Dual-Pulse Laser Induced Breakdown Spectroscopy in the Vacuum Ultraviolet with Ambient Gas: Spectroscopic Analysis and Optimization of Limit of Detection of Carbon and Sulfur in Steel ATHESISSUBMITTEDFORTHEDEGREEOF DOCTOROFPHILOSOPHY PRESENTEDTO: THESCHOOLOFPHYSICALSCIENCESANDTECHNOLOGY, FACULTYOFSCIENCEANDHEALTH, DUBLINCITYUNIVERSITY AUTHOR XIJIANG B.Sc.,M.Sc. ResearchSupervisors PROF.EUGENEKENNEDY,PROF.JOHNCOSTELLO Declaration I hereby certify that this material, which I now submit for assessment on the pro- gramme of study leading to the award of Ph.D is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledgedwithinthetextofmywork. Signed: IDNo.: Date: i Formymother ii Acknowledgements Firstandforemost,sincerethankstoProf. EugeneKennedyandProf. JohnCostello, both as my supervisors for giving me the opportunity to study and work in DCU andforguidingmywork. Many thanks to postdocs Paddy Hayden, Pat Yeates, Patrick Casey for kind help and useful chat, and to senior/previous members of the physics group in DCU:EoinO’Leary,Mohamed,John,Caroline,Phil,Padraig,Conor,Mairead,Patrick, Brian,Ricky,Mahua. ThankstoallthecurrentcolleaguesinDCUphysicsdepartment: Colm,Conor, Ruth,Mossy,Eanna,Seamus,Nicky,Hooiling,Catherine,Jack,Joe,Darrick,Justin, Yang,Barry,Rajani,Aurora,Barbaraandmanyothers. Thanks to Ricarda and Nadia who were two short term visiting students here, thankyoubothforco-workinginthelabandbringingjoytothegroup! Thanks to the school secretaries Shiela and Lisa for taking care of the paper works, and to Daz, Ray Murphy, Pat Wogan, Alan Hughes for technical support. ThanksalsototheentirestaffandfacultyofphysicsschoolandNCPST. Thanks also to all my friends including my old friends in China, my college mates(mostly)intheUS,myChinesefriendsinIrelandandthelocalIrishfriends, as well as friends in Europe and other places around the world. Thank you for makingmylifesowonderful. Finally, my most sincere thanks to my family, thank you for supporting my adventuresofarbothspirituallyandfinancially. iii Abstract Laser Induced Breakdown Spectroscopy (LIBS) in the vacuum ultraviolet (VUV) spectralregionwasappliedtostandardsteelsamplesindual-pulseexcitationmode with an ambient gas. Two lasers were employed in collinear geometry, one as an ablation laser (Spectron: 200mJ/15ns) and the other a reheating laser (Surelite: 665mJ/6ns). Adual-pulseschemewasappliedtothetraditionalsingle-pulseLIBSandledto asignificantenhancement,increasingboththesignaltobackgroundratio(SBR)and concomitantly the limit of detection (LOD). Three types of gases, nitrogen, argon andheliumwereinvestigatedindividuallyasambientenvironment. Thevariation insignalgainwithambientgaspressurewasmeasured. Thefeasibilitystudyofdual-pulse(DP-)LIBS)inthedeepVUVspectralregion wascarriedoutbyoptimizinganumberofparametersforlimit-of-detection(LOD) calibration. The pulse energy choices of laser beam, the signal recording position for the space-resolved detection system, the CCD exposure time and the number of laser shots accumulated for a spectrum were among the first few parameters optimizedforthecurrentLIBSsystem. Thedependenceofemissionintensityonfocusingconditionswasinvestigated for both single-pulse (SP) and dual-pulse (DP) mode. In DP mode, the lens-to- targetdistanceofthereheatingpulsewasvariedwhiletheablationpulsewasheld at a fixed focusing condition. The optimal focusing for signal enhancement was foundtobeabout10mmunderthesamplesurfaceforsingle-pulselaserbeamand 5-10mmforthereheatingpulseindual-pulsemode. The effect of inter-pulse delay on the emission intensity were studied in vac- uumandinambientgasbackgroundinthedual-pulseconfiguration. Anintensity peakatabout100nsandanintensityrevivalintheµsrangewereobservedonthe intensity vs. inter-pulse delay curves. The optimal inter-pulse delay was consid- eredtobe100ns. Theµsrangeintensityplateauledtoadiscussionontheplasma expansiondynamicsindual-pulsemode. Finallythelimitofdetection(LOD)ofCandSinsteelwasimprovedbyafactor of2ormoreoversinglepulseLIBSwiththecombinationofoptimizedexperimen- tal parameters. The initial measurements and results suggest that DP-LIBS in an ambient gas environment for VUV spectroscopy is practicable and brings with it evenfurtherimprovementoftheLIBSperformanceintheVUVregime. iv Thesis Organization Thisthesisisdividedinto10chaptersasfollows: Chapter1-Laserproducedplasmasinspectroscopy Thefirstpartofthethesisprovidessomeofthetheoreticalaspectsoflaserproduced plasmas including a fundamental overview of laser produced plasmas and the atomic processes involved. The principles for using laser plasmas as light sources forquantitativeanalyticalspectroscopyisexplainedattheendofthischapter. Chapter2-ThefundamentalsofLIBS This chapter is a general introduction to Laser Induced Breakdown Spectroscopy (LIBS)andcontainsaliteraturereviewofLIBSdevelopment. Aparticularemphasis isplacedonthebasicsofstudiesperformedondeterminingconcentrationsoflight elementsinsteelintermsofthelimitofdetection(LOD). Chapter3-Theexperimentalsetup Thischaptercontainsadescriptionoftheequipmentusedintheexperimentsper- formed for the present work including details of the laser system employed, the spectrometers,operationalcharacteristicsandthemethodbywhichradiationfrom thelaserplasmawascaptured. Chapter4-ThebasicLIBSanalysis ThischapterdemonstrateshowLIBSisusedfordirectdetectionoftraceelementsin steels. Anumberofhardwareparametersincludingthelaserpulseenergychoices, observing position for space-resolved detection system, CCD exposure time and number of shots accumulated for a spectrum are discussed and optimized. Fol- lowingthebasicsettings,thecomputingprocessesforlimitofdetection(LOD)cal- ibration including wavelength calibration and the data handling process are also introduced. ThecompleteprocedureofspectroscopicanalysisbyabasicLIBSsys- temissummarizedattheendofthischapter. Chapter5-Theimprovementtechniques This chapter provides a comprehensive study of dual-pulse LIBS in ambient gas environments. Firstly the dual-pulse or DP-LIBS and the ambient gases are intro- ducedtothebasicLIBSsetup. ThentheDP-LIBSoperationandtheVUVemission inseveralambientgasesarestudied. Aseriesofspectralcomparisonsareprovided. Emphasis is placed on the combination of dual-pulse and ambient gas techniques asafurtherimprovementtotheconventionalLIBSsystem. Chapter6-Theeffectsoflaserbeamdefocusing The laser beam defocusing is one of the parameters which can affect the signal intensitysignificantlyinbothsingle-anddual-pulseLIBS.Thischapterprovidesa v detailedinvestigationoftheeffectoflaserbeamdefocusing. Insingle-pulsemode, thedefocusingeffectmeanstheinfluenceoftherelativedistancebetweenthefocal point and the sample surface on the plasma emission behaviors. In dual-pulse mode,thedefocusingeffectreferstothedefocusingeffectofthesecond/reheating laserbeam. Theobservationsanddiscussionsinbothsingle-anddual-pulsemode areprovidedinthischapter. Chapter7-Theeffectofinter-pulsedelay Anotherworth-notingeffectintheoptimizationprocessfordual-pulseLIBSisthe effect of inter-pulse delay. At certain inter-pulse delay times, the emission inten- sity was dramatically enhanced. The optimal inter-pulse delay of 100 ns has been achieved during the optimization process in chapter 5. When the inter-pulse de- laywasextended tothe µsrange, an intensityrevivalwasfound inthe caseswith ambientgas. Effortshavebeenmadetoinvestigatetheseinterestingobservations. Questionsareaskedandaddressedwithinthescopeofthecurrentwork. Chapter8-Emissionenhancementmechanismsindual-pulseLIBS Two emission enhancements have been clearly shown and proved in the previ- ouschapter7andtheuniquecharacteristics(i.e. ambientgasandpressuredepen- dence) of the second enhancement indicate a new enhancement mechanism dis- tinct from the first one. Further investigations regarding the enhancement mech- anismsindual-pulseLIBS,especiallywithlow-pressureambientgases,havebeen performed. A process of “phased enhancement” is proposed along with a brief literaturesurveyseekingmoreevidencesonmulti-phaseenhancement. Chapter9-Limitofdetectioncalculationandcomparison Having optimized all possible parameters in dual-pulse LIBS in ambient gas, the limitof detection (LOD) of carbon (C) and sulphur (S) in steel areextracted under optimizedconditions. Thecomparisonsarealsoprovidedwhichincludethegood- ness of LOD calibration curves and the final LOD values obtained under different conditions. Finally the best LOD results achieved under the optimal conditions in thecurrentworkarecomparedtothoseintheliterature. Chapter10-Conclusionsandfuturework This final chapter provides a summary of the experimental work and the general conclusions formed as a result of the above research. Some future interests are outlinedinthecontextofthecurrentresearchdirection. Tohelpthereaderwithaclearviewofthethesis,thethesisstructureissumma- rizedinfigure1. vi Chapter 1 Laser plasmas Theories of Laser induced plasma s n o and cti Chapter 2 introduction