.(2012).Thefitting physics.Thedatapublished byDameetal.(2001)aremainlyfor processcanbedescribedasfollowing. theGalacticplane.DataofhighGalacticlatitudes(|b| ą 20˝)are notavailable.Inthispaper,thedataofDameetal.(2001)areonly (i) We first assume that there is no DG in all subfields (pix- usedasareferencetocheckthedataweactuallyuse. els).WethenselectpixelswheretheCOemissionislow(WCO ă ThePlanckType3CO-integratedintensityimageispresented 0.2Kkms´1). The column density of molecules of those pixels intherightpanelofFig.3.Weonlyshowthefootprintwheredata NpH2q must be less than 2.0 ˆ 1019cm´2 if one assumes that ofAV,N(Hi)andWCO areallavailable.Itshowsexcellentagree- XCO “1ˆ1020cm´2pKkms´1q´1.Giventhattheminimumcol- mentwiththedustextinctionmap.Inthispaper,wefirstbringall umn density of atomic gas within the XSTPS-GAC footprint is inputdatasetstoacommonangularresolutiondeterminedbythe 1.5ˆ1020cm´2(seeSection3.1),thegascolumndensityofthose lowestangularresolutiondataset,whichis6arcminoftheextinc- pixelscanbeconsidered asbeingcontributedbyatomicgasonly tion map. This is done by performing a Gaussian kernel smooth. [N(H)=N(Hi)].Undersuchassumptions,wethenderivethebest- Thankstothehighresolution,wecananalysisthecorrelationbe- fitvaluesofDGRandA0 ofthosepixels. V tweendust andgasatintermediateGalacticlatitudesof theGAC (ii) The best-fit values of DGR and A0 obtained from the last V fortheindividualmolecularclouds,suchastheOrion,Taurusand step are then applied to all pixels, and this time the value of Perseus cloud. We divide the clouds into eight different regions. XCO is fitted as a free parameter. We have smoothed the data Their positions and ranges on the sky are marked by the squares to an angular resolution of 2˝, corresponds to about 140pc at inFig. 3, together witharegion of diffuse gaswithout any obvi- a distance of 4kpc and 15pc at a distance of 400pc (where ousmolecularcloudsinthenorthernGalactichemisphere,notedas most of the molecular clouds analyzed in the current work, the “North”inthecurrentwork. Orion, Taurus and Perseus clouds locate within) in this step to obtain the statistical cloud-ensemble-average values of X CO (Dickmanetal. 1986; Young&Scoville 1991; Bryant&Scoville 4 EXTINCTIONANDGASCORRELATION 1996;Papadopoulosetal.2002). (iii) TheabovederivedvaluesofDGR,A0 andX areapplied V CO The observed visual extinction AV can be modelled by contribu- toEq.(1)tocalculatevaluesofAmodofallpixels.Aχ2valueisthen V tionsfromtheatomicgasandtheCO-tracedmoleculargas,as calculatedasχ2 “ř pA ´Amodq,whereiisthepixelindex. i V,i V,i AmVod “DGRpNpHIq`2XCOWCOq`A0V, (1) (iv) ThecolumndensityofDGisthencalculatedfromformula, whereA0 isaconstanttoaccountforpossiblemeasurementoffset NpDGq“pA ´Amodq{DGR. (2) V V V of the extinction map and/or possible contribution to the extinc- tionfromtheionizedgas.Thetotalgascolumndensityisgivenby, (v) Wethengobacktothefirststep,butthistimeusetheDG NpHq“NpHIq`2NpH2q.Weconstrainthethreefreeparameters, distribution derived from the previous step. We select pixels that DGR, X andA0,usingthevisualextinction,Hicolumndensity bothhavelowCOemission(W ă0.2Kkms´1)andnoDGcon- CO V CO andCOintegratedlineintensitymapsdescribedinthelastSection. tent[NpDGq ď 0cm´2].Thefieldsareusedtoupdatethebest-fit Considering the high resolution of the maps and thelarge uncer- valuesofDGRandA0 andtheprocessisiterateduntilaminimum V taintiesofextinctionforlowextinctionregions,wehaveadopteda χ2valueisreached. 6 B.Q. Chen et al. presented in Fig. 5. Clearly, different clouds seem to have differ- ent dust and gas properties. The values of DGR deduced for the individualregionsofmolecularcloudsrangefrom3.24ˆ10´22to 7.74ˆ10´22magcm2.Forthediffusegasregion“North”,thevalue is 1.38ˆ10´22magcm2. The values of X for different clouds CO range from 0.84 ˆ1020 to 2.39ˆ1020cm´2pKkms´1q´1. The correlationbetween A andNpHqisquitegoodfortheindividual V clouds.Inthe“North”region,thelackofhighCOcontent pixels makesitverydifficulttofitX .Thedustextinctioninthisregion CO is also low (most of the pixels have A ă 1mag), leading to a V value of DGR, much smaller than those found for the regions of molecularclouds. 5 DISCUSSION 5.1 Comparisonwithpreviouswork Figure4.CorrelationbetweenthevisualextinctionAVandthetotalcolumn The average value of DGR deduced here for the XSTPS-GAC densityofhydrogen, NpHq “ NpHIq`2NpH2q,forthewholeXSTPS- footprint that excludes the Galactic plane, p4.15 ˘ 0.01q ˆ GACfootprintof|b|ą10˝thatexcludestheGalacticplane.Thebluecon- 10´22magcm2, is in good agreement with the results of pre- toursrepresentthedensityofpixelsonalogarithmicscale.Theredpluses vious work. It is slightly smaller than the most cited value, aremedianvaluesfortheindividualN(H)bins.Theredsolidlineisafitto 5.3ˆ10´22magcm2,derivedbyBohlinetal.(1978)fromtheUV allthedatapoints. and optical absorption line measurements toward hot stars. It is alsoslightlysmaller thanvalues of p6.0´6.5qˆ10´22magcm2 derivedfromthereddening andtheLyαabsorption towardearly- Inthecurrentwork,wehaveomittedtheGalacticplanewhich type stars (Shull&vanSteenberg 1985; Diplas&Savage 1994). showsverystrongatomicgasemissionandwherethecontribution On the other hand, Liszt (2014a) finds an even smaller value of of ionized gas can not be ignored. Thus only data from Galactic 3.7ˆ10´22magcm2fromtheSFDmapcombinedwith21cmHi latitudes|b| ą 10˝ areusedthroughout thepaper.Sincewehave measurements.ThevaluesofDGRfortheindividualcloudregions excludedtheGalactic-planeclouds,thoseincludedarerepresenta- varybyafactoroftwo,from3.2to7.7ˆ10´22magcm2.Theyare tiveofthediffusecloudcomponentoftheGalaxy.Usuallyamini- also consistent with values from the previous work. Paradisetal. mumχ2 isreachedafterthefirstiterationthatassumesthereisno (2012) obtain an average value of 5.46ˆ10´22magcm2 for the DGcomponentatallpixels.WelisttheresultsinTable1forboth whole region of the outer Galaxy (|l| ą 70˝) and values of thewholeXSTPS-GACfootprintof|b|ą10˝andfortheindivid- p3.4´8.7qˆ10´22magcm2forindividualregions,ingoodagree- ualselectedregions.Errorsoftheresultantparametersarederived mentwithourresults.Avarietyoffactorsmayleadtovariationsof usingabootstrapmethod.Foreachparameter,weapplythealgo- dust-to-gasratiosamongst differentregions,includingdifferences rithmto1,000randomlyselectedsamplesandderivetheparame- industcontentandmetalabundance.Thedustextinctionlawofdif- tersofthosesamples.TheresultantparametersfollowaGaussian ferentregionsmayalsodiffer.Froebrichetal.(2007)discussvari- distribution.Thevarianceof theGaussiandistributionistakenas ationsoftheextinctionlawamongstindividualcloudsintheGAC theerrorofthecorrespondingparameter. area. In fact, we notice that the value of DGRdecreases within- We present in Fig. 4 the correlation between visual extinc- creasingpower-law index β of extinctionlaw inthenear-IR.The tionAV andtotalcolumndensityofhydrogen, NpHq “ NpHIq` index β is known to correlate with the dust properties, including 2X W ,forallXSTPS-GACpixelsof|b| ą 10˝,excludingthe thegrainsizedistribution(Draine2003). CO CO Galacticplane.Despitethelargescatters,inparticularforpixelsof The value of CO to H conversion factor, X , deter- 2 CO lowextinction,thedataexhibitasignificantlinearcorrelationbe- mined hitherto differs from one analysis to another. Our best-fit tweenthetwoquantities.Thedatayieldabest-fitvalueofDGRof value of 1.72 ˆ 1020cm´2pKkms´1q´1 for the whole XSTPS- p4.15˘0.01qˆ10´22magcm2.Thebest-fitvalueofX isfound GAC footprint of |b| ą 10˝ is close to the Galactic aver- CO tobep1.72˘0.01qˆ1020cm´2pKkms´1q´1. age value (Strong&Mattox 1996). The value is slightly lower The southern Galactic hemisphere covered by the XSTPS- but nevertheless quite close to the value of p1.8 ˘ 0.03q ˆ GACsurvey(b ă ´10˝) includeseveral prominent giant molec- 1020cm´2pKkms´1q´1, derived for Galactic regions of |b| ą ular clouds, including the Orion, Perseus, Taurus clouds and the 5˝ by Dameetal. (2001) based on extinction data from SFD, Tauruscloudextensionregions.Wehaveearmarkedeightregions H i data from the Dwingeloo-Leiden H i survey and CO data andexaminethegasanddustcorrelation.Wehavealsoappliedour from Dameetal. (2001). Glover&MacLow (2011) demonstrate algorithmtoaregionofdiffusegasinthenorthernGalactichemi- by numerical simulations that X falls off with extinction as CO sphere,earmarkedas“North”.Theranges,meanextinction,mean X 9 A´3.5 for clouds of mean extinction smaller than 3mag. CO V NpHIq and mean WCO of theseregions arelistedinTable2. The However, our current results do not show that kind of relation. positionsofthoseregionsaremarkedbysquaresinFig.3.TheCO In addition, our derived values of X are significantly smaller CO and extinction maps show remarkably similar features, although thanpredictedbythenumericalsimulationsofGlover&MacLow thosefeaturesarenotsoobviousintheHimap.Forthoseindivid- (2011).Polketal.(1988)considerasimpletwo-componentcloud ualregions,theresultantparametersarealsolistedinTable1and model which consists of GMC cores and lower column density therelevantdatashowingthecorrelationbetweenA andNpHqare (“diffuse”) molecular gas. The conversion ratios for the dense V Dust-to-gasrationof GAC 7 Table1.DusttogasratioDGRandCO-to-H2conversionfactorXCOderivedforindividualregionstowardtheGalacticanticentre. Region (10´22DmGaRgcm2) (maAg0V) (1020cm´2XpKCOkms´1q´1) MMHHppDHGIqq MMHHppHDC2GOqq fDG 1021pAcNmVp´´D2GAmqcVaqg´1 (mAacVg) Allof|b|ą10˝ 4.15˘0.01 0.06˘0.002 1.72˘0.01 0.23 1.24 0.55 Orion1 7.74˘0.21 ´0.75˘0.05 1.54˘0.01 0.09 0.45 0.31 2.15˘0.07 1.10˘0.05 Orion2 5.53˘0.08 ´0.29˘0.02 1.34˘0.03 0.10 1.43 0.59 1.69˘0.07 0.97˘0.06 Taurus 3.65˘0.10 0.34˘0.02 1.38˘0.01 0.22 0.31 0.24 2.75˘0.12 0.91˘0.04 TaurusE1 6.42˘0.10 ´0.15˘0.02 0.84˘0.01 0.11 1.43 0.59 2.28˘0.02 0.76˘0.04 TaurusE2 5.62˘0.08 ´0.14˘0.01 1.69˘0.04 0.11 4.01 0.80 1.89˘0.07 0.64˘0.05 TaurusE3 6.33˘0.15 ´0.13˘0.02 1.41˘0.02 0.13 3.42 0.77 2.28˘0.03 0.57˘0.04 Perseus1 5.01˘0.08 0.10˘0.01 1.04˘0.01 0.18 0.89 0.47 2.10˘0.04 0.59˘0.05 Perseus2 3.24˘0.28 0.22˘0.03 2.39˘0.01 0.22 1.05 0.52 2.36˘0.04 0.55˘0.04 North 1.38˘0.02 0.20˘0.002 0.95 2.40˘0.03 0.22˘0.04 Table2.Individualregionsstudiedinthecurrentwork. Region longitude latitude AV(mag) NpHIq(1020cm´2) WCO(Kkms´1) Orion1 211˝ălă201˝ ´17˝ăbă´10˝ 1.44 23.93 1.61 Orion2 201˝ălă188˝ ´18˝ăbă´10˝ 1.04 22.31 0.56 Taurus 178˝ălă164˝ ´19˝ăbă´10˝ 1.38 16.47 4.22 TaurusE1 189˝ălă171˝ ´31˝ăbă´17˝ 1.02 16.78 0.75 TaurusE2 182˝ălă165˝ ´45˝ăbă´32˝ 0.70 14.62 0.12 TaurusE3 197˝ălă183˝ ´41˝ăbă´28˝ 0.66 11.96 0.16 Perseus1 165˝ălă150˝ ´25˝ăbă´10˝ 0.93 13.35 1.30 Perseus2 171˝ălă152˝ ´32˝ăbă´25˝ 0.65 11.49 0.49 North 220˝ălă175˝ 10˝ăbă30˝ 0.31 7.70 0.00 cloud cores and the diffuse clouds are different, estimated at „ 4 ˆ 1020 and 0.5 ˆ 1020cm´2pKkms´1q´1, respectively. Thus themeasuredvaluesof X inthecurrentwork(around„ 1.5ˆ CO 1020cm´2pKkms´1q´1 )areclosertothoseofthediffuseclouds of the work by Polketal. (1988) than the dense ones, indicat- ing that the clouds in our sample are dominated by the diffuse phases. Pinedaetal. (2008a) find that X varies from 0.9 to CO 3.0 ˆ 1020cm´2pKkms´1q´1 amongst several regions of the Perseus cloud. Ackermannetal. (2012) find that for the Orion cloud, X „ p1.3 „ 2.3q ˆ 1020cm´2pKkms´1q´1. Finally, CO Abdoetal. (2010) report a significant variations ranging from „0.9ˆto„1.9ˆ1020cm´2pKkms´1q´1,fromtheGouldBeltto thePerseusarm.Allthosefindingsareallingoodagreementwith Figure6.Leftpanel:Comparisonofatomichydrogencolumndensitiesde- ourresults. rivedassumingaconstantspintemperatureofTs “ 145Kandthosede- duced assuming optically thin emission. Right panel: Comparison ofthe correctedPlanckCOdataandthoseofDameetal.(2001).Theredpluses aremedianvaluesfortheindividualbinsandtheblacksolidlinesrepresent 5.2 Validationofthegastracers thelineofequal. Both PlanckCollaborationetal. (2011) and Paradisetal. (2012) assumethatthe21cmlineisopticalthinwhencalculatingthecol- umndensityofatomicgas.Fukuietal.(2014)infersthattheDGin theGalaxyisdominatedbyopticallythickandcoolHigas,which tiesderivedassumingopticallythinandthoseassumingaconstant implies that the average density of H i is two times higher than T “145KispresentedintheleftpanelofFig.6.Thelattervalues s thatderivedassumingoptically-thininthelocalinterstellarspace. are1.1–1.3timeshigherthantheiropticallythincounterpart. In this work we have applied a first-order opacity correction, as- Intherightpanel ofFig.6,wecomparethePlanckCOdata sumingaconstantT fortheemission.Theneedtocorrectforthe withthoseofDameetal.(2001).ThePlanckType3COdataare s opacityeffectsinthe21cmlineprofilesultimatelylimitstheaccu- ingoodagreementwiththoseofDameetal.(2001),aftercorrect- racyof NpHqdeterminations.Wefindthatformostdirectionsto- ingforaconstantslopeof1.16.Wehaveinvestigatedtheparame- wardtheGACbutoutoftheGalacticplane,thecolumndensitiesof tersfortheoverlappingsubfieldsusingtheCOdataofDameetal. neutralhydrogen derivedaresystematicallyhigher thanthosede- (2001)insteadofthosePlanck.Ityieldsconsistentresultsverysim- ducedassumingopticallythin.AcomparisonofHicolumndensi- ilartothosepresentedhere. 8 B.Q. Chen et al. Figure5.SameasFig.4butfortheindividualregions.Thenameoftheregionismarkedineachpanel. 5.3 TheCOdarkgas per cent of the total gas mass, very close to the value of 22 per centof PlanckCollaborationetal.(2011) andthevalueof 16per There is a clear excess of A as given by the extinction map V centofParadisetal.(2012).Thesmalldifferencesamongst those compared to the simulated Amod for regions of NpHq ą 1.2 ˆ V estimatesarehoweverprobablyinsignificantowingtothelargeun- 1021cm´2 (A ą 0.6mag,seeFig.4).Theexcesscorrespondsto V certaintiesinvolvedintheanalyses.Ontheotherhand,the“close” the presence of CO dark gas, i.e.DG (PlanckCollaborationetal. agreement betweentheresultsfromdifferentanalyses, whichuti- 2011; Paradisetal. 2012). The DG could be interstellar gas that lizedifferentdatasetofdifferingspatialresolutionsandskycover- exists in the form of H along with C i and C ii, but con- 2 ageprobablyindicatea“trueuniversal”fractionofDGmassrela- tains little or no CO. The column density of DG, NpDGq, tivetothatofallgas,„20percentonlargeGalacticscale. can be determined using Eq.(2). The total mass of hydrogen of the DG component, MpDGq, the mass of atomic hydrogen, ThespatialdistributionofDGderivedfromthecurrentwork MpHIq, and the mass of the CO-traced molecular gas, MpHC2Oq, isshown intheupper panel of Fig.7for theentireXSTPS-GAC canbeestimatedfollowingPlanckCollaborationetal.(2011)and footprintwheretheGALFA-HIdataareavailable.Regionswhere Paradisetal. (2012): MpDG{HI{HC2Oq9řNpDG{HI{HC2Oq. We WCO ą 1Kkms´1 have been excluded. The distribution agrees haveassumedthatallgascomponenthavethesamespatialextent. well with that of PlanckCollaborationetal. (2011) and clearly Wehave MpDGq{MpHIq “ 0.23 and MpDGq{MpHC2Oq “ 1.24, showsthattheDGisdistributedmainlyaroundmolecularclouds, respectively. The values of those quantities thus derived are pre- suchastheTaurus,PerseusandOrioncloudsandexhibitsfeatures sentedinTable1.OurestimatesofDGmassarelowerthanthose similartothedustdistribution.SignificantamountofDGisfound foundbyPlanckCollaborationetal.(2011)butareconsistentwith south of the Galactic plane within the footprint of XSTPS-GAC thoseofParadisetal.(2012).TheestimatedDGmassisabout19 butlittleinthenorth.IfwecomparethemassofDGtothoseofHi Dust-to-gasrationof GAC 9 andCOamongstdifferentclouds,weseesignificantvariations.For example,theratioof MpDGq{MpHIqvariesfromavalueof0.09 forOrion1to0.22fortheTauruscloudandto0.95fortheNorth region. Similarly, the ratio of MpDGq{MpHCOq increases from a 2 value of 0.31 for the Taurus cloud to 1.43 for Taurus E1/Orion 2 and to 3.42 and 4.01 respectively for Taurus E3 and E2. The valueof MpDGq{MpHCOqfortheNorthregionisnotlistedinTa- 2 ble 1 given the extremely large uncertainty as a consequence of the lack of detection of CO emission in this region. All the ra- tiosquoted above arehowever highly dependent on thevaluesof DGR and X derived. The mass fraction of DG, f , isdefined CO DG as f “ MpDGq{rMpDGq`MpHCOqs.Itsvaluesfortheindivid- DG 2 ualregionsarealsogiveninTable1.FortheentireXSTPS-GAC regionof|b| ą 10˝,wefind f =0.55,ingoodagreement with DG the value of 0.54 found by PlanckCollaborationetal. (2011) for thesolarneighborhood,andcomparabletothevalueof0.43found byParadisetal.(2012)forouterGalaxyof|b| ą10˝.Ourresults arealsoinqualitativeagreementwiththeanalysisbyGrenieretal. (2005),Abdoetal.(2010)andAckermannetal.(2011),whofind that the DG component amounts to 40´400 per cent of the CO- tracedmassinlocalsmallmolecularclouds,suchastheCepheus, Polaris,Chamaleoncloudsetc.Maddenetal.(1997)findadditional molecularmassin[Cii]-emittingregionsequivalenttoatleast100 times the mass of CO traced molecular gas in irregular galaxies. Thevaluesof f inthecurrentworkareconsistentwiththethe- DG oreticalworkofPapadopoulosetal.(2002),butmuchlargerthan the value modelled by Wolfireetal. (2010), f “ 0.3, i.e. the DG DG mass is only about 43 percent of the CO traced molecular mass. The reason could be that the clouds we studied are all off the Galactic plane while Wolfireetal. (2010) consider the self- gravitatinghigh-A structures(A ě 2mag)thatobeytheLarson V V relations.Bycontrast,Papadopoulosetal.(2002)andotherstudies areconcentrateonthediffuse-typelow-A H cloudsthataremore V 2 likelytobeCO-dark,i.e.thetypeofmolecularISMthatisbeing studied in this work. PlanckCollaborationetal. (2011) have also pointed out that Wolfireetal. (2010) adopted the Solomonetal. (1987)valueforthemeancolumndensityofGMCs,whichis2-5 timeslargerthantherecentresultofHeyeretal.(2009).Amongst Figure 7. Upper panel: Distribution of excess column densities. White the different clouds, f decreases from „ 0.7 in the Taurus ex- areasareregionswherenosuitableextinctionorHidataareavailable,and DG tensionsE1–E3(witharelativelylowaverageextinction)to„0.2 regionswheretheCOemissionissointensesuchthatWCOą1Kkms´1. in the Taurus and Orion clouds (with a relatively high extinction Thesquares delineate thedifferent regions analyzed inthe current work. Themaphasanangularresolutionof6arcmin.Lowerpanel:Correlation onaverage).AlinearcorrelationbetweentheDGcolumndensity NpDGqand thevisual extinction A isfound for thedifferent re- between the visual extinction AV and the DG column density. Pluses of V differentcoloursarebinnedmedianvaluesforthedifferentregions,whereas gionsanalyzedhere(lowerpanelofFig.7).Theratiosofthosetwo linesofdifferentcoloursarelinearfitstothebinnedmedianvalues. quantitiesshowlittlevariationsamongst thedifferentregions.We find that NpDGq “ p1.8 „ 2.4qˆ1021pA ´Acqcm´2, where V V Ac is a constant, representing the minimum extinction required V EpB´Vq].AcomparisonwiththewidelyusedSFDdustmapand for the presence of DG. The constant Ac thus represents the ex- V thenewlyderivedSchlaflyetal.(2014)reddeningmapshowsthat tinctionoftheHi-to-H transitionregion.Theoretically,thisvalue 2 ourmaphasahighfidelity. changeswiththetotalHnucleidensityn,metallicityz,FUVfield The integrated extinction map is combined with high- G andH formationrateR oftheclouds(Elmegreen1989,1993; 0 2 f resolution HI and CO measurements to study the correlation be- Papadopoulosetal.2002).Inthecurrentworkwefindthatitsvalue tween the interstellar gas content and dust extinction within the increaseswiththeaverageextinctionoftheregion,fromavalueof XSTPS-GACfootprint.Themainresultsare: 0.2magfortheNorthregionto1.1magforOrion1. (i) Anaveragevalueofdust-to-gasratioDGR“p4.15˘0.01qˆ 10´22magcm2andanaverageCO-to-H conversionfactorX “ 2 CO p1.72˘0.01qˆ1020cm´2pKkms´1q´1arefoundfortheXSTPS- 6 SUMMARY GAC footprint of |b| ą 10˝. The results are consistent with the Inthispaper,wehaveconstructeda2Dextinctionmapintegrated findingsofpreviouswork. outtoadistanceof4kpcforthefootprintofXSTPS-GACusingthe (ii) We find a factor of „ 2 cloud-to-cloud variations in the datapresentedinPaperI.Themaphasahighangularresolutionof values of DGR and X amongst the molecular clouds south of CO 6arcmin and a low noise level of 0.18mag in A [„60mmag in the Galactic plane within the XSTPS-GAC footprint. Variations V 10 B.Q. Chen et al. of DGR could partly be caused by the differences in dust prop- Dame,T.M.,Hartmann,D.,&Thaddeus,P.2001,ApJ,547,792 erties, such as the grain size distribution of the different clouds. Dickman, R.L.,Snell,R. L.,&Schloerb, F.P.1986, ApJ, 309, The X values found for the molecular clouds are around „ 326 CO 1.5ˆ1020cm´2pKkms´1q´1,incloseagreement withthework Digel,S.W.,Aprile,E.,Hunter,S.D.,Mukherjee, R.,&Xu,F. ofPolketal.(1988). 1999,ApJ,520,196 (iii) WefindarangeofDGmassfractionsimilartothosefound Diplas,A.&Savage,B.D.1994,ApJS,93,211 byPlanckCollaborationetal.(2011)andbyParadisetal.(2012). Draine,B.T.2003,ARA&A,41,241 ThemassofDGisabout23and124percentthoseoftheatomic Elmegreen,B.G.1989,ApJ,338,178 and the CO-traced molecular gas, respectively. The fraction of Elmegreen,B.G.1993,ApJ,411,170 molecularmassofthecomponent, f ,isabout0.55.The“close” Frerking,M.A.,Langer,W.D.,&Wilson,R.W.1982,ApJ,262, DG agreement between results from different analyses, which utilize 590 different data set of differing spatial resolutions and sky cover- Froebrich, D., Murphy, G. C., Smith, M. D., Walsh, J., & Del ageprobably indicatea“trueuniversal”fractionof DGmassrel- Burgo,C.2007,MNRAS,378,1447 ative to that of all gas, which is „ 20 per cent on largeGalactic Fukui,Y.,etal.2014,ArXive-prints scale. Amongst the different clouds, f decreases with increas- Glover,S.C.O.&MacLow,M.-M.2011,MNRAS,412,337 DG ing average extinction. Our DG mass estimates are much larger Goldsmith,P.F.,Heyer,M.,Narayanan, G.,Snell,R.,Li,D.,& thanthatmodelledinWolfireetal.(2010)butquiteconsistentwith Brunt,C.2008,ApJ,680,428 thetheoreticalworkofPapadopoulosetal.(2002).Inaddition,we Green,G.M.,etal.2014,ApJ,783,114 find that the DG column density has a linear relationship with Grenier,I.A.,Casandjian,J.-M.,&Terrier,R.2005,Science,307, thevisual extinction.TheaverageDG-to-dustratio NpDGq{A is 1292 V „ 2.0ˆ1021cm´2mag´1.Theextinctionof theHi-to-H2 tran- Hartmann,D.,Magnani,L.,&Thaddeus,P.1998,ApJ,492,205 sitionlayervariesbetween0.22–1.10mag,andincreaseswithin- Heiles,C.&Troland,T.H.2003,ApJ,586,1067 creasingaverageextinctionofthecloud. Heyer,M.,Krawczyk,C.,Duval,J.,&Jackson,J.M.2009,ApJ, 699,1092 Kaiser,N.,etal.2010,inSocietyofPhoto-OpticalInstrumenta- tionEngineers(SPIE)ConferenceSeries,Vol.7733,Societyof ACKNOWLEDGEMENTS Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSe- We thank the anonymous referee for instructive comments that ries improved the current work significantly. This work is par- Kalberla, P. M. W.,Burton, W. B.,Hartmann, D., Arnal, E.M., tially supported by National Key Basic Research Program of Bajaja,E.,Morras,R.,&Po¨ppel,W.G.L.2005,A&A,440,775 China2014CB845700andChinaPostdoctoralScienceFoundation Lada,E.A.&Blitz,L.1988,ApJ,326,L69 2014M560843. Lee,M.-Y.,etal.2012,ApJ,748,75 ThisworkhasmadeuseofdataproductsfromtheGuoshou- Lee,M.-Y.,Stanimirovic´,S.,Wolfire,M.G.,Shetty,R.,Glover, jing Telescope (the Large Sky Area Multi-Object Fibre Spectro- S.C.O.,Molina,F.Z.,&Klessen,R.S.2014,ApJ,784,80 scopicTelescope,LAMOST).LAMOSTisaNationalMajorSci- Liszt,H.2014a,ApJ,783,17 entificProjectbuiltbytheChineseAcademyofSciences.Funding Liszt,H.2014b,ApJ,780,10 fortheprojecthasbeenprovidedbytheNationalDevelopmentand Liszt,H.S.,Pety,J.,&Lucas,R.2010,A&A,518,A45 Reform Commission. LAMOST is operated and managed by the Liu,X.-W.,etal.2014,inFeltzingS.,ZhaoG.,WaltonN.,White- National Astronomical Observatories, Chinese Academy of Sci- lockP.,eds,Proc.IAUSymp.298,SettingthesceneforGaiaand ences. LAMOST, Cambridge University Press, pp. 310-321, preprint This publication utilizes data from Galactic ALFA H i (arXiv:1306.5376) (GALFA-HI) survey data set obtained with the Arecibo L-band Lombardi,M.,Alves,J.,&Lada,C.J.2006,A&A,454,781 FeedArray(ALFA)ontheArecibo305mtelescope.AreciboOb- Madden,S.C.,Poglitsch,A.,Geis,N.,Stacey,G.J.,&Townes, servatoryispartoftheNationalAstronomyandIonosphereCenter, C.H.1997,ApJ,483,200 whichisoperatedbyCornellUniversityunderCooperativeAgree- Magnani,L.,Hartmann,D.,Holcomb,S.L.,Smith,L.E.,&Thad- mentwiththeU.S.NationalScienceFoundation.TheGALFA-HI deus,P.2000,ApJ,535,167 surveysarefundedbytheNSFthroughgrantstoColumbiaUniver- McClure-Griffiths,N.M.,Dickey,J.M.,Gaensler,B.M.,Green, sity,theUniversityofWisconsin,andtheUniversityofCalifornia. A.J.,Haverkorn,M.,&Strasser,S.2005,ApJS,158,178 Meyerdierks,H.&Heithausen,A.1996,A&A,313,929 Papadopoulos,P.P.,Thi,W.-F.,&Viti,S.2002,ApJ,579,270 Paradis,D.,Dobashi,K.,Shimoikura,T.,Kawamura,A.,Onishi, REFERENCES T.,Fukui,Y.,&Bernard,J.-P.2012,A&A,543,A103 Abdo,A.A.,etal.2010,ApJ,710,133 Peek,J.E.G.,etal.2011,ApJS,194,20 Ackermann,M.,etal.2012,ApJ,756,4 Pineda,J.E.,Caselli,P.,&Goodman,A.A.2008a,ApJ,679,481 Ackermann,M.,etal.2011,ApJ,726,81 Pineda,J.L.,Goldsmith,P.F.,Chapman,N.,Snell,R.L.,Li,D., Berry,M.,etal.2012,ApJ,757,166 Cambre´sy,L.,&Brunt,C.2010,ApJ,721,686 Bohlin,R.C.,Savage,B.D.,&Drake,J.F.1978,ApJ,224,132 Pineda,J.L.,etal.2008b,A&A,482,197 Bolatto,A.D.,Wolfire,M.,&Leroy,A.K.2013,ARA&A,51, PlanckCollaboration,etal.2013,ArXive-prints 207 PlanckCollaboration,etal.2011,A&A,536,A19 Bryant,P.M.&Scoville,N.Z.1996,ApJ,457,678 Polk,K. S.,Knapp, G.R.,Stark,A.A.,&Wilson,R.W.1988, Chen,B.-Q.,etal.2014,MNRAS,443,1192 ApJ,332,432 Dame,T.M.2011,ArXive-prints Reach,W.T.,Koo,B.-C.,&Heiles,C.1994,ApJ,429,672

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.