ebook img

Dual energy X-ray absorptiometry compared with anthropometry in relation to cardio-metabolic risk PDF

14 Pages·2016·0.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dual energy X-ray absorptiometry compared with anthropometry in relation to cardio-metabolic risk

TThhee UUnniivveerrssiittyy ooff NNoottrree DDaammee AAuussttrraalliiaa RReesseeaarrcchhOOnnlliinnee@@NNDD Health Sciences Papers and Journal Articles School of Health Sciences 2016 DDuuaall eenneerrggyy XX--rraayy aabbssoorrppttiioommeettrryy ccoommppaarreedd wwiitthh aanntthhrrooppoommeettrryy iinn rreellaattiioonn ttoo ccaarrddiioo--mmeettaabboolliicc rriisskk ffaaccttoorrss iinn aa yyoouunngg aadduulltt ppooppuullaattiioonn:: IIss tthhee ‘‘GGoolldd SSttaannddaarrdd’’ ttaarrnniisshheedd?? D Demmer L Beilin B Hands University of Notre Dame Australia, [email protected] S Burrows C Pennell See next page for additional authors Follow this and additional works at: https://researchonline.nd.edu.au/health_article Part of the Medicine and Health Sciences Commons This article was originally published as: Demmer, D., Beilin, L., Hands, B., Burrows, S., Pennell, C., Lye, S., Mountain, J., & Mori, T. (2016). Dual energy X-ray absorptiometry compared with anthropometry in relation to cardio-metabolic risk factors in a young adult population: Is the ‘Gold Standard’ tarnished?. PLoS One, 11 (9). Original article available here: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162164 This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/health_article/156. For more information, please contact [email protected]. AAuutthhoorrss D Demmer, L Beilin, B Hands, S Burrows, C Pennell, S Lye, J Mountain, and T Mori This article is available at ResearchOnline@ND: https://researchonline.nd.edu.au/health_article/156 This article was originally published at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162164 Demmer, D., Beilin, L., Hands, B., Burrows, S., Pennell, C., Lye, S., Mountain, J., and Mori, T. (2016) Dual energy X-Ray absorptiometry compared with anthropometry in relation to cardio-metabolic risk factors in a young adult population: Is the ‘Gold Standard’ tarnished? PLoS One, 11(9). doi: 10.1371/journal.pone.0162164 No changes have been made to the original article. This is an Open Access article distributed under the terms of the Creative Commons Attribution International 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. RESEARCHARTICLE Dual Energy X-Ray Absorptiometry Compared with Anthropometry in Relation to Cardio-Metabolic Risk Factors in a Young Adult Population: Is the ‘Gold Standard’ Tarnished? DeniseL.Demmer1☯*,LawrenceJ.Beilin1☯,BethHands2‡,SallyBurrows1☯,Craig a11111 E.Pennell3,StephenJ.Lye4,JenniferA.Mountain5‡,TrevorA.Mori1☯ 1 SchoolofMedicineandPharmacology,RoyalPerthHospitalUnit,TheUniversityofWesternAustralia, Perth,Australia,2 InstituteforHealthResearch,TheUniversityofNotreDameAustralia,Perth,Australia, 3 SchoolofWomen’sandInfantsHealth,TheUniversityofWesternAustralia,Perth,Australia,4 Lunenfeld- TanenbaumResearchInstitute,UniversityofToronto,Toronto,Canada,5 SchoolofPopulationHealth,The UniversityofWesternAustralia,Perth,Australia OPENACCESS ☯Theseauthorscontributedequallytothiswork. ‡Theseauthorsalsocontributedequallytothiswork. Citation:DemmerDL,BeilinLJ,HandsB,Burrows *[email protected] S,PennellCE,LyeSJ,etal.(2016)DualEnergyX- RayAbsorptiometryComparedwithAnthropometryin RelationtoCardio-MetabolicRiskFactorsinaYoung Abstract AdultPopulation:Isthe‘GoldStandard’Tarnished? PLoSONE11(9):e0162164.doi:10.1371/journal. pone.0162164 BackgroundandAims Editor:Xiao-FengYang,TempleUniversitySchoolof Medicine,UNITEDSTATES Assessmentofadiposityusingdualenergyx-rayabsorptiometry(DXA)hasbeenconsid- Received:May23,2016 eredmoreadvantageousincomparisontoanthropometryforpredictingcardio-metabolic Accepted:July30,2016 riskintheolderpopulation,byvirtueofitsabilitytodistinguishtotalandregionalfat.None- theless,thereisincreasinguncertaintyregardingtherelativesuperiorityofDXAandlittle Published:September13,2016 comparativedataexistinyoungadults.Thisstudyaimedtoidentifywhichmeasureofadi- Copyright:©2016Demmeretal.Thisisanopen positydeterminedbyeitherDXAoranthropometryisoptimalwithinarangeofcardio-meta- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits bolicriskfactorsinyoungadults. unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare MethodsandResults credited. 1138adultsaged20yearswereassessedbyDXAandstandardanthropometryfromthe DataAvailabilityStatement:Thedatausedto generatetheresultsinthispublicationareavailable WesternAustralianPregnancyCohort(Raine)Study.Cross-sectionallinearregression uponrequestasethicalrestrictionsexistanddata analyseswereperformed.WaisttoheightratiowassuperiortoanyDXAmeasurewith wereobtainedfromathirdparty.Readersand HDL-C.BMIwasthesuperiormodelinrelationtobloodpressurethananyDXAmeasure. interestedresearchersmaycontacttheExecutiveof Midrifffatmass(DXA)andwaistcircumferencewerecomparableinrelationtoglucose.For theWesternAustralianPregnancyCohort(Raine) Studytorequestthedata. alltheothercardio-metabolicvariables,anthropometricandDXAmeasureswerecompara- ble.DXAmidrifffatmasscomparedwithBMIorwaisthipratiowasthesuperiormeasurefor Funding:DXAscanningwasfundedbyCanadian InstitutesforHealthResearch(GrantMOP82893). triglycerides,insulinandHOMA-IR. TheRaineStudy20yearfollowupassessmentwas fundedbyprojectgrantsfromtheAustralianNational PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 1/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors HealthandMedicalResearchCouncil,theLionsEye Conclusion InstituteinWesternAustralia,AustralianFoundation Althoughmidrifffatmass(measuredbyDXA)wasthesuperiormeasurewithinsulinsensi- forthePreventionofBlindnessandtheAlcon ResearchInstitute.CoremanagementoftheRaine tivityandtriglycerides,theanthropometricmeasureswerebetterorequalwithvariousDXA studyisprovidedbytheRaineMedicalResearch measuresformajorityofthecardio-metabolicriskfactors.Ourfindingssuggest,clinical Foundation;TheUniversityofWesternAustralia anthropometryisgenerallyasusefulasDXAintheevaluationoftheindividualcardio-meta- (UWA);theTelethonKidsInstitute;theUWAFaculty ofMedicine,DentistryandHealthSciences;the bolicriskfactorsinyoungadults. WomenandInfantsResearchFoundationandCurtin University. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. Introduction Theprevalenceofobesityisincreasingworldwide.In2014morethan1.9billionadults,18 yearsandolder,wereoverweightandapproximately600millionadultswereobese[1].Excess bodyfatisanestablishedriskfactorfornumerouschronicdiseasesandprematuredeath[2,3]. Moststudiesseekingtoincreasetheunderstandingofthenegativeinfluenceofobesityhave beenbasedonbodymassindex(BMI).However,BMIdoesnotreflecttotalbodyadiposity becauseitcannotdifferentiatebetweenleanandfatmassofanindividual.Alternativemeasures suchaswaistcircumferenceorwaist-heightratiomaybebetterclinicalindicatorsofadiposity [4]. Dualenergyx-rayabsorptiometry(DXA)isthegoldstandardforthediagnosisofosteopo- rosis[5]andhasincreasinglybeenusedforthediagnosis/managementofoverweightandobe- sityandinclinicalresearchincardiovasculardisease[6–8].Thequestionarisesastowhether theuseofDXAinthemanagementofoverweightandobesityisjustifiedintermsofcostand/ orcomplexity,inreturnforanyclear-cutscientificorclinicalvalue.Therearecommercialdriv- ersfortheuseofDXA;forexampleintheUSAapatientcanexpecttopayapproximately$100 USinthepublichealthsettingor$250USwithintheprivatehealthsectorforaDXAscanwith- outrebate[9].Therehasbeena65%declineinMedicarereimbursementofDXAbonemineral densitytestinginthenon-facilitysetting,fromapproximately$140in2006to$50in2014[10]. Atthislowerlevel,providersofDXAscansarefindingitmoredifficulttocovertheoperating costs,duetofundingcuts[11].Therefore,therehasbeensomemotivationtofindanotheruse forDXAthatmaybeclinicallyrelevanttohealthprofessionals,particularlytoallowforearly identificationandinterventionofindividualsinrelationtoobesityandcardio-metabolic health. ThedominanceanddifferentialeffectsofDXAoveranthropometryforestimatingthepres- enceofcardio-metabolicriskhasnotbeenclearlyestablished.Studiesinmiddleagedadults, whichcompareanthropometricandDXAadipositymeasurements,havebeeninconsistent withrespecttothestrengthofassociationswithcardio-metabolicriskfactors,mostlikelydue tomethodologicalinconsistenciesindefiningadiposity[2,12].Moreover,manyofthese reportsonlytakeintoaccountestimatesoftotalbodyfatpercentageandnotfatdistributionor abdominalfatmass10–14.Inaddition,thereisalsoalackofreporteddatacomparingDXA againstcardio-metabolicriskfactorssolelyinyoungadultpopulations[4,12]. Obesityinyoungadultsisanimportantpredictorforsubsequentcoronarydiseaseanddia- betesinmiddletooldage[13,14].Australiafollowsworldwidetrendsshowingincreasinglev- elsofobesityandType2diabetesinearlyadulthood[15].Theearlyidentificationof individualswhoareofincreasedriskofcoronarydiseaseanddiabetesinlaterlifehasthe potentialtoimplementlifestylemodificationsthatcouldreducethisrisk.Thisstudytherefore aimedtoidentifywhichmeasureofadipositydeterminedbyeitherDXA(totalbodyfatper- centage,FatDistributionIndexandmidrifffatmass)oranthropometry(abdominalskinfold, PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 2/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors waistcircumference,waisttoheightratio,weightandBMI),isoptimalwithinarangeofcar- dio-metabolicriskfactorsinasampleofhealthyyoungadultsfromtheWesternAustralian PregnancyCohort(Raine)Study. Methods Participants TheWesternAustralianPregnancyCohort(Raine)Studyisaprospectivepopulationstudy wherepregnantwomenbetween16to20weeksgestationwererecruitedfromKingEdward MemorialHospitalandcloselylocatedpractices.Themothersgavebirthto2868liveinfants. DetailedinformationonthemethodsoftheRaineStudyhaspreviouslybeenreported[16]. Thepresentpopulationcomprised1273adultsfromtheRaineStudywhoattendedthe20year oldsurvey.Written informedconsentwasobtainedfromtheparticipants.Ethicsapprovalfor the20yearassessmentwasobtainedfromtheHumanResearchEthicsCommitteeattheUni- versityofWesternAustralia. AdultanthropometryandDXAmeasurements Atthe20yearfollowup,heightwasmeasuredbyawallmountedStadiometer(tothenearest 0.1cm)andweightwasmeasured(tothenearest100g)withparticipantsdressedinlight clothes.Bodymassindex(BMI)wascalculatedasweight(kg)dividedbythesquareofheight (m2).Waist circumferencewasevaluatedattheumbilicuslevelandhipcircumferenceatthe levelofthemaximumposteriorextensionofthebuttockswithatapemeasure(tothenearest 0.1cm).Theabdominalskinfoldwasmeasuredfromaverticalskinfoldimmediatelytotheleft oftheumbilicus,thesuprailiacskinfoldwasassessedfromadiagonalfoldlocated1cmabove theanteriorsuperioriliaccrestandthetricepskinfoldwasmeasuredfromaverticalskinfold alongthemidlineonthebackofthetricepsoftherightarmusingaskinfoldcalliper(Holtain, Crosswell,UnitedKingdom)[17].Allskinfoldmeasurementswereassessedtwicewiththe averageoftheskinfoldscalculated.Thesumofthreeskinfoldswascalculatedfromtheabdomi- nal,suprailiacandtricepskinfoldsitesandthischaracterisesthesubcutaneousfatthicknessat differentregionsofthebody[18].Waist tohipandwaisttoheightratioswerederivedfromthe divisionofwaistcircumference(cm)bythehipcircumference(cm)andheight(m), respectively. ThestudyusedaNorlandXR-36densitometer(NorlandMedicalSystems,Inc.,FortAtkin- son,WI,USA)toprovideestimatesofwholebodyfatmass(g),leanmass(g),midrifffatmass (g)(vertebraeL1—L4).Total bodyfatpercentagewasestimatedastotalbodyfatmass(g)/ totalmassx100.TheFatDistributionIndexwascalculatedfromtheformulachestfatmass(g) +midrifffatmass(g)/pelvisfatmass(g)+leftlegfatmass(g)+rightlegfatmass(g)[19].All measurementswereperformedbytrainedresearchpersonnel. Biochemistryandbloodpressuremeasurements VenousbloodsamplestakenafteranovernightfastwereanalysedinthePathWest Laboratory atRoyalPerthHospitalforserumglucose,insulin,totalcholesterol,triglycerides,highdensity lipoprotein-cholesterol(HDL-C)andhighsensitivityC-reactiveprotein(hs-CRP)[20].Low densitylipoprotein-cholesterol(LDL-C)wascalculatedusingtheFriedewaldequation[21]. Thehomeostaticmodelassessmentofinsulinresistance(HOMA-IR)wascalculatedusingthe formula:fastinginsulin(μU/ml)xfastingglucose(mmol/L)/22.5[22].BPwasmeasured usinganoscillometricsphygmomanometerwiththeappropriatecuffsizeforarmcircumfer- ence(DINAMAPvitalsignsmonitor8100,DINAMAPXLvitalsignsmonitororDINAMAP PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 3/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors ProCare100;GEHealthcare).SixBPreadingswereobtainedevery2minuteswithina10min- utetimeperiodinthesupineposition,aftera5minuterestingperiod.TheaverageBPvalue wascalculatedusingthelastfivereadingstoobtainsystolicanddiastolicBPvalues[23]. Statisticalanalysis Characteristicsofthesampleweresummarisedusingmeansandstandarddeviations(SD)sep- aratelyformalesandfemales.Differencesbetweenthesexesweretestedusingt-tests.All reportedpvaluesare2-tailedandsignificancewassetatα=0.05. Linearregressionanalysesexaminedtherelationshipbetweeneachadipositymeasuresand cardio-metabolicriskfactors.Allmodelsincludedandtestedtheinteractionbetweensexand theadiposityindicator.Foreachoutcome,comparisonsweremadewithinthesetofmodels, usingeachadipositymeasuretoidentifythebestDXAmeasurerelatedtoagivencardio-meta- bolicriskfactorandsimilarlyfortheanthropometricmeasures.Themeasuresidentifiedas bestfromeachofthesetwosets(DXAandanthropometry)werethencompared.Forexample themodelofDXAmidrifffatmassandtriglycerideswascomparedwiththemodelofwaist/ heightandtriglycerides.Giventhatthesemodelswerenotnestedwithineachother,likelihood ratiotestswerenotappropriatetoformallycomparemodels.ThustheAkaikeInformationCri- terion(AIC)wasutilised[24].Asrequired,allmodelsforaparticularoutcomewerecon- structedonastaticsampledeterminedbycompletedataonalladipositymeasures.Forany givenoutcome,themodelwiththeminimumAICwasdeemedtobethebestmodel.Differ- encesfromtheminimumAICprovideastrengthofevidencecomparisonandtherankingof modelswithrespecttothebestmodel.BycalculatingdifferencesbetweenAIC,arbitraryscaling constantsareremovedallowingtheapplicationofguidelinestointerpretthedifference.Models wherethedifferenceinAICis(cid:20)2indicatessubstantialsupportthattheyarenotdifferent, whilesupportforthisclaimdecreasesasthedifferenceinAICincreases(AICvaluesabove10 areconsideredtohavenosupportforequivalence).TheadjustedR2foreachmodelwasalso reported.Inadditiontomodelswithasingleadipositymeasure,combinationsofanthropomet- ricandDXAmeasureswereexploredinasimilarmanner.Thecombinationsincludedmidriff fatmassandwaistcircumference,fatdistributionindexandBMI,andmidrifffatmassand BMI.Tobit regression(forcensoreddata)wasutilisedforfastinginsulinandhs-CRPdueto thelowerboundaryofthetest[25].Allotherregressionsperformedwereordinarylinear regression.Variables werelogtransformedifthevalueswerenotnormallydistributed(triglyc- erides,HDL-C,insulin,hs-CRP).DatawereanalysedusingSTATA (StataCorp,2011.Stata StatisticalSoftware:release12.CollegeStation.TX:StataCorp,LP). Results Descriptivecharacteristics GeneralcharacteristicsofbodycompositionusingDXA,anthropometryandtheindividual cardio-metabolicriskfactorsareshownseparatelyforfemalesandmalesinTable 1. EthnicityinthecohortwaspredominantlyCaucasian(93%).At20yearsofage,femaleshad ahighertotalbodyfatpercentage,fatdistributionindexandmidrifffatmasscomparedwith males(p<0.001)(Table 1).Malesweretaller,heavierandhadagreaterwaistcircumference thanfemales(allp<0.001)buthadasignificantlylowerabdominalskinfold.Malesand femaleswerenotstatisticallydifferentforwaisttoheightratioandBMI.Allcardio-metabolic riskfactorswerestatisticallydifferentbetweenmalesandfemalesexceptforHOMA-IRand diastolicBP. FemaleshadlowersystolicBP, triglyceridesandglucose,andhighertotalcholes- terol,HDL-C,LDL-C,insulinandhs-CRP, thanmales.Thenumberofindividualsinthe PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 4/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors Table1. DescriptivecharacteristicsofmalesandfemalesfromtheWesternAustralianPregnancyCohortat20yearsofage. Measure Females Males pvalue n=532 n=606 DXA Totalbodyfatpercentage(%) 39.3(8.9) 21.8(8.7) <0.001 Fatdistributionindex(g) 17318.2(7349.1) 11235.7(6431.0) <0.001 Midrifffatmass(g) 1401.7(932.9) 1091.0(887.6) <0.001 Anthropometry Abdominalskinfold(mm) 25.4(8.6) 21.5(10.2) <0.001 Waistcircumference(cm) 77.2(13.0) 83.0(12.2) <0.001 Waist/heightratio 46.7(8.0) 46.4(6.6) 0.44 Height(m) 1.66(0.1) 1.78(0.1) <0.001 Weight(kg) 67.1(15.8) 78.7(16.4) <0.001 BMI(kg/m2) 24.4(5.6) 24.5(4.5) 0.71 Biochemistry Cholesterol(mmol/L) 4.5(0.8) 4.2(0.8) <0.001 Triglycerides(mmol/L) 1.0(0.5) 1.1(0.6) 0.03 HDL-C(mmol/L) 1.4(0.3) 1.2(0.2) <0.001 LDL-C(mmol/L) 2.6(0.6) 2.4(0.7) <0.001 hsC-reactiveprotein(mg/L) 3.0(5.5) 2.1(5.8) 0.004 Glucose(mmol/L) 4.8(0.4) 5.1(0.4) <0.001 Insulin(mU/L) 1.3(0.7) 1.2(0.7) 0.002 HOMA-IR 1.1(1.2) 1.0(1.4) 0.69 BloodPressure SystolicBP(mmHg) 111.1(10.2) 122.3(11.8) <0.001 DiastolicBP(mmHg) 65.4(7.2) 65.2(7.8) 0.62 DescriptivecharacteristicsarepresentedasmeansandSD.BMI,bodymassindex;HDL,high-densitylipoprotein;LDL,low-densitylipoprotein;hsC- reactiveprotein;highsensitivityC-reactiveprotein;HOMA-IR,homeostaticmodelassessmentofinsulinresistance;BP, bloodpressure. doi:10.1371/journal.pone.0162164.t001 samplewithmetabolicsyndromeaccordingtotherevisedNationalCholesterolEducationPro- gramAdultTreatment PanelIIIguidelines[26]was26females(1.8%)and47males(3.3%). DXAandanthropometrymeasureswiththeindividualcardio-metabolic riskfactors (i)ComparisonswithinDXAandanthropometricmeasures. Table 2summarisesthe DXAandanthropometrymeasuresthatproducedthelowestAICforeachoftheindividual cardio-metabolicriskfactors.Nostatisticallysignificantdifferencesbetweenthesexesinthe relationshipbetweentheadipositymeasuresandthecardio-metabolicriskfactorswerefound foranyoutcome.Theinteractiontermwasthereforeremovedandasingleadipositycoefficient applicabletobothmalesandfemaleswasestimated.WithintheDXAmeasures,midrifffat masswasthesuperiormodelforallriskfactorswiththeexceptionofHDL-C,hs-CRPandsys- tolicBP. Incontrast,therewasconsiderablevariationinthebestanthropometricmeasure acrossthecardio-metabolicriskfactors:BMIwasthebestmeasureforsystolicBP, hs-CRP, insulinandHOMA-IR;waisttoheightratiowasbestfortriglycerides,HDL-CandLDL-C;and abdominalskinfoldwasbestforcholesterolanddiastolicBP. Bodyadiposityindexandsumof skinfolds,asanthropometrymeasurements,werenotevidenttohavethelowestAICwithany oftheriskfactors.NoneofthecombinationsofDXAwithanthropometrymeasureswas PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 5/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors Table2. TheAkaikeInformationCriteriondifferencesbetweenthebestDXAandbestanthropometrymeasureswiththeindividualcardio-meta- bolicriskfactorsinyoungadults. Adiposityindices BestDXA Best AICdifference Anthropometry (DXA– AICR2 AICR2 Anthropometry) Cholesterol Midrifffatmass Abdominalskinfold N=1021 2325.30.08 2327.730.04 -2.46 Triglycerides Midrifffatmass* Waist/heightratio N=1021 1550.20.10 1560.640.09 -10.49 HDL-C Fatdistribution Waist/heightratio* index N=1021 343.30.19 331.780.20 11.54 LDL-C Midrifffatmass Waist/heightratio N=1021 1972.10.05 1971.550.06 0.52 hsC-reactiveprotein Totalbodyfat BMI percentage N=1021 6359.90.006 6362.340.005 -2.41 Glucose Midrifffatmass Waistcircumference N=1021 957.80.09 958.080.09 -0.28 Insulin Midrifffatmass* BMI N=1021 2158.30.08 2168.080.07 -9.74 HOMA-IR Midrifffatmass* BMI N=1021 3261.10.04 3270.460.04 -9.36 SystolicBP Fatdistribution BMI* index N=1180 8884.80.27 8831.090.30 53.7 DiastolicBP Midrifffatmass Abdominalskinfold N=1180 8043.40.03 8043.730.003 -0.38 *Bestadipositymeasure AICandR2valueswerederivedfromlinearorTobitregressionmodelsadjustedforsex(S1–S3Tables).AICdifferenceswerederivedfromthebestDXA AICvalue—thebestanthropometryAICvalue.DifferencesinAICbetweenmodelsofapproximately2wereconsideredtoindicateequivalentadiposity measures.OtherwisethemodelwiththelowestAICwasconsideredsuperior. AIC,Akaikeinformationcriterion;HDL-C,high-densitylipoproteincholesterol;LDL-C,low-densitylipoproteincholesterol;HOMA-IR,homeostaticmodel assessmentofinsulinresistance;hsC-reactiveprotein;highsensitivityC-reactiveprotein;BP, bloodpressure;BMI,bodymassindex;WC,waist circumference. doi:10.1371/journal.pone.0162164.t002 superiortotheindividualDXAandanthropometrymeasureswithanyofthecardio-metabolic riskfactors. (ii)ComparisonsbetweenthebestDXAandbestanthropometrymeasure. Differences betweenthebestDXAandanthropometrymeasureforindividualcardio-metabolicriskfactors eitherclearlyindicatedthedominanceofonemeasure(deltaAIC>10)orsuggestedequiva- lence(deltaAIC(cid:20)2)(Table 2).Themodelthatincorporatedmidrifffatmasswassuperiorfor triglycerides,insulinandHOMA-IR.Incontrast,waist-to-heightratiowasthesuperiormodel inrelationtoHDL-CandBMIwassuperiortoanyDXAmeasureinrelationtosystolicBP. For alltheothercardio-metabolicvariables,anthropometricandDXAmeasureswerecomparable. TheadjustedR-squaredvaluesshowmarginaldifferencesbetweenthebestDXAandanthro- pometrymeasures. PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 6/11 DXAandAnthropometrywithCardio-MetabolicRiskFactors Discussion Inthispopulationcohortofyoungadults,clinicalanthropometrymeasureseitheroutper- formedorwereequivalenttoDXAformajorityofthecardio-metabolicriskfactors.Theexcep- tionwasDXAmidrifffatmassasitwassuperiorfortriglycerides,insulinandHOMA-IR. CombinationsofvariousDXAandanthropometrymeasureswerenobetterthantheindividual DXAoranthropometry.Whilenotreportedhere,wefoundnoadditionalvalueofleanbody massmeasurementsorafat/leanmassratiocomparedwithclinicalanthropometry.Ourresults showtheutilityofanthropometryasasimple,cost-effectiveprimaryscreeningtoolforthe identificationofindividualsatrisk.Ourdata,however,donotprecludetheuseofDXAinrela- tiontomorefocussedresearchquestionsorforafurtherdetailedclinicalassessmentof patients. Itisdifficulttojustifyhighequipmentandscanningcosts,burdenontheindividualand reducedaccessibilityimposedbyDXAusedasaprimaryadiposityscreeningtoolinaclinical settingorforpopulationlevelresearchintocardio-metabolicdisease.Inaddition,severalfac- torsaffectingtheefficacyofDXA,includetheinterpretationofDXAscanswhichrequirespe- cialisedtraining,technicianerroroperatingequipment,thetypeofclothingandpositioningof thepatientonthetable.Withworldwidehealthcostsrapidlyincreasing,theuseofDXAforfat assessmentishardtojustify,exceptinrelationtoamuchmorefocussedresearchquestionand foramoredetailedclinicalassessmentofthepatient,asasecondaryscreeningtool.Inthislat- tersetting,otherdirectimagingmethodssuchasmagneticresonanceimaging,computer tomography, ultrasoundandpossiblybioelectricalimpedanceanalysistechniquescanbeuseful forthequantificationanddifferentiationofsubcutaneousandvisceralfattissue[27–29]. Inourstudy,weshowedthatthemuchcriticisedBMIwasthebestmeasurewithsystolicBP andwassuperiortoanyDXAderivedmeasure.Heightandweightwerealsoimportantindivid- ualdeterminantsofBP;however,neitherwasbetterthanBMIinrelationtosystolicBP. In otherstudies,BMIwassignificantlyrelatedtosystolicBPamongUSadolescents[4][30,31], theNHANESstudyinchildrenfoundBMIwasmorestronglycorrelatedwithsystolicBPthan DXAfatmasspercentage[32].Itoetal[33]reportedtheaccuracyofdetectinghypertension anddyslipidaemiawascomparablebetweenBMI,waistcircumferenceandwaisttoheightratio measuresandtheDXAmeasuresoftotalpercentagefatmassandmidrifffatmasspercentage inadults. We foundnoothercomparisonsofDXAandanthropometryinrelationtowiderangeof cardio-metabolicriskfactorsinyoungadultsfrompopulationbasedstudies.Studiesinmiddle agedadultsandchildrenhavealsoshownlackofdominanceofDXAoverBMI.Krachleretal [30]foundBMIhadsimilarpredictivepowercomparedtoDXAfatmasspercentageandbio- impedanceanalysisforhypertension,impairedfastingglucose,dyslipidaemiaandthemeta- bolicsyndrome,inmiddleagedadults.BMIandwaistcircumferenceweresimilarlycorrelated withDXAfatmassandfatmasspercentageinrelationtohs-CRP, BPandfastinglipids,glu- coseandinsulininadults[31]andinyouthaged8–18yearsofage[32].Percentagebodyfat (DXA)didnotproducestrongerassociationsinestimatingcomponentsofthemetabolicsyn- drome[34]andcardiovascularriskfactorsthanBMIandskinfoldthicknessinyouth[35].Our findingsonhs-CRPcontrastwiththoseofVegaetal[36]whoobservedthatDXAtotalbody fatpercentagewasbettercorrelatedwithhs-CRPthanBMI,inmiddle-agedUSadults. Thestrengthsofthisstudyincludedatafromalargesamplepopulationwithinanarrowage rangeandabreadthofmeasuresevaluatingadiposityusingDXAandanthropometry.Inaddi- tion,weexaminedanarrayofcardio-metabolicriskfactors,incontrasttomostotherstudies whichhadanarrowerfocus.Arobuststatisticalapproachwasusedtocomparetheperfor- manceoftheadipositymeasureswithineachoutcome.Limitationsofthisstudyincludeits PLOSONE|DOI:10.1371/journal.pone.0162164 September13,2016 7/11

Description:
Background and Aims. Assessment of adiposity using dual energy x-ray absorptiometry (DXA) has been consid- .. Chen L, Magliano DJ, Zimmet PZ.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.