to LIBS u d LIBS introduction o r t n I Chapter 3 Experimental Experimental Chapter 4 Basic LIBS Basic LIBS procedure and dual-pulse (DP) LIBS in ambient gas(es) Chapter 5 Improvements Chapter 6 s t Defocusing ul Further discussions of some topics on LIBS s Re including Chapter 7 Laser beam defocusing; Inter-pulse delay Inter-pulse delay; Enhancement mechanisms of DP-LIBS Chapter 8 Mechanism Chapter 9 Final calibration of limit of detection (LOD) L.O.D. - u cls Chapter 10 Summary nn oo Conclusions Csi Figure1: Outlineofthethesis. vii Contents 1 IntroductiontoLaserPlasmasandVacuumUltravioletSpectroscopy 5 1.1 Plasmaformationandpost-breakdownphenomenaonsolidtargets . 6 1.2 Atomicprocessesinlaserinducedplasmas . . . . . . . . . . . . . . . 7 1.2.1 Free-freetransitions . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Free-boundtransitions . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Bound-boundtransitions . . . . . . . . . . . . . . . . . . . . . 8 1.3 Generalcharacteristicsofplasmas . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Debyesheathandplasmafrequency . . . . . . . . . . . . . . . 9 1.3.2 Thermodynamicequilibriuminaplasma . . . . . . . . . . . . 11 1.4 QuantitativespectroscopyintheVUV . . . . . . . . . . . . . . . . . . 12 1.5 Analyticalfiguresofmerit . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 IntroductiontoLaserInducedBreakdownSpectroscopy 18 2.1 AnoverviewofLIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 LIBSfundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 BriefoutlineofLIBSinstrumentation . . . . . . . . . . . . . . 20 2.1.3 LIBSApplications . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 LiteraturesurveyofLIBS . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 AbriefhistoryofLIBS . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 LIBSinrecentyears. . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Aimsandobjectivesofthepresentwork . . . . . . . . . . . . . . . . . 26 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 EquipmentalSystem 28 3.1 Thelasersystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Targetchamberandtargets . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 GCAandthespectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 3.4 TheRowlandcircleandoff-Rowlandmount . . . . . . . . . . . . . . 37 3.5 Resolvingpowerofthespectrometrysystem . . . . . . . . . . . . . . 40 3.6 Signaldetectionandrecordingsystem . . . . . . . . . . . . . . . . . . 42 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 BasicLIBS:TypicalLIBSAnalysisProcess 45 4.1 Choiceoflaserpulseenergies . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Time-integratedspace-resolvedLIBSsystem . . . . . . . . . . . . . . 47 4.3 Theoptimalobservingposition . . . . . . . . . . . . . . . . . . . . . . 49 4.4 CCDexposuretimeandnumberofshotsaccumulated . . . . . . . . 51 4.5 Wavelengthcalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6 Datahandling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.7 LODcalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 Dual-pulseLIBSintheVUVinAmbientGases: PreliminaryResults 61 5.1 IntroductionoftwomajortechnicalimprovementstobasicLIBS . . . 62 5.2 Experimentalsettingsfordual-pulseLIBSinambientgases . . . . . . 63 5.3 Dual-pulseLIBSoperation . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.1 Inter-pulsedelaygenerator . . . . . . . . . . . . . . . . . . . . 65 5.3.2 Dual-pulseLIBSspectrum . . . . . . . . . . . . . . . . . . . . . 66 5.3.3 Optimalinter-pulsedelaytime . . . . . . . . . . . . . . . . . . 69 5.4 Ambientgases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4.1 Emissioninambientgases . . . . . . . . . . . . . . . . . . . . . 72 5.4.2 VUVlighttransmissioninambientgases . . . . . . . . . . . . 77 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6 EffectsofLaserBeamDefocusing 83 6.1 Defocusingeffectinsingle-pulsemode . . . . . . . . . . . . . . . . . . 84 6.1.1 Observationsofthelaserbeamdefocusingeffect . . . . . . . . 84 6.1.2 Discussionofdefocusingeffectinsingle-pulsemode . . . . . 85 6.1.3 Summary of on-focus, before- and beyond-focus defocusing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Defocusingeffectindual-pulsemode . . . . . . . . . . . . . . . . . . 89 6.2.1 Observationsofthereheatingpulsedefocusingeffect . . . . . 89 6.2.2 Discussionsofthereheatingpulsedefocusingeffect . . . . . . 90 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2
Description: