TThhee UUnniivveerrssiittyy ooff NNoottrree DDaammee AAuussttrraalliiaa RReesseeaarrcchhOOnnlliinnee@@NNDD Health Sciences Papers and Journal Articles School of Health Sciences 2016 DDuuaall eenneerrggyy XX--rraayy aabbssoorrppttiioommeettrryy ccoommppaarreedd wwiitthh aanntthhrrooppoommeettrryy iinn rreellaattiioonn ttoo ccaarrddiioo--mmeettaabboolliicc rriisskk ffaaccttoorrss iinn aa yyoouunngg aadduulltt ppooppuullaattiioonn:: IIss tthhee ‘‘GGoolldd SSttaannddaarrdd’’ ttaarrnniisshheedd?? D Demmer L Beilin B Hands University of Notre Dame Australia, [email protected] S Burrows C Pennell See next page for additional authors Follow this and additional works at: https://researchonline.nd.edu.au/health_article Part of the Medicine and Health Sciences Commons This article was originally published as: Demmer, D., Beilin, L., Hands, B., Burrows, S., Pennell, C., Lye, S., Mountain, J., & Mori, T. (2016). Dual energy X-ray absorptiometry compared with anthropometry in relation to cardio-metabolic risk factors in a young adult population: Is the ‘Gold Standard’ tarnished?. PLoS One, 11 (9). Original article available here: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162164 This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/health_article/156. For more information, please contact [email protected]. AAuutthhoorrss D Demmer, L Beilin, B Hands, S Burrows, C Pennell, S Lye, J Mountain, and T Mori This article is available at ResearchOnline@ND: https://researchonline.nd.edu.au/health_article/156 This article was originally published at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162164 Demmer, D., Beilin, L., Hands, B., Burrows, S., Pennell, C., Lye, S., Mountain, J., and Mori, T. (2016) Dual energy X-Ray absorptiometry compared with anthropometry in relation to cardio-metabolic risk factors in a young adult population: Is the ‘Gold Standard’ tarnished? PLoS One, 11(9). doi: 10.1371/journal.pone.0162164 No changes have been made to the original article. This is an Open Access article distributed under the terms of the Creative Commons Attribution International 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. RESEARCHARTICLE Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished? DeniseL.Demmer1☯*,LawrenceJ.Beilin1☯,BethHands2‡,SallyBurrows1☯,Craig a11111 E.Pennell3,StephenJ.Lye4,JenniferA.Mountain5‡,TrevorA.Mori1☯ 1 SchoolofMedicineandPharmacology,RoyalPerthHospitalUnit,TheUniversityofWesternAustralia, Perth,Australia,2 InstituteforHealthResearch,TheUniversityofNotreDameAustralia,Perth,Australia, 3 SchoolofWomen’sandInfantsHealth,TheUniversityofWesternAustralia,Perth,Australia,4 Lunenfeld- TanenbaumResearchInstitute,UniversityofToronto,Toronto,Canada,5 SchoolofPopulationHealth,The UniversityofWesternAustralia,Perth,Australia OPENACCESS ☯Theseauthorscontributedequallytothiswork. ‡Theseauthorsalsocontributedequallytothiswork. Citation:DemmerDL,BeilinLJ,HandsB,Burrows *[email protected] S,PennellCE,LyeSJ,etal.