ebook img

Duke University Dissertation Template PDF

186 Pages·2016·11.77 MB·English
by  Jing Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Duke University Dissertation Template

Multi-Row Aerodynamic Interactions and Mistuned Forced Response of an Embedded Compressor Rotor by Jing Li Department of Mechanical Engineering and Materials Science Duke University Date:_______________________ Approved: ___________________________ Robert Kielb, Supervisor ___________________________ Earl Dowell ___________________________ Kenneth Hall ___________________________ Jeffrey Thomas ___________________________ Thomas Witelski Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mechanical Engineering and Materials Science in the Graduate School of Duke University 2016 i v ABSTRACT Multi-Row Aerodynamic Interactions and Mistuned Forced Response of an Embedded Compressor Rotor by Jing Li Department of Mechanical Engineering and Materials Science Duke University Date:_______________________ Approved: ___________________________ Robert Kielb, Supervisor ___________________________ Earl Dowell ___________________________ Kenneth Hall ___________________________ Jeffrey Thomas ___________________________ Thomas Witelski An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mechanical Engineering and Materials Science in the Graduate School of Duke University 2016 Copyright by Jing Li 2016 Abstract This research investigates the forced response of mistuned rotor blades that can lead to excessive vibration, noise, and high cycle fatigue failure in a turbomachine. In particular, an embedded rotor in the Purdue Three-Stage Axial Compressor Research Facility is considered. The prediction of the rotor forced response contains three key elements: the prediction of forcing function, damping, and the effect of frequency mistuning. These computational results are compared with experimental aerodynamic and vibratory response measurements to understand the accuracy of each prediction. A state-of-the-art time-marching computational fluid dynamic (CFD) code is used to predict the rotor forcing function. A highly-efficient nonlinear frequency- domain Harmonic Balance CFD code is employed for the prediction of aerodynamic damping. These allow the compressor aerodynamics to be depicted and the tuned rotor response amplitude to be predicted. Frequency mistuning is considered by using two reduced-order models of different levels of fidelity, namely the Fundamental Mistuning Model (FMM) and the Component Mode Mistuning (CMM) methods. This allows a cost- effective method to be identified for mistuning analysis, especially for probabilistic mistuning analysis. The first topic of this work concerns the prediction of the forcing function of the embedded rotor due to the periodic passing of the neighboring stators that have the iv same vane counts. Superposition and decomposition methods are introduced under a linearity assumption, which states that the rotor forcing function comprises of two components that are induced by each neighboring stator, and that these components stay unchanged with only a phase shift with respect to a change in the stator-stator clocking position. It is found that this assumption captures the first-order linear relation, but neglects the secondary nonlinear effect which alters each stator-induced forcing functions with respect to a change in the clocking position. The second part of this work presents a comprehensive mistuned forced response prediction of the embedded rotor at a high-frequency (higher-order) mode. Three steady loading conditions are considered. The predicted aerodynamics are in good agreement with experimental measurements in terms of the compressor performance, rotor tip leakage flow, and circumferential distributions of the stator wake and potential fields. Mistuning analyses using FMM and CMM models show that the extremely low-cost FMM model produces very similar predictions to those of CMM. The predicted response is in good agreement with the measured response, especially after taking the uncertainty in the experimentally-determined frequency mistuning into consideration. Experimentally, the characteristics of the mistuned response change considerably with respect to loading. This is not very well predicted, and is attributed to un-identified and un-modeled effects. A significant amplification factor over 1.5 is observed both experimentally and computationally for this higher-order mode. v Contents Abstract ......................................................................................................................................... iv List of Tables ................................................................................................................................. ix List of Figures ................................................................................................................................ x List of Abbreviations .................................................................................................................xvi Acknowledgements ................................................................................................................... xix 1 Introduction ................................................................................................................................ 1 1.1 Turbomachinery Forced Response ................................................................................ 1 1.1.1 Aerodynamic Forcing Functions ............................................................................... 4 1.1.2 Aerodynamic Damping ............................................................................................ 15 1.1.3 Modeling of Forced Response ................................................................................. 17 1.1.4 Effect of Mistuning .................................................................................................... 19 1.2 Purdue Three-Stage Axial Compressor Research Facility ........................................ 23 1.3 Outline of the Current Work ......................................................................................... 27 2 Forcing Function Decomposition and Superposition ......................................................... 29 2.1 Background ..................................................................................................................... 30 2.2 Research Objectives ........................................................................................................ 34 2.3 Numerical Approach ..................................................................................................... 39 2.4 Time-Averaged Aerodynamics .................................................................................... 42 2.5 Linear Superposition of 2-Row Solutions ................................................................... 46 2.6 Linear Decomposition and Superposition of 3-Row Solutions ................................ 53 vi 2.6.1 Linear Decomposition ............................................................................................... 54 2.6.2 Stator-Stator Interaction ........................................................................................... 59 2.6.3 Linear Superposition Based on Decomposed 3-Row Results ............................. 61 3 Higher-Order Mode Mistuned Forced Response ................................................................ 65 3.1 Background ..................................................................................................................... 66 3.2 Research Objectives ........................................................................................................ 68 3.3 Steady and Unsteady Aerodynamics .......................................................................... 69 3.3.1 Numerical Models ..................................................................................................... 