ebook img

Dust reverberation-mapping of the Seyfert 1 galaxy WPVS48 PDF

0.48 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dust reverberation-mapping of the Seyfert 1 galaxy WPVS48

Astronomy&Astrophysicsmanuscriptno. wpv_dust (cid:13)cESO2014 January14,2014 LettertotheEditor Dust reverberation-mapping of the Seyfert 1 galaxy WPVS48 F.PozoNuñez1,M.Haas1,R.Chini1,2,M.Ramolla1,C.Westhues1,K.Steenbrugge2,3,L.Kaderhandt1,H.Drass1,R. Lemke1,andM.Murphy4 1 AstronomischesInstitut,Ruhr–UniversitätBochum,Universitätsstraße150,44801Bochum,Germany 2 InstitutodeAstronomia,UniversidadCatólicadelNorte,AvenidaAngamos0610,Casilla1280Antofagasta,Chile 3 DepartmentofPhysics,UniversityofOxford,KebleRoad,OxfordOX13RH,UK 4 DepartamentodeFísica,UniversidadCatólicadelNorte,AvenidaAngamos0610,Casilla1280Antofagasta,Chile Received;accepted 4 1 ABSTRACT 0 2 UsingrobotictelescopesoftheUniversitätssternwarteBochumnearCerroArmazonesinChile,wemonitoredthez=0.0377Seyfert- n 1 galaxy WPVS48 (2MASX J09594263-3112581) in the optical (B and R) and near-infrared (NIR, J and Ks) with a cadence of twodays. Thelightcurvesshowunprecedentedvariabilitydetails. TheNIRvariationfeaturesofWPVS48areconsistentwiththe a correspondingopticalvariations,butthefeaturesappearsharperintheNIRthanintheoptical,suggestingthattheopticalphotons J undergomultiplescatterings.TheJandKsemission,tracingthehot(∼1600K)dustecho,lagstheBandRvariationsbyonaverage 3 τ=64±4daysand71±5days,respectively(restframe). WPVS48liesontheknownτ−M relationship. However,theobserved V 1 lagτisaboutthreetimesshorterthanexpectedfromthedustsublimationradiusr inferredfromtheoptical-UVluminosity,and sub explanationsforthiscommondiscrepancyaresearchedfor. ThesharpNIRechosargueforaface-ontorusgeometryandallowusto ] putforwardtwopotentialscenarios: 1)aspreviouslyproposed,intheequatorialplaneoftheaccretiondisktheinnerregionofthe A torusisflattenedandmaycomeclosertotheaccretiondisk. 2)Thedusttoruswithinnerradiusr isgeometricallyandoptically sub G thick,sothattheobserveronlyseesthefacingrimofthetoruswall,whichliesclosertotheobserverthanthetorusequatorialplane andthereforeleadstoanobservedforeshortenedlag. Bothscenariosareabletoexplainthefactorthreediscrepancybetweenτand . h r .Longer-wavelengthdustreverberationdatamightenableonetodistinguishbetweenthescenarios. sub p - Keywords. galaxies:active–galaxies:Seyfert–galaxies:individual:2MASXJ09594263-3112581 o r t s 1. Introduction spectral energy distribution of type 1 AGN might be attributed a [ toapuffed-upinnerrimofthetorus(Krolik2007). Inthestandardparadigm,activegalacticnuclei(AGNs)arecom- WPVS48isanearbySeyfert-1galaxy(z = 0.0377)located 1 posed of a central black hole with an accretion disk (AD). A atadistanceof161Mpc(Véron-Cetty&Véron2010). Single- v broadlineregion(BLR)surroundstheAD,andfartheroutthere epoch UBVRI multi-aperture photometry by Winkler (1997) 4 is a (clumpy) molecular dust torus (Antonucci 1993). These showed evidence of a luminous nucleus (V = 14.78). Here we 3 componentscannotbespatiallyresolvedbyconventionalimag- present results for the dust torus geometry of WPVS48. Based 8 2ing,butreverberationmapping(RM,Blandford&McKee1982) on a dust RM campaign, we determine inner size of the dust .can separate them. In RM, continuum brightness variations of torusandthehost-subtractedAGNluminosity. Thesharpnear- 1 theADareechoedbytheBLRemissionlinesandbythetorus infrared(NIR)variationinWPVS48allowustofavortwogeo- 0 dust emission. The time delay τ gives the characteristic size metricmodelsthatareabletoexplainthefactorofthreediscrep- 4 (R = τ·c, wherecisthespeedoflight)andinfavorablecases ancybetweenR =τ·candR inSeyfert1galaxies. 1 in sub :thegeometryoftherespectiveregions. v Xi The geometry of AGN dust distributions is still under de- 2. Observationsanddata bate.DustRMofSeyfert1galaxies(Glass2004,Minezakietal. ar2004,Suganumaetal.2006)revealedarelationRin =τ·c∝ LU0.5V TheopticalJohnsonbroad-bandB(4330Å)andR(7000Å)ob- betweentheinnerradiusRin ofthedusttorusandtheUVlumi- servations were carried out between January 12 and May 13 in nosityLUV (Oknyanskijetal.1999,Kishimotoetal.2007). For 2013,withtherobotic25cmBerlinExoplanetSearchTelescope- abagel-shapeddusttorus, however, theobservedRin isabouta II(BEST-II),locatedattheUniversitätssternwarteBochum,near factor three smaller than the sublimation radius Rsub predicted Cerro Armazones, Chile1. As in Pozo Nuñez et al. (2013), we fromthedustsublimationtemperatureTsub ∼1600K(Barvainis performedstandarddatareductionincludingcorrectionsforbias, 1992). SomemodifieddustgeometriesinvolveBLRassociated darkcurrent, flatfield, astrometryandastrometricdistortionbe- dust due to winds/outflows from the accretion disk (Konigl & forecombiningthenineditheredimagesofeachnightandfilter. Kartje 1994, Elitzur & Shlosman 2006, Czerny & Hryniewicz A7(cid:48).(cid:48)5diameteraperturewasusedtoextractthephotometryand 2011). Non isotropic illumination of the torus by the AD has tocreateflux-normalizedlightcurvesrelativeto17nonvariable beenproposedaswell(Kawaguchi&Mori2010),allowingthe stars located in the same images, within 30(cid:48) around the AGN, dust to come closer in the AD’s equatorial plane without being sublimated. Ontheotherhand, the3µmemissionbumpinthe 1 http://www.astro.ruhr-uni-bochum.de/astro/oca/ Articlenumber,page1of4 Fig.1. Left: B-andR-bandlightcurvesobtainedin2013January-May. TheRlightcurveisverticallyshiftedforclarity. Thestraightlines indicatethelong-termbrightnesstrends. Thedottedlinesshowthedetrendedlightcurves. Middle: J-andK-bandlightcurvesobtainedin2013 April-May. TheK lightcurveisverticallyshiftedforclarity. Thedottedlightcurvesdepictthestatebeforehostgalaxysubtraction. Right: B- andK-bandlightcurves(blueandred)afterhostgalaxysubtraction. TheK-bandvariationpattern(red),whenshiftedbackby∼72days(black), largelycorrespondstotheB-bandvariationpatterninFebruary2013;seetextfordetails. andofsimilarbrightnessastheAGN.Absolutecalibrationwas performed using standard reference stars from Landolt (2009) observedonthesamenightsastheAGN.Wealsocorrectedfor atmospheric(Patatetal.2011)andGalacticforeground extinc- tion(Schlafly&Finkbeiner2011). AfterobservingthepronouncedopticalvariationsinFebru- ary 2013, we performed the NIR J and K (hereafter denoted s as K) observations between April 10 and May 13 in 2013 us- ing the 0.8m Infrared Imaging System (IRIS) telescope (Ho- dapp et al. 2010) at the Universitätssternwarte Bochum. Im- ages were obtained and reduced in the standard manner. Pho- Fig.2. FluxvariationgradientdiagramsofWPVS48intheoptical tometry was extracted using a 7(cid:48).(cid:48)0 diameter aperture, slightly (left)andNIR(right). Thedataarerepresentedbytheblackdots. The smaller than for the optical light curves, because the seeing in solidbluelinesrepresentthebisectorfit,yieldingtherangeoftheAGN the NIR images is slightly better and smaller pixel sizes were slopes. The dashed red lines indicate the range of host slopes deter- used. Light curves were calculated relative to six non variable minedintheopticalbySakataetal.(2010)andtheNIRbySuganuma stars located in the same field that have a similar brightness as etal.(2006). TheintersectionbetweenthehostgalaxyandAGNslope the AGN. The photometric calibration was achieved using four (redarea)givesthehostgalaxyfluxintherespectivebands. high-quality flag (AAA) 2MASS stars in the same field as the AGN. Absolute fluxes were corrected for Galactic foreground (2012). As noted by Glass (2004), the K-band light curve may extinction(Schlafly&Finkbeiner2011). becontaminatedbyslower-varyinglonger-wavelength(Lband) emission, and we address this effect in Sect.3.2. Power-law 3. Resultsanddiscussion extrapolationoftheAGN BandRfluxes(presumablyfromthe AD) to longer wavelengths shows that the contribution of the 3.1. Opticalandinfraredlightcurves ADtotheJandK fluxesisnegligible(<10%). The light curves of WPVS48 are shown in Fig 1. A summary We correlated both the B- and K-band light curves and the of the photometric results and the fluxes in all bands is listed B- and J-band light curves using the discrete correlation func- in Table1. The light curves are published in electronic format. tion (DCF, Edelson & Krolik 1988). The DCF centroid yields The two optical and the two NIR light curves show a similar a time delay τ = 65.8 days of B/J and τ = 72.1 days of B/K variabilitybehavior. Theopticallightcurvesexhibitalong-term (Fig3).Theuncertaintiesofτwerecalculatedusingthefluxran- trendthatwecorrectedfor,followingWelsh(1999)andDenney domization and random subset-selection method (FR and RSS, et al. (2010), to avoid a potential bias in the cross-correlation Petersonetal.2004).Themedianofthisprocedureyieldsτcent= analysis. TheNIRlightcurvesaretooshortfordetrending. 66.5+−34..81daysandτcent=73.5+−45..42daysforB/JandB/K,respec- Using the flux variation gradient (FVG) method tively. Correcting for the time delation factor, we obtain a rest (Choloniewski 1981; Winkler et al. 1992, Glass 2004, Sakata frametime-delayτrest =64.1±3.81daysandτrest =70.8±4.63 et al. 2010), we determined the host galaxy contribution to the daysforB/JandB/K,respectively. lightcurves(Fig.2). Inbrief,itwasobservationallyestablished When the K light curve is shifted back by 72 days (black that the optical and near-infrared flux ratios (B/R and J/K) of curve in Fig 1, right), the variation features (the steep decline, the variable component remain constant with time, allowing thevalley,andthesubsequentpeak)areroughlyconsistentwith us to separate the AGN flux through the use of a well-defined the Bfeatures. However, the K declineprecedesthe Bdecline, range of host galaxy colors (Glass 2004, Sakata et al. 2010). thesubsequentpeakissharperinK thaninB,andthetimespan MoredetailsontheFVGmethodaregiveninPozoNuñezetal. oftheKvalley(betweenthedeclineandthesubsequentpeak)is Articlenumber,page2of4 F.PozoNuñezetal.:DustreverberationmappingofWPVS48 Fig.3. Discretecorrelationfunctionofthe Band J andthe Band K lightcurves. Thedottedlinesindicatetheerrorrange(±1σ)around the cross correlation. The black shaded area marks the range used to calculatethecentroidofthelag(verticalline). longerthanforB.ThesameholdsfortheRandJcurves,respec- tively. Anexplanation(privatecommunicationbyRalfSieben- morgenandEndrikKrügel;seealsoKrügel2009)mightbethat on the way to the observer a significant fraction of the optical Fig.4. Lag–luminosityrelationshipbasedonthedataofSuganumaet photons are scattered multiple times in the kpc-scale narrow- al.(2006).ThesymbolsforindividualSeyfert1galaxiesarethesameas lineregion. Thisleadstoalongertravelingpathtotheobserver, inSuganumaetal.(2006).Thesolidlineisthebest-fitregressionfrom hence a delayed arrival. The net effect is that we observe the Suganumaetal.(2006). WPVS48(reddot)liesclosetotheregression ADvariabilityconvolvedwithanasymmetricdelaykernel. The line.Thedashedlineindicatesthedustsublimationradiusr expected sub longer-wavelength NIR photons may be scattered in the torus, atagivennuclearluminosityMV (fromKishimotoetal.2007). butwithsmallpath-lengthchanges,andtheyareonlyweaklyaf- fectedbyscatteringintheNLR,sothattheirobservedvariation featuresremainsharp,evensharperthantheopticalfeatures. with the height z above the equatorial plane increasing radially OnemightexpectthatADbrighteningleadstodustdestruc- withrtoacoveringhalf-angleof∼45◦.Inthispicture,illustrated tion and the receding of the dust sublimation front, and vice inFig.5,thehotdustemissioncomesfromageometricallythin versa. Then after a bright NIR light curve plateau a decline inner dust torus with a remarkably small dust covering angle, shouldbedelayedandariseafteralowstateshouldoccurear- andalongthedustsublimationrim. lier, but the variations of the current NIR data are too small to SpecificallyforWPVS48,thedustmayapproachintheAD’s allowanidentificationofsuchsignatures. equatorialplane,withoutsublimation,andthehotdustwillpro- Dust-reverberation studies of ten Seyfert 1 galaxies have duceasharpechoatmeanlag∼72days,butthelonginnertorus shown that the lag τ of the dust K-band emission is propor- rimwilladdasmeared-outechoofalongerlagrangingbetween tionaltothesquarerootoftheopticalluminosity(τ∝ L0.5;Sug- 80d >τ<100d(Fig.5). ThebulkofthedustechoofWPVS48 anumaetal.2006andreferencestherein). Weinterpolated MV is as sharp as the triggering continuum variations in the J and ofWPVS48fromour BandRdata. Figure4showsitsposition K light curves with a rapid decline in J and a two-step (rapid intheτ−MV diagramclosetotheregressionline. and subsequent shallow) decline in K (Fig.1, middle). In the cross correlation B/K a faint tail clearly extends to ∼100 days, but not in B/J (Fig.3). Therefore the current data of WPVS48 3.2. Innergeometryofthedusttorus appeartobenotfullyconsistentwiththeexpectationsfromthe Photometric Hα reverberation-mapping of WPVS48 revealed KM2010model: Firstly, ifthedustsublimationfrontisshaped that the echo of the Hα BLR has a mean lag of 25 days (Pozo bytheanisotropicilluminationfromtheADalone,asproposed Nuñez et al. in prep). In consequence, because of the different byKM2010, onewouldexpectthatthehottest J-emittingdust lags of Hα and dust echo, BLR-related dust probably plays a exists along the entire rim and that its signatures seen in the K minorrole. lightcurveandtheB/KcrosscorrelationarealsoseeninJ. Sec- If the dust distribution is spread far along the line-of-sight, ondly, this interpretation of the slow shallow K decline leaves onewouldexpectthattheechoissmearedoutintime.Therefore no room for K-band variations that are associated in part with the sharp dust echo of WPVS48 argues in favor of a face-on longer-wavelength L-bandflux(Glass2004). Thirdly,while,in torusgeometry. Wefocusedonthebasicgeometryoftheoverall additiontotheradiationfields,AGNwindsmighthelptoshape absorbing dust, and considered smooth dust distributions. The thetorusrim,thegeometryoftheAD(thindiskvs. diskbecom- topicofaclumpyduststructureisleftforfuturemodeling. ingthickerwithincreasingradius)isunknown,anditisnotclear A general puzzle from dust RM is that with reasonable howstrongtheanisotropyactuallyis(e.g. Antonucci2013and assumptions for graphite grains of a sublimation temperature referencestherein). ∼1600K and size 0.05µm in radius (Barvainis 1992) and for a We here also considered an alternative scenario, illustrated bagel-shaped torus, the inner radius R = τ · c is about three inFig.6. Inthispicture,forsimplicity,weassumedthattheAD in timessmallerthanthedustsublimationradiusr inferredfrom essentiallyradiatesisotropically. Thedusttorusisgeometrically sub theoptical-UVluminosity(Kishimotoetal.2007). thickwithinnerradiusr andanopeninghalfangle∼45◦ and sub To solve this puzzle, Kawaguchi & Mori (2010, hence anopticallythickatNIRwavelengths,sothattheobserveronly KM2010, 2011) have considered a model where the accretion seesthefacingrimoftheentireinnerdusttoruswall. Thestrik- disk emits relatively little radiation in its equatorial plane. The ing feature is that the rim lies at height z, that is, closer to the anisotropic illumination allows the torus inner region in the observerthantheequatorialplane.Thiszcontributionforeshort- equatorialplanetoapproachtothecentralblackholeandshapes enstheobservedlag, namelyτ·c = (r2 +z2)0.5 −z ≈ r −z. sub theinnertoruswallsothatitisconcavefromtheobserversview, Iftherimliesatanangle45◦ fromtheequatorialplane,oneob- Articlenumber,page3of4 Fig.5. SchematicillustrationofthedusttorusmodelbyKawaguchi& Fig. 6. Schematic illustration of a torus with constant sublimation Mori. BluedenoteshotT ∼1600Kdustvisibleat1-2µm,reddenotes radiusforinclinations0◦ < i < 45◦,opticallythickat1-2µm. ZoneA coolerT ∼800Kdustvisibleat∼4µm. Thesingleblacknumbersleft (blue)markshotT ∼1600Kdustvisibleat1-2µm,zoneB(red)cooler andrightoftherimgivethelagsalongthetorusrimat1-2µmandat T ∼800Kdustvisibleat∼4µm;zoneC(blackshaded)markeshotdust ∼4µm, respectively. Note the foreshortening of the lags at the high- thatisheavilyobscured(A >1)intheobserver’slineofsight,sothat K altitude part of the torus rim. The mean lags of the equatorial zones itbecomesdimat1-2µm,butisclearlyvisibleat∼4µm.Themeanlags (AandC)andtheentire2πintegratedtorusrim(BandD)aregiven, foreachzonearegiven. adoptingaconstantdustdensitydistributionalongtherim. Table 1. Photometry range in mag and mean flux densities with er- rors in mJy. The values are as observed in 7(cid:48).(cid:48)5 (B,R) and 7(cid:48).(cid:48)0 (J,K) apertures. tains z = cos(45◦)·r , hence τ·c = 0.3·r . This scenario sub sub canexplainthefactorthreediscrepancybetweenτandr asan B R J K sub observationalforeshorteningeffect.TheJandKlightcurvesare 14.74-14.94 13.93-14.06 12.33-12.36 10.61-10.66 consistentwiththispicture: therapiddeclinein J and K arises fB fR fJ fK from dust in the blue zone of Fig. 6 and the subsequent shal- 4.90±0.04 7.04±0.07 18.36±0.46 36.56±1.10 low decline in the K light curve might be explained by dust in thetransitionzonebetweenthebluezoneandtheredandblack zones, which are not warm enough (red zone) or too much ab- References sorbed(blackzone)in J. Thentheshallow K declinewouldbe associated with longer-wavelength L-band flux, noted in other Antonucci,R.1993,ARA&A,31,473 sourcesbyGlass(2004). Antonucci,R.2013,Nature,495,165 Barvainis,R.1992,ApJ,400,502 Future dust RM including longer wavelengths (e.g. at 3.6 Blandford,R.D.&McKee,C.F.1982,ApJ,255,419 Choloniewski,J.1981,ActaAstron.,31,293 and 4.5µm) may provide clues to distinguish between the two Czerny,B.,&Hryniewicz,K.2011,A&A,525,L8 models. Firstly,thecontributionofT ∼ 800K cooldust,visible Denney,K.D.,Peterson,B.M.,Pogge,R.W.,etal.2010,ApJ,721,715 at 4µm, to the K band can be constrained. Secondly, for the Edelson,R.A.&Krolik,J.H.1988,ApJ,333,646 Elitzur,M.,&Shlosman,I.2006,ApJ,648,L101 Kawaguchi & Mori model (Fig.5), the expected 4µm lags are Glass,I.S.2004,MNRAS,350,1049 similaralongtherim(componentD)andintheequatorialplane Hodapp,K.W.,Chini,R.,Reipurth,B.,etal.2010,Proc.SPIE,7735, Kawaguchi,T.,&Mori,M.2010,ApJ,724,L183 (component C). On the other hand, for the geometrically and Kawaguchi,T.,&Mori,M.2011,ApJ,737,105 optically thick torus model (Fig.6), the cool dust (component Kishimoto,M.,Hönig,S.F.,Beckert,T.,&Weigelt,G.2007,A&A,476,713 B)andthehotdustwithhighextinction(componentC),asseen Konigl,A.,&Kartje,J.F.1994,ApJ,434,446 Krolik,J.H.2007,ApJ,661,52 by the observer, might produce different lags of equal strength, Krügel,E.2009,A&A,493,385 resultinginlightcurveswithatwo-stepbehavior. Landolt,A.U.2009,AJ,137,4186 Minezaki,T.,Yoshii,Y.,Kobayashi,Y.,etal.2004,ApJ,600,L35 Oknyanskij,V.L.,Lyuty,V.M.,Taranova,O.G.,&Shenavrin,V.I.1999,As- Acknowledgements. This work is supported by the Nordrhein-Westfälische tronomyLetters,25,483 AkademiederWissenschaftenundderKünsteintheframeworkoftheacademy Patat,F.,Moehler,S.,O’Brien,K.,etal.2011,A&A,527,A91 programoftheFederalRepublicofGermanyandthestateNordrhein-Westfalen, Peterson,B.M.,Ferrarese,L.,Gilbert,K.M.,etal.2004,ApJ,613,682 byDeutscheForschungsgemeinschaft(DFGHA3555/12-1)andbyDeutsches PozoNuñez,F.,Ramolla,M.,Westhues,C.,etal.2012,A&A,545,A84 ZentrumfürLuft-undRaumfahrt(DLR50OR1106). WethankourrefereeIan PozoNuñez,F.,Westhues,C.,Ramolla,M.,etal.2013,A&A,552,A1 Sakata,Y.,Minezaki,T.,Yoshii,Y.,etal.2010,ApJ,711,461 Glassforhelpfulcommentsandcarefulreviewofthemanuscript. Wewarmly Schlafly,E.F.,&Finkbeiner,D.P.2011,ApJ,737,103 thankEndrikKrügelandRalfSiebenmorgenfordiscussions. Theobservations Suganuma,M.,Yoshii,Y.,Kobayashi,Y.,etal.2006,ApJ,639,46 on Cerro Armazones benefitted from the care of the guardians Hector Labra, Véron-Cetty,M.-P.,&Véron,P.2010,A&A,518,A10 GerardoPino,RobertoMunoz,andFranciscoArraya. Thisresearchhasmade Welsh,W.F.1999,PASP,111,1347 useofSIMBADandtheNASA/IPACExtragalacticDatabase(NED). Winkler,H.1997,MNRAS,292,273 Winkler,H.,Glass,I.S.,vanWyk,F.,etal.1992,MNRAS,257,659 Articlenumber,page4of4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.