(2016)DualEnergyX- RayAbsorptiometryComparedwithAnthropometryin RelationtoCardio-MetabolicRiskFactorsinaYoung Abstract AdultPopulation:Isthe‘GoldStandard’Tarnished? PLoSONE11(9):e0162164.doi:10.1371/journal. pone.0162164 BackgroundandAims Editor:Xiao-FengYang,TempleUniversitySchoolof Medicine,UNITEDSTATES Assessmentofadiposityusingdualenergyx-rayabsorptiometry(DXA)hasbeenconsid- Received:May23,2016 eredmoreadvantageousincomparisontoanthropometryforpredictingcardio-metabolic Accepted:July30,2016 riskintheolderpopulation,byvirtueofitsabilitytodistinguishtotalandregionalfat.None- theless,thereisincreasinguncertaintyregardingtherelativesuperiorityofDXAandlittle Published:September13,2016 comparativedataexistinyoungadults.Thisstudyaimedtoidentifywhichmeasureofadi- Copyright:©2016Demmeretal.Thisisanopen positydeterminedbyeitherDXAoranthropometryisoptimalwithinarangeofcardio-meta- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits bolicriskfactorsinyoungadults. unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare MethodsandResults credited. 1138adultsaged20yearswereassessedbyDXAandstandardanthropometryfromthe DataAvailabilityStatement:Thedatausedto generatetheresultsinthispublicationareavailable WesternAustralianPregnancyCohort(Raine)Study.Cross-sectionallinearregression uponrequestasethicalrestrictionsexistanddata analyseswereperformed.WaisttoheightratiowassuperiortoanyDXAmeasurewith wereobtainedfromathirdparty.Readersand HDL-C.BMIwasthesuperiormodelinrelationtobloodpressurethananyDXAmeasure. interestedresearchersmaycontacttheExecutiveof Midrifffatmass(DXA)andwaistcircumferencewerecomparableinrelationtoglucose.For theWesternAustralianPregnancyCohort(Raine) Studytorequestthedata. alltheothercardio-metabolicvariables,anthropometricandDXAmeasureswerecompara- ble.DXAmidrifffatmasscomparedwithBMIorwaisthipratiowasthesuperiormeasurefor Funding:DXAscanningwasfundedbyCanadian InstitutesforHealthResearch(GrantMOP82893). triglycerides,insulinandHOMA-IR. TheRaineStudy20yearfollowupassessmentwas fundedbyprojectgrantsfromtheAustralianNational PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 1/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors HealthandMedicalResearchCouncil,theLionsEye Conclusion InstituteinWesternAustralia,AustralianFoundation Althoughmidrifffatmass(measuredbyDXA)wasthesuperiormeasurewithinsulinsensi- forthePreventionofBlindnessandtheAlcon ResearchInstitute.CoremanagementoftheRaine tivityandtriglycerides,theanthropometricmeasureswerebetterorequalwithvariousDXA studyisprovidedbytheRaineMedicalResearch measuresformajorityofthecardio-metabolicriskfactors.Ourfindingssuggest,clinical Foundation;TheUniversityofWesternAustralia anthropometryisgenerallyasusefulasDXAintheevaluationoftheindividualcardio-meta- (UWA);theTelethonKidsInstitute;theUWAFaculty ofMedicine,DentistryandHealthSciences;the bolicriskfactorsinyoungadults. WomenandInfantsResearchFoundationandCurtin University. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. Introduction Theprevalenceofobesityisincreasingworldwide.In2014morethan1.9billionadults,18 yearsandolder,wereoverweightandapproximately600millionadultswereobese[1].Excess bodyfatisanestablishedriskfactorfornumerouschronicdiseasesandprematuredeath[2,3]. Moststudiesseekingtoincreasetheunderstandingofthenegativeinfluenceofobesityhave beenbasedonbodymassindex(BMI).However,BMIdoesnotreflecttotalbodyadiposity becauseitcannotdifferentiatebetweenleanandfatmassofanindividual.Alternativemeasures suchaswaistcircumferenceorwaist-heightratiomaybebetterclinicalindicatorsofadiposity [4]. Dualenergyx-rayabsorptiometry(DXA)isthegoldstandardforthediagnosisofosteopo- rosis[5]andhasincreasinglybeenusedforthediagnosis/managementofoverweightandobe- sityandinclinicalresearchincardiovasculardisease[6–8].Thequestionarisesastowhether theuseofDXAinthemanagementofoverweightandobesityisjustifiedintermsofcostand/ orcomplexity,inreturnforanyclear-cutscientificorclinicalvalue.Therearecommercialdriv- ersfortheuseofDXA;forexampleintheUSAapatientcanexpecttopayapproximately$100 USinthepublichealthsettingor$250USwithintheprivatehealthsectorforaDXAscanwith- outrebate[9].Therehasbeena65%declineinMedicarereimbursementofDXAbonemineral densitytestinginthenon-facilitysetting,fromapproximately$140in2006to$50in2014[10]. Atthislowerlevel,providersofDXAscansarefindingitmoredifficulttocovertheoperating costs,duetofundingcuts[11].Therefore,therehasbeensomemotivationtofindanotheruse forDXAthatmaybeclinicallyrelevanttohealthprofessionals,particularlytoallowforearly identificationandinterventionofindividualsinrelationtoobesityandcardio-metabolic health. ThedominanceanddifferentialeffectsofDXAoveranthropometryforestimatingthepres- enceofcardio-metabolicriskhasnotbeenclearlyestablished.Studiesinmiddleagedadults, whichcompareanthropometricandDXAadipositymeasurements,havebeeninconsistent withrespecttothestrengthofassociationswithcardio-metabolicriskfactors,mostlikelydue tomethodologicalinconsistenciesindefiningadiposity[2,12].Moreover,manyofthese reportsonlytakeintoaccountestimatesoftotalbodyfatpercentageandnotfatdistributionor abdominalfatmass10–14.Inaddition,thereisalsoalackofreporteddatacomparingDXA againstcardio-metabolicriskfactorssolelyinyoungadultpopulations[4,12]. Obesityinyoungadultsisanimportantpredictorforsubsequentcoronarydiseaseanddia- betesinmiddletooldage[13,14].Australiafollowsworldwidetrendsshowingincreasinglev- elsofobesityandType2diabetesinearlyadulthood[15].Theearlyidentificationof individualswhoareofincreasedriskofcoronarydiseaseanddiabetesinlaterlifehasthe potentialtoimplementlifestylemodificationsthatcouldreducethisrisk.Thisstudytherefore aimedtoidentifywhichmeasureofadipositydeterminedbyeitherDXA(totalbodyfatper- centage,FatDistributionIndexandmidrifffatmass)oranthropometry(abdominalskinfold, PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 2/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors waistcircumference,waisttoheightratio,weightandBMI),isoptimalwithinarangeofcar- dio-metabolicriskfactorsinasampleofhealthyyoungadultsfromtheWesternAustralian PregnancyCohort(Raine)Study. Methods Participants TheWesternAustralianPregnancyCohort(Raine)Studyisaprospectivepopulationstudy wherepregnantwomenbetween16to20weeksgestationwererecruitedfromKingEdward MemorialHospitalandcloselylocatedpractices.Themothersgavebirthto2868liveinfants. DetailedinformationonthemethodsoftheRaineStudyhaspreviouslybeenreported[16]. Thepresentpopulationcomprised1273adultsfromtheRaineStudywhoattendedthe20year oldsurvey.Written informedconsentwasobtainedfromtheparticipants.Ethicsapprovalfor the20yearassessmentwasobtainedfromtheHumanResearchEthicsCommitteeattheUni- versityofWesternAustralia. AdultanthropometryandDXAmeasurements Atthe20yearfollowup,heightwasmeasuredbyawallmountedStadiometer(tothenearest 0.1cm)andweightwasmeasured(tothenearest100g)withparticipantsdressedinlight clothes.Bodymassindex(BMI)wascalculatedasweight(kg)dividedbythesquareofheight (m2).Waist circumferencewasevaluatedattheumbilicuslevelandhipcircumferenceatthe levelofthemaximumposteriorextensionofthebuttockswithatapemeasure(tothenearest 0.1cm).Theabdominalskinfoldwasmeasuredfromaverticalskinfoldimmediatelytotheleft oftheumbilicus,thesuprailiacskinfoldwasassessedfromadiagonalfoldlocated1cmabove theanteriorsuperioriliaccrestandthetricepskinfoldwasmeasuredfromaverticalskinfold alongthemidlineonthebackofthetricepsoftherightarmusingaskinfoldcalliper(Holtain, Crosswell,UnitedKingdom)[17].Allskinfoldmeasurementswereassessedtwicewiththe averageoftheskinfoldscalculated.Thesumofthreeskinfoldswascalculatedfromtheabdomi- nal,suprailiacandtricepskinfoldsitesandthischaracterisesthesubcutaneousfatthicknessat differentregionsofthebody[18].Waist tohipandwaisttoheightratioswerederivedfromthe divisionofwaistcircumference(cm)bythehipcircumference(cm)andheight(m), respectively. ThestudyusedaNorlandXR-36densitometer(NorlandMedicalSystems,Inc.,FortAtkin- son,WI,USA)toprovideestimatesofwholebodyfatmass(g),leanmass(g),midrifffatmass (g)(vertebraeL1—L4).Total bodyfatpercentagewasestimatedastotalbodyfatmass(g)/ totalmassx100.TheFatDistributionIndexwascalculatedfromtheformulachestfatmass(g) +midrifffatmass(g)/pelvisfatmass(g)+leftlegfatmass(g)+rightlegfatmass(g)[19].All measurementswereperformedbytrainedresearchpersonnel. Biochemistryandbloodpressuremeasurements VenousbloodsamplestakenafteranovernightfastwereanalysedinthePathWest Laboratory atRoyalPerthHospitalforserumglucose,insulin,totalcholesterol,triglycerides,highdensity lipoprotein-cholesterol(HDL-C)andhighsensitivityC-reactiveprotein(hs-CRP)[20].Low densitylipoprotein-cholesterol(LDL-C)wascalculatedusingtheFriedewaldequation[21]. Thehomeostaticmodelassessmentofinsulinresistance(HOMA-IR)wascalculatedusingthe formula:fastinginsulin(μU/ml)xfastingglucose(mmol/L)/22.5[22].BPwasmeasured usinganoscillometricsphygmomanometerwiththeappropriatecuffsizeforarmcircumfer- ence(DINAMAPvitalsignsmonitor8100,DINAMAPXLvitalsignsmonitororDINAMAP PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 3/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors ProCare100;GEHealthcare).SixBPreadingswereobtainedevery2minuteswithina10min- utetimeperiodinthesupineposition,aftera5minuterestingperiod.TheaverageBPvalue wascalculatedusingthelastfivereadingstoobtainsystolicanddiastolicBPvalues[23]. Statisticalanalysis Characteristicsofthesampleweresummarisedusingmeansandstandarddeviations(SD)sep- aratelyformalesandfemales.Differencesbetweenthesexesweretestedusingt-tests.All reportedpvaluesare2-tailedandsignificancewassetatα=0.05. Linearregressionanalysesexaminedtherelationshipbetweeneachadipositymeasuresand cardio-metabolicriskfactors.Allmodelsincludedandtestedtheinteractionbetweensexand theadiposityindicator.Foreachoutcome,comparisonsweremadewithinthesetofmodels, usingeachadipositymeasuretoidentifythebestDXAmeasurerelatedtoagivencardio-meta- bolicriskfactorandsimilarlyfortheanthropometricmeasures.Themeasuresidentifiedas bestfromeachofthesetwosets(DXAandanthropometry)werethencompared.Forexample themodelofDXAmidrifffatmassandtriglycerideswascomparedwiththemodelofwaist/ heightandtriglycerides.Giventhatthesemodelswerenotnestedwithineachother,likelihood ratiotestswerenotappropriatetoformallycomparemodels.ThustheAkaikeInformationCri- terion(AIC)wasutilised[24].Asrequired,allmodelsforaparticularoutcomewerecon- structedonastaticsampledeterminedbycompletedataonalladipositymeasures.Forany givenoutcome,themodelwiththeminimumAICwasdeemedtobethebestmodel.Differ- encesfromtheminimumAICprovideastrengthofevidencecomparisonandtherankingof modelswithrespecttothebestmodel.BycalculatingdifferencesbetweenAIC,arbitraryscaling constantsareremovedallowingtheapplicationofguidelinestointerpretthedifference.Models wherethedifferenceinAICis(cid:20)2indicatessubstantialsupportthattheyarenotdifferent, whilesupportforthisclaimdecreasesasthedifferenceinAICincreases(AICvaluesabove10 areconsideredtohavenosupportforequivalence).TheadjustedR2foreachmodelwasalso