70 3.3.2 Compressor Performance ......................................................................................... 73 3.3.3 Rotor Tip Leakage Flow ........................................................................................... 81 3.3.4 Characterization of Stator Aerodynamic Forcing Functions ............................... 85 3.3.5 Rotor Forcing Function ............................................................................................. 92 3.3.5.1 Influence of the Tip Leakage Flow .................................................................. 92 3.3.5.2 Individual Stator Contributions ....................................................................... 96 3.3.5.3 Additional Traveling-Wave Forcing Functions ........................................... 101 3.3.6 Rotor Tuned Resonant Response .......................................................................... 102 3.4 Mistuned Forced Response Prediction ...................................................................... 104 3.4.1 Experimental Vibratory Response Measurement System ................................. 105 3.4.2 Mistuning Theories ................................................................................................. 106 3.4.3 Problem Description ............................................................................................... 108 3.4.3.1 Frequency Mistuning....................................................................................... 108 3.4.3.2 Structural Coupling ......................................................................................... 111 vii 3.4.3.3 Aerodynamic Coupling ................................................................................... 115 3.4.4 Prediction of Aeroelastic Eigenvalues .................................................................. 117 3.4.5 Prediction of Mistuned Forced Response ............................................................ 122 3.4.5.1 Results Presentation......................................................................................... 122 3.4.5.2 Mistuned Forced Response Prediction ......................................................... 125 3.4.5.3 Low Average Mistuned Response ................................................................. 133 3.4.5.3 Mistuned Forced Response Sensitivity Analysis ......................................... 135 4 Conclusions and Future Work ............................................................................................. 139 4.1 Conclusions ................................................................................................................... 139 4.2 Future Work .................................................................................................................. 144 Appendix A: Estimate of Hysteretic Damping ..................................................................... 147 Appendix B: Acoustic Resonance in Forced Response ........................................................ 149 Bibliography .............................................................................................................................. 153 Biography ................................................................................................................................... 166 viii List of Tables Table 1-1: Material properties of the P3S compressor blisk. ................................................. 26 Table 2-1: Node count per passage for the coarse, medium, and fine meshes. .................. 40 Table 2-2: Computationally resolved normalized corrected mass flow rate in comparison with experimental value. ........................................................................................................... 42 Table 2-3: Percentage difference of the superposed R2 forcing amplitude compared against 3-row CFD solutions for CL-1, CL-3, and CL-5. ........................................................ 53 Table 2-4: Percentage difference of the R2 1T/44EO modal force amplitude between the superposed and CFD-resolved results. .................................................................................... 64 Table 3-1: Summary of predicted and measured performances of LL, PE, and HL operating points on the 68% Nc speed line. ............................................................................ 74 Table 3-2: Summary of R2 1CWB/88EO modal forces at LL. .............................................. 101 Table 3-3: Summary of predicted and measured loading, modal forcing, damping, and tuned forced response at LL, PE, and HL. ............................................................................. 104 Table 3-4: Summary of tuned R2 1CWB structural characteristics. ................................... 115 Table 3-5: Summary of measured and predicted mistuned responses. ............................ 128 Table B-1: Inputs and results for the acoustic resonance condition calculations. ............ 151 ix List of Figures Figure 1-1: An example Campbell diagram (adapted from Miyakozawa, [5]). ................... 3 Figure 1-2: Schematic of primary sources of aerodynamic excitations to an embedded rotor in a subsonic compressor. .................................................................................................. 5 Figure 1-3: Purdue Three-Stage Axial Compressor Research Facility (adapted from Ball, [72]). .............................................................................................................................................. 23 Figure 1-4: PS3 Compressor flow path cross-sectional view, blading, and measurement stations (adapted from Ball, [72]). ............................................................................................. 25 Figure 1-5: Schematic of two compressor stator designs: (a) cantilevered stator vane, and (b) shrouded stator vane. ........................................................................................................... 25 Figure 1-6: Campbell diagram of R2. 1T/44EO and 1CWB/88EO crossings are shown. ... 27 Figure 2-1: (a) Schematic of the P3S compressor, (b) R2 Campbell diagram, and (c) P3S compressor 74% Nc speed line. ................................................................................................. 37 Figure 2-2: Schematic of six clocking configurations defined by Key ([35]) in terms of the S1 percentage vane pitch (%vp) location relative to S2. ........................................................ 38 Figure 2-3: Normalized time-averaged absolute total pressure contours upstream of the S2 LE for clocking configurations of (a) CL-1, (b) CL-3, and (c) CL-5. ................................ 39 Figure 2-4: Unsteady CFD models of 2-row and 3-row forced response problems. ......... 40 Figure 2-5: Predicted steady-state mid-span airfoil loading using coarse, medium, and fine meshes. .................................................................................................................................. 41 Figure 2-6: Mid-span time-averaged pressure coefficient distributions for (a) S1, (b) R2, and (c) S2 resolved by 2-row and 3-row CFD simulations. .................................................. 42 Figure 2-7: Predicted (by 2-row and 3-row CFD simulations) and measured S1 exit wake profiles at 80% span. ................................................................................................................... 43 Figure 2-8: Predicted (by 2-row and 3-row CFD simulations) and measured S1 exit casing potential profiles. ............................................................................................................ 44 x

Description:
by. Jing Li. Department of Mechanical Engineering and Materials Science Jeffrey Thomas effective method to be identified for mistuning analysis, especially for probabilistic .. Table 3-4: Summary of tuned R2 1CWB structural characteristics. IGV inlet guide vane ANSYS Mechanical APDL.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.