reported.Inadditiontomodelswithasingleadipositymeasure,combinationsofanthropomet- ricandDXAmeasureswereexploredinasimilarmanner.Thecombinationsincludedmidriff fatmassandwaistcircumference,fatdistributionindexandBMI,andmidrifffatmassand BMI.Tobit regression(forcensoreddata)wasutilisedforfastinginsulinandhs-CRPdueto thelowerboundaryofthetest[25].Allotherregressionsperformedwereordinarylinear regression.Variables werelogtransformedifthevalueswerenotnormallydistributed(triglyc- erides,HDL-C,insulin,hs-CRP).DatawereanalysedusingSTATA (StataCorp,2011.Stata StatisticalSoftware:release12.CollegeStation.TX:StataCorp,LP). Results Descriptivecharacteristics GeneralcharacteristicsofbodycompositionusingDXA,anthropometryandtheindividual cardio-metabolicriskfactorsareshownseparatelyforfemalesandmalesinTable 1. EthnicityinthecohortwaspredominantlyCaucasian(93%).At20yearsofage,femaleshad ahighertotalbodyfatpercentage,fatdistributionindexandmidrifffatmasscomparedwith males(p<0.001)(Table 1).Malesweretaller,heavierandhadagreaterwaistcircumference thanfemales(allp<0.001)buthadasignificantlylowerabdominalskinfold.Malesand femaleswerenotstatisticallydifferentforwaisttoheightratioandBMI.Allcardio-metabolic riskfactorswerestatisticallydifferentbetweenmalesandfemalesexceptforHOMA-IRand diastolicBP. FemaleshadlowersystolicBP, triglyceridesandglucose,andhighertotalcholes- terol,HDL-C,LDL-C,insulinandhs-CRP, thanmales.Thenumberofindividualsinthe PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 4/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors Table1. DescriptivecharacteristicsofmalesandfemalesfromtheWesternAustralianPregnancyCohortat20yearsofage. Measure Females Males pvalue n=532 n=606 DXA Totalbodyfatpercentage(%) 39.3(8.9) 21.8(8.7) <0.001 Fatdistributionindex(g) 17318.2(7349.1) 11235.7(6431.0) <0.001 Midrifffatmass(g) 1401.7(932.9) 1091.0(887.6) <0.001 Anthropometry Abdominalskinfold(mm) 25.4(8.6) 21.5(10.2) <0.001 Waistcircumference(cm) 77.2(13.0) 83.0(12.2) <0.001 Waist/heightratio 46.7(8.0) 46.4(6.6) 0.44 Height(m) 1.66(0.1) 1.78(0.1) <0.001 Weight(kg) 67.1(15.8) 78.7(16.4) <0.001 BMI(kg/m2) 24.4(5.6) 24.5(4.5) 0.71 Biochemistry Cholesterol(mmol/L) 4.5(0.8) 4.2(0.8) <0.001 Triglycerides(mmol/L) 1.0(0.5) 1.1(0.6) 0.03 HDL-C(mmol/L) 1.4(0.3) 1.2(0.2) <0.001 LDL-C(mmol/L) 2.6(0.6) 2.4(0.7) <0.001 hsC-reactiveprotein(mg/L) 3.0(5.5) 2.1(5.8) 0.004 Glucose(mmol/L) 4.8(0.4) 5.1(0.4) <0.001 Insulin(mU/L) 1.3(0.7) 1.2(0.7) 0.002 HOMA-IR 1.1(1.2) 1.0(1.4) 0.69 BloodPressure SystolicBP(mmHg) 111.1(10.2) 122.3(11.8) <0.001 DiastolicBP(mmHg) 65.4(7.2) 65.2(7.8) 0.62 DescriptivecharacteristicsarepresentedasmeansandSD.BMI,bodymassindex;HDL,high-densitylipoprotein;LDL,low-densitylipoprotein;hsC- reactiveprotein;highsensitivityC-reactiveprotein;HOMA-IR,homeostaticmodelassessmentofinsulinresistance;BP, bloodpressure. doi:10.1371/journal.pone.0162164.t001 samplewithmetabolicsyndromeaccordingtotherevisedNationalCholesterolEducationPro- gramAdultTreatment PanelIIIguidelines[26]was26females(1.8%)and47males(3.3%). DXAandanthropometrymeasureswiththeindividualcardio-metabolic riskfactors (i)ComparisonswithinDXAandanthropometricmeasures. Table 2summarisesthe DXAandanthropometrymeasuresthatproducedthelowestAICforeachoftheindividual cardio-metabolicriskfactors.Nostatisticallysignificantdifferencesbetweenthesexesinthe relationshipbetweentheadipositymeasuresandthecardio-metabolicriskfactorswerefound foranyoutcome.Theinteractiontermwasthereforeremovedandasingleadipositycoefficient applicabletobothmalesandfemaleswasestimated.WithintheDXAmeasures,midrifffat masswasthesuperiormodelforallriskfactorswiththeexceptionofHDL-C,hs-CRPandsys- tolicBP. Incontrast,therewasconsiderablevariationinthebestanthropometricmeasure acrossthecardio-metabolicriskfactors:BMIwasthebestmeasureforsystolicBP, hs-CRP, insulinandHOMA-IR;waisttoheightratiowasbestfortriglycerides,HDL-CandLDL-C;and abdominalskinfoldwasbestforcholesterolanddiastolicBP. Bodyadiposityindexandsumof skinfolds,asanthropometrymeasurements,werenotevidenttohavethelowestAICwithany oftheriskfactors.NoneofthecombinationsofDXAwithanthropometrymeasureswas PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 5/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors Table2. TheAkaikeInformationCriteriondifferencesbetweenthebestDXAandbestanthropometrymeasureswiththeindividualcardio-meta- bolicriskfactorsinyoungadults. Adiposityindices BestDXA Best AICdifference Anthropometry (DXA– AICR2 AICR2 Anthropometry) Cholesterol Midrifffatmass Abdominalskinfold N=1021 2325.30.08 2327.730.04 -2.46 Triglycerides Midrifffatmass* Waist/heightratio N=1021 1550.20.10 1560.640.09 -10.49 HDL-C Fatdistribution Waist/heightratio* index N=1021 343.30.19 331.780.20 11.54 LDL-C Midrifffatmass Waist/heightratio N=1021 1972.10.05 1971.550.06 0.52 hsC-reactiveprotein Totalbodyfat BMI percentage N=1021 6359.90.006 6362.340.005 -2.41 Glucose Midrifffatmass Waistcircumference N=1021 957.80.09 958.080.09 -0.28 Insulin Midrifffatmass* BMI N=1021 2158.30.08 2168.080.07 -9.74 HOMA-IR Midrifffatmass* BMI N=1021 3261.10.04 3270.460.04 -9.36 SystolicBP Fatdistribution BMI* index N=1180 8884.80.27 8831.090.30 53.7 DiastolicBP Midrifffatmass Abdominalskinfold N=1180 8043.40.03 8043.730.003 -0.38 *Bestadipositymeasure AICandR2valueswerederivedfromlinearorTobitregressionmodelsadjustedforsex(S1–S3Tables).AICdifferenceswerederivedfromthebestDXA AICvalue—thebestanthropometryAICvalue.DifferencesinAICbetweenmodelsofapproximately2wereconsideredtoindicateequivalentadiposity measures.OtherwisethemodelwiththelowestAICwasconsideredsuperior. AIC,Akaikeinformationcriterion;HDL-C,high-densitylipoproteincholesterol;LDL-C,low-densitylipoproteincholesterol;HOMA-IR,homeostaticmodel assessmentofinsulinresistance;hsC-reactiveprotein;highsensitivityC-reactiveprotein;BP, bloodpressure;BMI,bodymassindex;WC,waist circumference. doi:10.1371/journal.pone.0162164.t002 superiortotheindividualDXAandanthropometrymeasureswithanyofthecardio-metabolic riskfactors. (ii)ComparisonsbetweenthebestDXAandbestanthropometrymeasure. Differences betweenthebestDXAandanthropometrymeasureforindividualcardio-metabolicriskfactors eitherclearlyindicatedthedominanceofonemeasure(deltaAIC>10)orsuggestedequiva- lence(deltaAIC(cid:20)2)(Table 2).Themodelthatincorporatedmidrifffatmasswassuperiorfor triglycerides,insulinandHOMA-IR.Incontrast,waist-to-heightratiowasthesuperiormodel inrelationtoHDL-CandBMIwassuperiortoanyDXAmeasureinrelationtosystolicBP. For alltheothercardio-metabolicvariables,anthropometricandDXAmeasureswerecomparable. TheadjustedR-squaredvaluesshowmarginaldifferencesbetweenthebestDXAandanthro- pometrymeasures. PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 6/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors Discussion Inthispopulationcohortofyoungadults,clinicalanthropometrymeasureseitheroutper- formedorwereequivalenttoDXAformajorityofthecardio-metabolicriskfactors.Theexcep- tionwasDXAmidrifffatmassasitwassuperiorfortriglycerides,insulinandHOMA-IR. CombinationsofvariousDXAandanthropometrymeasureswerenobetterthantheindividual DXAoranthropometry.Whilenotreportedhere,wefoundnoadditionalvalueofleanbody massmeasurementsorafat/leanmassratiocomparedwithclinicalanthropometry.Ourresults showtheutilityofanthropometryasasimple,cost-effectiveprimaryscreeningtoolforthe identificationofindividualsatrisk.Ourdata,however,donotprecludetheuseofDXAinrela- tiontomorefocussedresearchquestionsorforafurtherdetailedclinicalassessmentof patients. Itisdifficulttojustifyhighequipmentandscanningcosts,burdenontheindividualand reducedaccessibilityimposedbyDXAusedasaprimaryadiposityscreeningtoolinaclinical settingorforpopulationlevelresearchintocardio-metabolicdisease.Inaddition,severalfac- torsaffectingtheefficacyofDXA,includetheinterpretationofDXAscanswhichrequirespe- cialisedtraining,technicianerroroperatingequipment,thetypeofclothingandpositioningof thepatientonthetable.Withworldwidehealthcostsrapidlyincreasing,theuseofDXAforfat assessmentishardtojustify,exceptinrelationtoamuchmorefocussedresearchquestionand foramoredetailedclinicalassessmentofthepatient,asasecondaryscreeningtool.Inthislat- tersetting,otherdirectimagingmethodssuchasmagneticresonanceimaging,computer tomography, ultrasoundandpossiblybioelectricalimpedanceanalysistechniquescanbeuseful forthequantificationanddifferentiationofsubcutaneousandvisceralfattissue[27–29]. Inourstudy,weshowedthatthemuchcriticisedBMIwasthebestmeasurewithsystolicBP andwassuperiortoanyDXAderivedmeasure.Heightandweightwerealsoimportantindivid- ualdeterminantsofBP;however,neitherwasbetterthanBMIinrelationtosystolicBP. In otherstudies,BMIwassignificantlyrelatedtosystolicBPamongUSadolescents[4][30,31], theNHANESstudyinchildrenfoundBMIwasmorestronglycorrelatedwithsystolicBPthan DXAfatmasspercentage[32].Itoetal[33]reportedtheaccuracyofdetectinghypertension anddyslipidaemiawascomparablebetweenBMI,waistcircumferenceandwaisttoheightratio measuresandtheDXAmeasuresoftotalpercentagefatmassandmidrifffatmasspercentage inadults. We foundnoothercomparisonsofDXAandanthropometryinrelationtowiderangeof cardio-metabolicriskfactorsinyoungadultsfrompopulationbasedstudies.Studiesinmiddle agedadultsandchildrenhavealsoshownlackofdominanceofDXAoverBMI.Krachleretal [30]foundBMIhadsimilarpredictivepowercomparedtoDXAfatmasspercentageandbio- impedanceanalysisforhypertension,impairedfastingglucose,dyslipidaemiaandthemeta- bolicsyndrome,inmiddleagedadults.BMIandwaistcircumferenceweresimilarlycorrelated withDXAfatmassandfatmasspercentageinrelationtohs-CRP, BPandfastinglipids,glu- coseandinsulininadults[31]andinyouthaged8–18yearsofage[32].Percentagebodyfat (DXA)didnotproducestrongerassociationsinestimatingcomponentsofthemetabolicsyn- drome[34]andcardiovascularriskfactorsthanBMIandskinfoldthicknessinyouth[35].Our findingsonhs-CRPcontrastwiththoseofVegaetal[36]whoobservedthatDXAtotalbody fatpercentagewasbettercorrelatedwithhs-CRPthanBMI,inmiddle-agedUSadults. Thestrengthsofthisstudyincludedatafromalargesamplepopulationwithinanarrowage rangeandabreadthofmeasuresevaluatingadiposityusingDXAandanthropometry.Inaddi- tion,weexaminedanarrayofcardio-metabolicriskfactors,incontrasttomostotherstudies whichhadanarrowerfocus.Arobuststatisticalapproachwasusedtocomparetheperfor- manceoftheadipositymeasureswithineachoutcome.Limitationsofthisstudyincludeits PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 7/11
Description: