water Article Dual-Control of Autothermal Thermophilic Aerobic Digestion Using Aeration and Solid Retention Time SilvanoNájera*,MontserratGil-MartínezandJavierRico-Azagra ElectricalEngineeringDepartment,UniversityofLaRioja,c/SanJosédeCalasanz31,26004Logroño,Spain; [email protected](M.G.-M.);[email protected](J.R.-A.) * Correspondence:[email protected];Tel.:+34-941-299-496 AcademicEditor:JoséManuelPoyatos Received:11March2017;Accepted:9June2017;Published:13June2017 Abstract: Autothermal thermophilic aerobic digestion (ATAD) is an advanced sewage sludge treatmentwhichallowscompliancewithincreasinglydemandingregulations. Concerningsludge pasteurization,acertainaveragetemperaturemustbeassuredinthedigesterduringbatchtreatment. Aerationflowisthevariablemostmanipulatedtoregulatethedigestertemperature.Additionally,the manipulationofthebatchsludgeflow—whichisrelatedtothesolid-retention-time—isconsideredto improvetemperatureregulationdespitevariationsinairandsludgetemperaturesandthevariability ofrawsludgeorganiccontent. Thus,adual-inputcontrolstructurewasprovidedwheretheaeration and solid-retention-time contributed as faster and slower inputs, respectively. Two controllers intervened,andtheset-pointforthebatchaveragetemperaturewaschosentomeettheminimum effluentqualityestablishedbytheUSregulationsorEuropeanrecommendations,consideringthat lowersetpointtemperaturessaveaerationcosts. Aset-pointfortheaerationallowedustoachieve anextragoal,whichaimedateitherreducingoperationcostsorincreasingproductionrates. Thetwo feedbackcontrollersweredesignedfollowingtherobustcontrolmethodologyknownasquantitative feedback theory (QFT). Improvements were compared with single-input (aeration-flow) control strategyandopen-loopcontrolstrategy. Simulationswereperformedonabenchmarknon-linear simulationmodelforATAD. Keywords:AutothermalThermophilicAerobicDigestion(ATAD);sludgepasteurization;wastewater treatment(WWT);mid-rangingcontrol;quantitativefeedbacktheory(QFT);processcontrol 1. Introduction Newregulationsintheincreasinglystringentwastewatertreatmentsectorpromotetheuseof advancedwastewaterandsludgetreatments. Thesludgethatisobtainedinwastewatertreatments is rich in nutrients and organic matter, which makes it reusable as a soil fertilizer [1] after proper processing. Autothermalthermophilicaerobicdigestion(ATAD)isareferencetechnologyforsludge stabilizationandpasteurization[2,3]. ATADtreatmentisbasedontheaerationoftherawsludgein aclosedreactorforaspecifiedretentiontime. Whensludgepasteurizationismandatory,thedigester isusuallyoperatedinbatch-mode(asequenceoffeeding-reaction-withdrawalthatisrepeatedbatch afterbatch)toavoidhydraulicshortsandensuretime-temperatureconditions. Bysupplyingasuitable amountofair,severalbiochemicalreactionsconsumetheorganicmattercontentinthesludge,which reducesthepotentialofthesludgetoattractdiseasevectors(insects,rodents,birds,etc.)[4].Exothermic reactionsgenerateheat,whichmaintainsthereactortemperatureataround55◦Cwithouttheneed to apply external heat energy. The high temperature during the batch time reduces the pathogen concentrationinthesludge[5–7]. Thecontrolofthereactionisvitaltoachievingproperstabilization(vectorattractionreduction) andpasteurization(pathogenreduction)levelsaspertheregulationsandrecommendationsguidelines. Water2017,9,426;doi:10.3390/w9060426 www.mdpi.com/journal/water Water2017,9,426 2of15 ThestandardsbytheUSEnvironmentalProtectionAgency(USEPA)[4,8]andtheEUCommission[9] wereconsidered. SeveralATADcontrolapproacheshavebeenproposedinthescientificliterature. Breideretal.[10]describedanintuitivewaytoregulatethedigestertemperaturethroughaerationflow. KimandOh[11]developedacontrolmethodusingfluorescencemonitoringofthebiologicalactivityto searchforaerationsavings. Warehametal.[12]pursuedthebeststabilizationlevelandconsideredthe oxidation-reduction-potential(ORP)tocutoffaeration. Zambrano[13]non-linearlyvariedtheaeration duringthebatchbasedontheslopeofthetemperatureevolution,whichaimedtoobtainmaximum organicmatterdegradationwithoutexcessiveaeration. Withthesameobjectives,Nájeraetal.[14] proposedafeedbackcontrolstructurewhosecontrollerwasdesignedfollowinglinearrobustcontrol techniques.Garcíaetal.[15]comparedATADasasingletreatmentwithdualATADandpost-anaerobic digestion, where both layouts looked for a medium level of stabilization. Nájeraetal.[16] also consideredthetreated-sludgequality,thetreatment-cost,andtherateoftreated-sludgetopropose differenttrade-offcontrolstrategies. Sincerelativelysmallthermophilictemperaturescomplywiththe pasteurizationcriteria,pasteurizationisacommongoalinallATADcontrolapproaches. Thestudyof thisgoalisrelevantinboththesingleATADanddualconfiguration;thelattercanincludeasecond aerobicoranaerobicstage[17]. To carry out any control strategy, the digester temperature is practically the only robust on-line measurable variable that provides relevant information regarding the digestion status. Theregulationofthetemperaturetoarequiredset-pointmostlyusesaerationflow,whichprovides majorcontrollability[10]. Inaddition,thesludgeflowcanalsobemanipulated. Inthebatchoperation, thesolid-retention-timeispreferredtodescribethesludge-flowmanipulationandcanbeachieved bychangingeitherthebatchtimeorthesludgevolumetreatedperbatch. Nájeraetal.[16]discussed theinfluenceofbothcontrolvariables(air-flowandsolid-retention-time)inthedigestertemperature, andeventuallyinthequalityofthetreated-sludge,intheoperation-costandrateoftreated-sludge (production-rate). Theuseofmultiplemanipulatedinputsiswidelyusedinprocesscontrol[18–21].Theinvolvement oftwocontrolvariablesinsidethefeedbackcontrolstructuresallowstheachievementoftwocontrol objectives. Inthiswork,onecontrolobjectivewastemperatureregulationtoaspecifiedset-pointthat wasconvenientlyselectedtoensuretherequiredsludgequality. Theothercontrolobjectivewasthe regulationofair-flowtoaspecifiedset-pointthatwasselectedtoachievedifferentgoals. Theobvious goalwastosaveaeration-costsbyreducingtheaerationset-point. Ontheotherhand,higheraeration set-pointsforthesamedigestertemperaturewouldreducethesolid-retention-time. Next,asecond goalwastoincreasetheproduction-ratebyincreasingtheaerationset-point. Theindirectregulationof theproduction-ratewouldbeusefultoadaptthedigestersludge-flowtocircumstancesupstreamor downstream(e.g.,possiblepre-holdingtanklevelnearitslimits).Assmallerdigestertemperaturessave aerationcosts,thetemperatureset-pointwasfixedtotheminimumvaluetomeettheUSEPA(orEU) recommendation for pasteurization [8,9]. The result of low thermophilic digestion temperatures is poor stabilization. Anaerobic digestion [22] would complete the treatment at a second stage. Nevertheless,largertemperatureset-pointsfavorsludgestabilization(volatilesolidsreduction),butdo notnecessarilyassuretheregulation[4,8]fulfilment. From a dynamic point of view, both the aeration-flow and the solid-retention-time cooperate in the digester temperature regulation. This temperature is disturbed by the variability of air and sludge temperatures, or by the variability of the organic content of the inlet sludge, amongst others. Thus,robustcontrollersweredesignedbasedonquantitativefeedbacktheoryprinciples[23]. Theirparticularitiesfortwo-inputone-outputstructuresaredetailedinRico-Azagraetal.[24]. AnATADbenchmarksimulationmodel[13,25]wasusedforthestudyofthedigesterbehavior, forthevalidationofthecontrolstructure,andforevaluationsandcomparisons. Theremainderofthepaperisorganizedasfollows. Section2studiestheinfluenceofair-flow andsolid-retention-timeonthedigestertemperature,andthecontrolstrategiesaredefined,asisthe dual-controlstructureusedtoachievethem. AppendixAthoroughlydescribesthemethodusedto Water 2017, 9, 426 3 of 15 The remainder of the paper is organized as follows. Section 2 studies the influence of air-flow Water2017,9,426 3of15 and solid-retention-time on the digester temperature, and the control strategies are defined, as is the dual-control structure used to achieve them. Appendix A thoroughly describes the method used to ddeessiiggnn tthheer orobbuuststc ocnotnrotrlolelrles.rsS.e Scteicotnio3ne v3 aeluvaatleusatthese ethxpe eecxtepdecpteerdf oprmerafonrcmeoanfcthe eodf utahle-c odnutarol-lcwonhterroel qwuhaelritey ,qcuoastl,itayn, dcopsrto, dauncdti opnriondduecxteiosna rienedveaxleusa taerde toevsahlouwatethde tiom pshroovwe mtheen tsimveprrsouvsesminegnltes- cvoenrtsruosl asinndglme-acnounatrloclo anntrdo ml.aInnuSaecl tcioonnt4ro,lt.h Ienm Seacintiocnon 4c, ltuhseio mnsaianr ecopnrcelsuesnitoends. are presented. 2. MaterialsandMethods 2. Materials and Methods 2.1. Steady-StateAnalysisoftheATAD 2.1. Steady-State Analysis of the ATAD Currentbenchmarksimulationmodels(BSMs)[26]wereextendedtoATADtechnologythrough Current benchmark simulation models (BSMs) [26] were extended to ATAD technology thebenchmarksimulationmodelAT_BSM[13,25]. ThiswasusedinthisworkfortheATADanalysis, through the benchmark simulation model AT_BSM [13,25]. This was used in this work for the ATAD andforthesimulationandvalidationoftheproposedcontrolstrategies. analysis, and for the simulation and validation of the proposed control strategies. In AT_BSM, the digester (Figure 1a) was modeled as a tank with two completely-stirred In AT_BSM, the digester (Figure 1a) was modeled as a tank with two completely-stirred volumes(liquidandgaseousphases). Biologicalreactionsandenergybalanceswereconsidered[27]. volumes (liquid and gaseous phases). Biological reactions and energy balances were considered [27]. Thebiochemicalmodel(Figure1b)wasbasedonthestandardASM1withslightmodificationstomake The biochemical model (Figure 1b) was based on the standard ASM1 with slight modifications to itconsistentwithobservationsfromtheATADreactors(acid-basereactionsandliquid-gastransfers). make it consistent with observations from the ATAD reactors (acid-base reactions and liquid-gas Temperatureevolutionwasobtainedthroughthesystemenergybalance,whichconsideredseveral transfers). Temperature evolution was obtained through the system energy balance, which heatfluxesinvolvedintheprocess: influentandeffluentheatenergy,heatfluxesthroughwallsand considered several heat fluxes involved in the process: influent and effluent heat energy, heat fluxes gas-liquid surface, and heat transfer from the mixing equipment. A total number of 24 dynamic through walls and gas-liquid surface, and heat transfer from the mixing equipment. A total number variableswereincludedinastate-spacemodel[13]. A24h(1day)cyclesequencewasestablished of 24 dynamic variables were included in a state-space model [13]. A 24 h (1 day) cycle sequence was inAT_BSM:0.5hforsewagefeeding;23hforreaction(aeratedreactionphase);and0.5hforsludge established in AT_BSM: 0.5 h for sewage feeding; 23 h for reaction (aerated reaction phase); and 0.5 h withdrawal. Duringeachcycle(batch),aportionofthetotalreactorvolume(V =2350m3)was for sludge withdrawal. During each cycle (batch), a portion of the total reactor vAoTAluDme (VATAD = 2350 drainedandfilled. Next,thesolidsretentiontime(SRT)isgivenby: m3) was drained and filled. Next, the solids retention time (SRT) is given by: SRSTRT==VVQAATTAADD (1(1) ) Qraw raw where Q isthemeaninfluentflowperbatch. Themeaneffluentflowperbatch Q isequalto where Qrraaww is the mean influent flow per batch. The mean effluent flow per batch Qout iso uetqual to Qraw Q minus the evaporation shrinkages. For a stable operation of the digester, SRT can be moved mrianwus the evaporation shrinkages. For a stable operation of the digester, SRT can be moved over over 10–15d(day). The ability to change SRT involves the existence of a pre-holding tank [13] to 10–15 d (day). The ability to change SRT involves the existence of a pre-holding tank [13] to regulate regulatetheinfluentflowandtoabsorbfluctuationsoftheoutletflow. Theinfluentdefinitionconsists the influent flow and to absorb fluctuations of the outlet flow. The influent definition consists of: (i) a of: (i)aconstantcompositiongivenbysimulationsofthebenchmarksimulationmodelNo.2(BSM2) constant composition given by simulations of the benchmark simulation model No.2 (BSM2) evaluatedbyVreckoetal.[28];and(ii)asignificantvariabilityofthebiodegradablecontent. Departing evaluated by Vrecko et al. [28]; and (ii) a significant variability of the biodegradable content. from an exhaustive analysis of the raw sludge in the BSM2, 2/3 parts of the mixed raw sludge Departing from an exhaustive analysis of the raw sludge in the BSM2, 2/3 parts of the mixed raw were due to the slowly biodegradable substrate (X ) [13]. For simplicity, X was used as the sludge were due to the slowly biodegradable substratse,in (Xs,in) [13]. For simplicity, sX,ins,in was used as the principalindicatortoquantifythebiodegradableorganicmattercontentintherawsludge. Thesludge principal indicator to quantify the biodegradable organic matter content in the raw sludge. The temperatureT andtheairtemperatureT consideredlong-termandshort-termvariations[13]. sludge tempesrlaudtugere Tsludge and the air temaiprerature Tair considered long-term and short-term ThemeanaerationflowperbatchQ wasratedupto65,000m3/d. variations [13]. The mean aeration flaow per batch Qa was rated up to 65,000 m3/d. (a) (b) FFiigguurree 11..A Autuottohtehremrmalatlh ethrmerompohpilhicilaice roabericobdiicg edstiigoenst(iAonTA (DA)T(Aa)DS)c h(eam) eScohfetmheep orof cethsse apnrdovceasrsia balneds; avnadria(bbl)eMs; aainndb (iboc) hMemainic abliorechacetmioincas.l SreRaTc:tisoonlisd. sSRreTte: nsotiloidnst irmetee.ntion time. WWaatteerr 22001177,, 99,, 442266 44 ooff 1155 Regulation tasks on AT_BSM were performed on the batch average temperature Tavg. RegulationtasksonAT_BSMwereperformedonthebatchaveragetemperatureT .Manipulated Manipulated variables SRT and Qa remained constant for the 1-day batch time, and wavegre updated by variablesSRTandQ remainedconstantforthe1-daybatchtime,andwereupdatedbythecontrol the control law batcha after batch. Therefore, constant manipulated inputs were considered for the law batch after batch. Therefore, constant manipulated inputs were considered for the present present steady-steady analysis. Tavg was on-line computed as the mean value of Ni = 1,440 records of steady-steady analysis. T was on-line computed as the mean value of N = 1440 records of instantaneous temperaturea vTgi. These were captured during the 1-day treatmenit evolution (one Ti instantaneous temperature T. These were captured during the 1-day treatment evolution (one T sample was taken every minuite). For proper pasteurization, the USEPA [8] establishes a minimumi samplewastakeneveryminute). Forproperpasteurization,theUSEPA[8]establishesaminimum time D (d) as a function of the sludge temperature Ti (°C), which is expressed by: timeD(d)asafunctionofthesludgetemperatureT (◦C),whichisexpressedby: i 50,070,000 D= (2) 501,0007.104T,i000 D = (2) 100.14Ti In contrast, the European Commission [9] recommends that the temperature inside the reactor shoulIdn bcoe notvraers t5,5th °eCE fuorr oapt eleaansCt 2o0m hm wisitshioonut[ 9a]drmecioxmtumree onrd wsitthhadtrtahweatle mdupreinragt utrreeaitnmseidnet. tFhuecrhesa actnodr Fshuocuhsld [2b9e] oavsseerr5te5d◦ Cthfaot rsautffliecaiestn2t 0bahtcwhi-tthimouet aatd am teixmtupreeraotruwrei tbhedtrwaeweanl 5d0u arinndg 7t0re °aCtm asesnut.reFdu crhelsiaabnlde dFuiscinhfse[c2t9io]na.s Asefrtteerd stehvaetrasul sffiimciuenlattiboantcsh o-nti mAeT_aBtSaMte,m wpee aradtoupretebde Ttwavge esent-5p0oainntds 7a0ro◦uCnads s5u5r °eCd troe lmiaebelet tdhiesi pnfaesctteiuorni.zaAtfiotenr rseegvuerlaatliosinms.u l ationsonAT_BSM,weadoptedTavgset-pointsaround55◦Ctomeet thepAasst einu rNizáajteiroan erte gaul. l[a1ti6o]n, os.ur analysis studied the steady-state temperature Tavg reached after 50 days Aast icnonNsátajenrta ceotnadl.it[i1o6n]s, oouf rmaannailpyusilsatsetdu diinepdutths,e asitre aadnyd- stsalutedgteem tpeemrapteurraetuTraevsg, raenadch iendflaufetnert c5o0mdpaoyssitaiotnc.o Fnisgtuanret 2c osnhodwitiso tnhse orfesmulatns iapruoluantedd thine pteumtsp,eariartaunred osfl uindtgereestet mTapvge =r a5t5u °rCes. ,Aa nwdidien flraunegnet ocof mmpanoispituiolant.edF iignupruets2, Qsha oawnds SthReT,r ewseurlets aanraolyuznedd.t hAe rteelmatpiveerlayt uhrigeho ofrignatenriecs mt Tatatvegr= co5n5te◦nCt. XAs,inw widaes friaxnegde toof m30a nkigp/umla3 teind itnhpeu atsn,aQlyasaisn dsoS RthTa,tw tehree arneqaulyizreedd .tAemrepleartaivtuerlye hcioguhldo rgbea npicromvaidtteedr cboyn ttehnet mXsa,inniwpualsatfiioxned otfo b3o0thk gQ/ma a3nidn tShReTa noavleyrs itshseoirt hreastpthecetirveeq uriarnegdetse. mCpoenrsaitduerreincgo utlhdatb eQpa riosv didireedctblyy pthreopmoartnioipnualla ttioo ntohfeb oatehraQtiaoann dcoSsRt Taonvde rSthReTir ries spinecvteivrseelrya ngperos.pCorotniosnidale ritnog tthhae tQslaudisgde ireflcotwly (pprroopdourtcitoinonal-rtaotteh),e oapeeraratitoinngc opsotianntsd oSfR “Tmisiniinmveurmse lcyosptr”o apnodrt i“omnaalxtiomtuhmes plurdodgeucfltoiown”(p arroed huicgtiholnig-rhatteed), ionp eFrigatuinreg 2p o(sinomtseo fc“umrviensi mhauvme cboesetn” aenxcdlu“dmeadx iimn uFmiguprreo d2bu cstiinocne” tahreeirh iSgRhTli gvhatleudesin wFeirgeu roeu2t (osfo tmhee rcaunrgvee sohvaevr e10b–e1e5n de)x.c ludedinFigure2bsincetheirSRTvalueswereoutoftherangeover10–15d). (a) (b) FFiigguurree 22.. ((aa)) TTaavvgg vvss.. QQaa foforr SSRRTT oovveerr 1100––1155 dd ((XXss,i,nin == 3300 kkgg/m/m3, 3T,aTir a=ir 1=5 1°5C◦, Can,dan TdsluTdgselu =d g1e5= °1C5);◦ aCn)d;a (nbd) T(bav)g Tvasv.g SvRsT. SfoRrT Qfoa rovQear o1v2e,0r0102–,2080,00–0208 m,003/0dm (X3/s,idn =( X30s, ikng=/m303,k Tga/ir m= 13,5T °aCir, =an1d5 T◦Cslu,dgae n=d 1T5 s°luCd)g.e =15◦C). TThhee rraattiioo QQa//QQraw rerperperseesnentst sththe eaaerearatitoionn ccoosst tinin aa fafairireerr wwaayy ffoorr aannaallyyssiiss.. IItt iinnddiiccaatteess tthhee aammoouunntt a raw of air required per unit of treated sludge. Figure 3 evaluates that ratio for several production rates ofairrequiredperunitoftreatedsludge. Figure3evaluatesthatratioforseveralproductionrates from 157 m3/d to 235 m3/d, which corresponded to the SRT from 15 d to 10 d, respectively, as per from157m3/dto235m3/d,whichcorrespondedtotheSRTfrom15dto10d,respectively,asper Equation (1). The bar diagram (Figure 3) shows the trade-off between reducing the aeration cost and Equation (1). The bar diagram (Figure 3) shows the trade-off between reducing the aeration cost increasing the production-rate. Results are shown for several temperatures. They reveal the and increasing the production-rate. Results are shown for several temperatures. They reveal the importance of achieving the strictly required pasteurization temperature to save aeration costs for importanceofachievingthestrictlyrequiredpasteurizationtemperaturetosaveaerationcostsfor tthhee ssaammee pprroodduucctitoionn raratet.e T. eTmempepreartuatruer TemTax,st meamnes athnastt thhaet mthaeximmauxmim aucmhieavcahbileev taebmlepetermatupreer a(t6u1r.4e max,st °(6C1,. 461◦.C1 ,°6C1,. 160◦.C6 ,°6C0,. 660◦.C45, 6°0C.4, 560◦.C1 ,°6C0,. 159◦.C7, °5C9).7 fo◦rC e)afochr eSaRcTh S(fRroTm(f r1o5m d 1t5o d10t od1, 0reds,preecstpiveecltyiv)e alyn)da fnodr Xfosr,inX = 20= k2g0/mkg3;/ tmhu3;s,t hTumsa,x,Tst involivnevdo ltvheed btheestb aetsttaainttaabinlea bslteasbtialibzialitzioatnio lnevleevl,e wl,whihcihc hwwasa sddififffeerreenntt ffoorr s,in max,st eeaacchh SSRRTT aannddQ Qa (s(seeeeN Náájejrearae teat la.l[.1 [61]6f]o rfofru rftuhretrhedre tdaeiltsa)i.lsT)h. eThaeer aateiroant-iocons-tcosastv isnagvsinwgesr ewaerroeu anrdou3n0%d a 30% if pasteurization was solely achieved, and was out of scope for this work if this decision ifpasteurizationwassolelyachieved,andwasoutofscopeforthisworkifthisdecisioncompensated caopmopste-ntrseaattemd enat foprotsht-etrreeaqtumireendt slfuodr gethseta brileiqzuatiiroend. Tslud=ge5 5◦sCtabainlidzaTtion=. 5T6a.v8g ◦C= d5is5t in°gCu isahnedd avg avg Tthaveg m= in5i6m.8u m°Cr edqiustiirnegdutiesmhepde rathtuer emtionmimeuetmth reeUquSiErPeAd atenmdpEeUraptuasrtee utori zmateioent cthriete rUiaS,ErPesAp eacntidv eElyU. pasteurization criteria, respectively. Water2017,9,426 5of15 Water 2017, 9, 426 5 of 15 Water 2017, 9, 426 5 of 15 FFiFigigugurureree3 3 .3.A .A Aeereraratatitoiiononnc c ocosoststrt r aratatitoioiov v svs.s.p .p prrorododduuucctctitoiionon-n-r-raratateteef fo fororrs s esevevevereraralalt lte tememmppepereraratautturureresessa a nandnddX X Xs,si,nin == = 22 2000 kk kggg///mmm333. .. s,in 2.2. Dual-Control System of the ATAD 2.2. Dual-Control System of the ATAD 2.2. Dual-ControlSystemoftheATAD Two control strategies were attempted to achieve pasteurization temperatures (Table 1): MISO Two control strategies were attempted to achieve pasteurization temperatures (Table 1): MISO Twocontrolstrategieswereattemptedtoachievepasteurizationtemperatures(Table1): MISO COST, which yielded the lowest aeration cost; and MISO PROD, which yielded the highest COST, which yielded the lowest aeration cost; and MISO PROD, which yielded the highest COST, which yielded the lowest aeration cost; and MISO PROD, which yielded the highest production rate. The feedback control structure to accomplish them is shown in Figure 4. One production rate. The feedback control structure to accomplish them is shown in Figure 4. One productionrate. ThefeedbackcontrolstructuretoaccomplishthemisshowninFigure4. Onestrategy ssttrraatteeggyy oorr tthhee ootthheerr wwaass sseelleecctteedd bbyy cchhaannggiinngg tthhee a aeerraattiioonn s seett--ppooiinntt QQaa,r,erfe.f . OOvveerraallll, ,s smmaalllleerr vvaalluueess o off ortheotherwasselectedbychangingtheaerationset-pointQ . Overall,smallervaluesofQ QQaa,r,erfe f ssaavvee aaeerraattiioonn ccoossttss, , bbuutt iinnddiirreeccttllyy lleeaadd ttoo hhiigghheerr SSRRTT vvaalluueaes,sr,e ,f wwhhiicchh iinnvvoollvveess lloowweerr pprroodduuccttiaio,ornenf saveaerationcosts,butindirectlyleadtohigherSRTvalues,whichinvolveslowerproductionrates. rraatteess. . OOnn tthhee ootthheerr hhaanndd, , hhiigghheerr vvaalluueess ooff QQaa,r,erfe f iinnccrreeaassee tthhee aaeerraattiioonn lleevveellss ttoo eevveennttuuaallllyy ttrreeaatt mmoorree Ontheotherhand,highervaluesofQ increasetheaerationlevelstoeventuallytreatmoresludge sslluuddggee ((SSRRTT ddeeccrreeaasseess)). . FFuurrtthheerrmmoorreea,, ,r eQfQaa,r,erfe f ccaann bbee rraatteedd ttoo aaddaapptt tthhee eefffflluueenntt ffllooww ttoo aa sseeccoonndd (SRT decreases). Furthermore, Q can be rated to adapt the effluent flow to a second treatment treatment stage, which, for examap,rleef, would consist of an anaerobic digestion for full stabilization. treatment stage, which, for example, would consist of an anaerobic digestion for full stabilization. stage,which,forexample,wouldconsistofananaerobicdigestionforfullstabilization. Forthesame For the same digester temperature, shrinkages by evaporation are larger when solid-retention-times For the same digester temperature, shrinkages by evaporation are larger when solid-retention-times digester temperature, shrinkages by evaporation are larger when solid-retention-times are larger. aarree llaarrggeerr. . TThhuuss, , tthhee ssttrraatteeggyy tthhaatt mmiinniimmiizzeess aaeerraattiioonn ccoossttss ((lleessss QQaa)) aallssoo mmiinniimmiizzeess ttrraannssppoorrtt ccoossttss Thus,thestrategythatminimizesaerationcosts(lessQ )alsominimizestransportcosts(lessQ ). ((lleessss Q Qoouut)t). . a out Table1.Controlstrategies.MISO:multipleinputsingleoutput. Table 1. Control strategies. MISO: multiple input single output. Table 1. Control strategies. MISO: multiple input single output. StrictlyQpuaQsQatlueiuutayarlliizittyayt i on CCCoonoHnntitrtAgrorhooelell rAS raSAStt(etitrSerorraiaHraandtHtatteeeitiCegggiioeggooyhyfnhyfsn ee t eCr cCr to ) o sstt PHroPiPgdrHhruoHoecRdiRsdtgiuiatghouat(chnGteecteesti oRsi otoat an l nt) e RUUUReSREgSSeEuUeEEgPlgP:PuaAuTACtAlCeala::ovda :toTTg nteT,Vanreadtevvaadftrggv Sror,,=gV rro,ieVetrlaffer5 al f=ubS =a 6r=S cl.rti5 85ettira55u5srau◦b5u rbIC◦c° lenc°CCtle,Ctue(ssQ,,uFis r ,QdQiI ra egQI,neear naue,( s,rafFr(Fers,eirF=fefeeidi f=e=dig 24e=gd ue6)22 ubF2 ,2r21Far2ee,,05eec5, e0254k e2d442)md4C) b4m b3mo am/a3nc/3dckt/3krdd/ od l MIMLSMLLaOIaabISbbSPeOeeORlll O D SStrtricictlt(ylGy p (op(GaaGalso)sotaetaelu)lu) r rizizaatitoionn Lowe((SsStiLdi(LdGoeoew owe aefelffes)festect c t )t ) LowerL((L(GSoGoiowdowaeealer)elr) f f e ct) UUUESEESSUEUUEEP:P: P:TA TATAaa::vav :gvTTg ,gTr,a,rearevfvea ffggv= ,,=g=rr ,ee5r ffe55 f6= =66=. .8.5 8585 55° ◦5° CC◦° C°CC,,C ,QQ, ,Q ,QQ aaQ,,aarra,ee,r,raffer e,fe=r=f fe= f == 2 1=2 6711 61,,5551,5,1,0000,005005305 m3m 3mm 3m 3m/3/3/3dd//3ddd/ d MPMIPMSRROIOISOSCODODO ST ((GGooaal)l) ((SSididee e effffeecct)t) EEUU: :T Tavagv,gr,erfe f= = 5 566.8.8 ° °CC, ,Q Qa,ar,erfe f= = 1 177,5,50000 m m3/3d/d CCOOSSTT Figure 4. Block diagram of the control structure. ZOH: zero-order-hold. FFiigguurree 44.. BBlloocckk ddiiaaggrraamm ooff tthhee ccoonnttrrooll ssttrruuccttuurree.. ZZOOHH:: zzeerroo--oorrddeerr--hhoolldd.. TTThhheee f ffeeeeeedddbbbaaaccckkk c ccooonnntttrrrooolll s sstttrrruuuccctttuuurrreee a aassssssuuurrreeeddd t ththhaaatt tt ththheee b bbaaattctchchh a avavveereraragagege et teetmemmppepereraartatuutrureer eT TaTavvgg w wawass ar resegrgueugllauatteleaddt et tdoo atao sasppesepccieifficieiedfid e dsseestt-e-ptp-oopiinontit n TtTaTavvgg,r,erfe f ddeedsspepisitpteei t ecchhcahannaggneegsse siinni n tteteemmmpppeereraraattutuurrereses s TTTaairi,r , ,TTTslsuluddgge,e , ,aanandnd d vvavavaagrririaiaabbbiilililititytyy ooofff ttthhheee bbbiiiooodddeeegggrrraaadddaaabbbllelee o roogrraggnaaincniimcc amtmatveaagrt,ttrcteeeforrn tceconontntitenennttht eiinrna wtthhseel u rdragawew X sslluu.ddWggeeh eXXnse,si,nvin.a e.i rrWWthhhseeluepndnageeesvvteeerur r ittzhhaeet i oppnaasrsetteqeuuuriririzezamattieioonnnt rwreeaqqsuumiirreeemtm,aeesnnstt mw waaalsls am msepetot, ,sa asssi bs smlmeavalalll la uases sp pfooosrsssTiibbllee v vaawlluueeerses f sfooerlr e TTcatavevgsg,d,r,iernfe, fw swineercreee ss smeelleaeclclteteerddt,e ,s msiinnpcceeer as smtmuaraelllsleerrre t dteeummcpepeaereraratatutuiroreenss rcreoedsdtuusccfeoe raaetehrraeattisioaonmn cecoopssrttsos d ffouorcr t tithohene srsaaamtme.ee A ppcrrcooodadrvudguc,ircntetifgioolnyn , rrtahatteee.T . AAccccoorrwddiainnsggcllyhy,o , tsthehene TaTsaavvg5g,r5,erfe f◦ wwCaaoss r cc5hh6oo.s8see◦nnC aafsos r555U5 °S°CEC P oAorr 56.8 °C for USEPA or EU recommendations, respectivavegl,yre f(Table 1). 56.8 °C for USEPA or EU recommendations, respectively (Table 1). orEUrecommendations,respectively(Table1). IIff t thhee i innppuutt e enneerrggyy t thhaatt X Xs,si,nin c caarrrriieedd i inn w waass n noott s suuffffiicciieenntt t too m maaiinnttaaiinn t thhee T Taavvgg,r,erfe,f ,t thhiiss s seett--ppooiinntt w waass reduced for stable operation [14]. This situation was observed through a sharp decrease in the slope reduced for stable operation [14]. This situation was observed through a sharp decrease in the slope ooff t thhee b baattcchh T Ti–i–tteemmppeerraattuurree p prrooffiillee. .A Ann a allggoorriitthhmm f foorr i ittss d deetteeccttiioonn i iss d deessccrriibbeedd i inn Z Zaammbbrraannoo [ [1133]] a anndd Water2017,9,426 6of15 IftheinputenergythatX carriedinwasnotsufficienttomaintaintheT ,thisset-pointwas s,in avg,ref reducedforstableoperation[14]. Thissituationwasobservedthroughasharpdecreaseintheslopeof thebatchT–temperatureprofile. AnalgorithmforitsdetectionisdescribedinZambrano[13]and i Zambranoetal.[25]. Here,itwasimplementedundertheblock“bending-pointdetector”ofFigure4. Consequently,Nájeraetal.[14]presentedafuzzylogicalgorithmtoprovidethecorrections∆T . avg,ref Thistaskwasincludedintheblock“set-pointcorrector”ofFigure4. Themainnoveltyinfeedbackcontrolwastheuseoftwomanipulatedinputs—Q andSRT—to a regulate the digester temperature. The fastest input Q quickly reacted to any T temperature a avg deviation, and progressively gave way to the participation of the slowest input SRT. In this way, Q recovered its steady state Q to meet steady-state control strategies. SRT deviated from its a a,ref biaspointwheneveranydisturbancepersisted. Thedynamiccollaborationbetweenthetwoinputs was tailored by a proper design of controllers C and C based on a robust methodology in Qa SRT Rico-Azagraetal.[24] in the framework of quantitative feedback theory (QFT) with the following maincharacteristicssummarized. AppendixAprovidesdetailsonthedesignofthecontrollersfrom amoretechnicalpointofviewforrobustcontrolpractitioners. Thedual-controldesignfirstrequired dynamicmodelingoftheprocess. Thus,dynamicalmodelswereidentifiedfromthetwomanipulated inputs(SRT,Q )totheoutput(T ),andfromthedisturbanceinputs(T ,T )totheoutput(T ). a avg air sludge avg Severaloperatingpointswereconsidered,assummarizedinTable2. Thisyieldeddynamicalmodels withknownparameteruncertainty(seeAppendixA).Athoroughstudyofthedynamicproperties oftheprocessmodelshelpedtoallocatethefrequencybandbetweenthetwomanipulatedinputs: Q wasplannedtoworkathigherfrequenciesthanSRT toachieveabettertransientperformance. a Thefrequencyof20rad/swasthefrontierbetweeninputcontributions. Thecontrolspecifications wereguaranteedforthewholesetofmodels. Hence,theterminologyofrobustcontrolisused. For robuststability,aphasemarginof45◦ wasselected. Asperformancespecifications,itwasdecidedthat sharpvariationsinT andT upto±5◦Cbetweentwoconsecutivebatchesshouldnotdeviate air sludge T morethan±0.6◦Cfromitsset-pointT . Furthermore,thisset-pointshouldberecoveredatno avg avg,ref longerthansevendays. Thus,therobustcontrollersweredesignedbasedontheprocessmodelsand thecontrolspecifications(seeAppendixA).Thecontrollerswere: 0.4z2 C (z) = (3) SRT (z−1)(z−0.71) 7274.703(z−0.652) C (z) = (4) Qa z−0.7625 wherethevariablezisintroducedbytheZ-transform,whichisamethodforthedesignofsampled-data controlsystems[30].Here,thesample-timeequaledthebatchtime(i.e.,1day).InFigure4,eachsample wasdistinguishedbytheindexn. The“zoh”blockperformedazero-order-holdofthecomputed controlactuationsduringthe1-daytreatment. The“mean-value-function”computedT eachdayas avg themeanvalueof1440recordsofinstantaneoustemperatureT. AT samplewastakeneveryminute i i (t =1min). Additionally,thesampleroftheoutputtoupdatethecontrollawwaslabelledt =1d. s1 s2 Table2.Setofequilibriumpoints.T =T =15◦C. air sludge SRT(d) 11 12 13 14 Qa(m3/d)(Tavg,ref=55◦C) 22,524 20,025 17,426 15,053 Qa(m3/d)(Tavg,ref=56.8◦C) 26,100 23,000 20,000 17,500 Note:Xs,inwasconsideredabove30kg/m3duringtheexperiments. Astep-changeintheQ set-pointwoulddeviateT fromitsset-point,whichwouldbeproperly a avg correctedbyEquations(3)and(4)inasimilarway,asT deviationsduetostep-changesinT and avg air T werecompensated. However,thatstep-changeinQ set-pointwasdrivenstraightawaytothe sludge a Water2017,9,426 7of15 Water 2017, 9, 426 7 of 15 actuationQ atthesteptime. Apre-filter(F inFigure4)couldconvenientlysmooththepeakatthe a Qa 0.0239761z4 beginningofthetransientresponseofQaF. In(oz)u=rcase,asuitab lepre-filterwas: (5) Qa (z−0.6065)4 0.0239761z4 To point out the benefits of usinFgQ taw(zo) =con(tzro−l 0in.6p0u65ts),4 MISO (Multiple Input Single Outpu(5t)) control strategies in Table 1 were compared with SISO (Single Input Single Output) control, which uses Tao spionignlteo cuotnthtreobl einnepfiutts. oIfnu sthinisg tlwasot ccoansetr,o olninlpy utths,eM aIeSrOati(oMnu flltoipwle (IQnpa)u tcoSuinldgl epOrouvtipduet )tchoen tTraovgl sretrgautelagtiieosni ncTaapbaleci1tyw erreeqcuoimrepda rebdy wtihthe ScISoOnt(rSoiln gslpeeIcnipfiuctatSiionngsl efOour tpruotb)ucsotn tdroisl,tuwrhbiacnhcues erseajescitniognle. cAocnctorrodliinngpluyt, .thIne tdheissilgansetdca csoen,tornollyletrh weaase:r a tionflow(Q )couldprovidetheT regulationcapacity a avg required by the control specifications for rob7u0s7t9.d7i5stzu(zr−ba0n.6c9e52re)jection. Accordingly, the designed controllerwas: CQSIaSO(z)= (z−1)(z−0.1081) (6) 7079.75z (z−0.6952) CSISO(z) = (6) Qa (z−1)(z−0.1081) In the SISO strategy, SRT takes a fixed value (i.e., this input does not participate in the closeIdn-ltohoepS ISdOynstarmatiecg y,reSgRuTlatatikoens).a fiExqeudavtiaolun e((i6.e) .,pthriosvinidpeudt dtohees neoxtppeacrtteicdi pactleosinedth-leooclpo secdo-nlotroopl dspyencaifmiciactiroengsu lfaotri oann)y. ESqRuTa tvioanlu(e6 )inp rToavbildee 2d. tAhen eexvpeenc tseidmcplloesre cdo-nlotoropl cmonetthroolds pweocuifildca mtioannsufaollrya nfiyx SbRotThv tahleu Qeian anTdab SleR2T.; Athnues,v tehneysi mwpoulelrdc noontt rpoalrmticeitphaotde wino tuhled dmyannaumailcly Tfiavxg rbeogtuhlathtieonQ.a Waned dSenRoTt;et hthuiss, tmhoeydew aosu OldLn (ootppenar-ltoicoippa).t einthedynamicT regulation. WedenotethismodeasOL(open-loop). avg 33.. RReessuullttss aanndd DDiissccuussssiioonn TThhiiss sseeccttiioonn sshhoowwss sseevveerraall ttiimmee--ddoommaaiinn ssiimmuullaattiioonnss tthhaatt wweerree rruunn oonn tthhee AATT__BBSSMM iinnssiiddee tthhee ccoonnttrrooll sscchheemmee ooff FFiigguurree 44.. FFiigguurree 55 sshhoowwss tthhee ttiimmee eevvoolluuttiioonn ooff tthhee mmaainin vvaarriaiabbleless inina afi frisrtste xexppereirmimeennt.t. XXs,si,nin rreemmaaiinneedd ccoonnssttaanntt aatt 3300 kkgg//mm33, ,aanndd ssuuddddeenn cchhaannggeess ooff Δ∆TTsslluuddgeg =e =−3− °3C◦ aCndan ΔdT∆airT =a i−r5= °−C5 to◦oCkt opolakcpe laatc te =a t50t =d 5a0ndd at n=d 7t0= d7, 0reds,preecstpivecetliyv.e Mly.aMxiamxuimmu dmevdieavtiiaotnios nosf oTfaTvga v(0g.(309.3 °9C◦ Canadn d0.02.72 7°C◦C) )wwereere bbeeloloww tthhee mmaaxxiimmuumm ppeerrmmiitttteedd ooff 00.6.6◦ °CCf oforra a5 5◦ C°Cd idstisutrubrabnacnecset espte,pa,n adntdh ethseet tsleinttgli-ntigm-teimtoer teoc orveecrovtheer 5th5e◦ C55s e°Ct-p soeitn-ptowianst awraosu anrdousenvde nsedvaeyns daasyesx apse ecxtepde.ctIendt.h Ienfi thrset fmirostm menomtseanfttes raaftneyr adnisyt udribstaunrcbea,nQcae,q Quia cqkulyicakslysu amsseudmtehde rthege urlaetgiuonlattaiosnk ,atansdk,p raongdr espsriovgerlyesSsRivTelbye cSaRmTe mbeocraemreel emvaonrte. Trehleevstaenatd. yTshtaet estoefatdhyo ssetmatea noipf utlhaotesde imnpanuitpsuwlaatserde ainchpeudtsb wefoasre r2e0acdhaeyds baesfporrees c2r0i bdeady.sI nass tpearedsyc-rsitbaetde,. tIhne sStReaTdnye-scteastsea,r itlhyer SeaRcTh endecdeisffsearreinlyt ereqaucihliebdri adtioffecroemntp eenqsuaitleibtrhiae dtois tcuormbapnecnessa.tHe othwee vdeisr,tuQrabaalnwceasy.s Hreocwoveevreerd, tQhae aslewt-apyosi nrteQcoa,vreef.reInd tthhies wseat-yp,oQina,tr eQf wa,reaf.s Icno nthvies nwieanyt,l yQsa,erelf ewctaesd cboansveednioennttlhye sdeleescitreedd bstarsaetde goyn: mthien idmesuirmeda esrtraattieognyc: omstin(MimIuSmO CaeOraStTio)nf ocrotst< (M90ISdO,o CrOmSaTx)i mfourm t <p r9o0d udc, toiorn mraatxeim(MumIS OprPoRduOcDtio)nfo rratte> (9M0IdS.OF PocRuOsDin)g foonr tt h>e 9Q0a ,dref. cFhoacnugsientgh aotnt otohke pQlaa,rcefe cahtatn=g9e0 tdha,itt tcoooukl dpclahceec katt ht e=e 9x0p edc,t eitd cpoeurlfdo rcmheacnkc ethine tehxepTeacvtgesde tp-perofionrtmreacnocvee riny athned Tthavge ssemt-opootihntt rraencosivtieorny oanfdm tahnei psumlaotoetdh itnrapnustistiSoRnT oaf nmdaQniap.ulated inputs SRT and Qa. FFiigguurree 55.. TTiimmee ddoommaaiinn ppeerrffoorrmmaannccee.. A second experiment considered variability in Xs,in, Tair, and Tsludge (see Figure 6a). Figure 6b AsecondexperimentconsideredvariabilityinX ,T ,andT (seeFigure6a). Figure6b depicts the evolution of the main variables involved ins ,ain MIaSirO COSTs lfuedegedback control strategy. The depicts the evolution of the main variables involved in a MISO COST feedback control strategy. digester temperature Tavg was conveniently regulated to 55 ± 0.2 °C thanks to a fast actuation Qa (around Qa,ref of minimum cost), which compensated the fastest disturbance dynamics, and to a slow actuation SRT, which mainly compensated the midterm variability of air and sludge temperatures. Water2017,9,426 8of15 ThedigestertemperatureT wasconvenientlyregulatedto55±0.2◦CthankstoafastactuationQ avg a (aroundQ ofminimumcost),whichcompensatedthefastestdisturbancedynamics,andtoaslow a,ref Water 2017, 9, 426 8 of 15 actuationSRT,whichmainlycompensatedthemidtermvariabilityofairandsludgetemperatures. Water 2017, 9, 426 8 of 15 Ontheotherhand,Figure7adepictstheevolutionofthedigestertemperatureT formanualcontrol, On the other hand, Figure 7a depicts the evolution of the digester temperatuavrge Tavg for manual wchOoennrte rtoQhle,a w=oth1he8er,re7 5hQ0aan m=d 31, /8Fd,i7g5au0nr dme S37/Rad T dan=epd1i c2St.Rs5 Tdt h=.e T 1eh2v.e5o aldub.st iTeohnnec eoafob fstehfneeec edd ibogafe csfketeeirdn bftoeamrcmkp aientrifaootnurmriema tTpioaevngd fiemodrp amesdauenidtua aabl l e resgcuouintlaatbrtioloeln, rweoghfuetlhraeet iQotenam =o pf1 e8thr,7ae5t ut0e rmme,p3w/edrh aaitncuhdre dS, eRwvThi ai=ct eh1d 2d.f5er vodima. tTethdhe ef radobemsse intrheceed dovfea sflieureeedddb vuaacelkut oein tdfhoueremv taaort itiohanbe ivilmiatrypiaeobdfieliidnty pa u t coosnfu diinittapiboulnet s croe(Fgniudgliuatitroieonns6 ao(F)f. itghFueirg etue 6mraep).7e Fbraigstuhurroeew, 7wsbh tshihcehov wdaser vitaihabetl eevdsa rffrioaorbmlae tsSh fIeoS drO eas fiSerIeeSddOb v afacelkeudecb odanuctker otcolo nsthttrreao vtl easgrtriyaabtweilghityey r e SRwoTfh =einr1ep2 uS.5Rt cTdo .=nT 1dh2ite.i5od dni.sg T e(hFsteieg druitrgeeem s6tape)er. rtFaeimtguuprreeerT a7atbvu grsewh oTawasvgsc w othnaesv cevonanirevianebtnllyieesnr fetolgyru ralea gSteIuSdlOatt oefde5e t5do±b 5a5c0 k±.2 0c◦.o2Cn °tCtrho talh nsatknrsakttseo tgotyh e sintwhgehl eesraienc tSguRleaT ti ao=c n1tu2o.af5t iQdo.an .T Thoehf edQiagab.e sseTtenhrce et eoambfpsaeesnreaccteuo rnoedf Tcaavo gn swteracoosl nlceodrn tvcooehnnaiternondltllleyer r SeRtgoTu lhiamatenpdde ltdeo e 5dS5Rt ±hT e0 .ia2mc °hpCie etdvheeadmn ketshn teto o f aastechhceoi ensvdienmggoleean lta bocyft uama steeioacnno nsodof f gaoQnaal.e bxTythr mae seaeabtn-sspe oonficn eat n.o efx tar a sseecto-pnodi nct.o ntroller to handle SRT impeded the achievement of a second goal by means of an extra set-point. (a) (b) (a) (b) Figure 6. Validation experiment: (a) disturbance inputs; and (b) control variables and controlled Figure 6. Validation experiment: (a) disturbance inputs; and (b) control variables and controlled vFairgiaubrele 6fo. rV MalIiSdOat iCoOn SeTx psterraimtegenyt. : (a) disturbance inputs; and (b) control variables and controlled variableforMISOCOSTstrategy. variable for MISO COST strategy. (a) (b) (a) (b) Figure 7. Validation experiment: (a) controlled variable for open-loop (OL) strategy (SRT = 12.5 d and QFai g=u 1r8e, 775. 0V amli3d/dat)i;o ann edx p(ber)i mcoennttr:o (la )v caorniatbrolell eadn dv acroianbtlreo lfloerd o pvaerni-alboloep f(oOr Ls)i nstgrlaet eignyp u(St RsTin =g 1le2 .o5u dt pauntd Figure7.Validationexperiment:(a)controlledvariableforopen-loop(OL)strategy(SRT=12.5dand (QSIaS =O 1) 8c,o7n5t0r oml (3S/dR)T; a=n 1d2 .5(b d) ).c ontrol variable and controlled variable for single input single output Qa(S=IS18O,7) 5c0onmtr3o/ld (S);RaTn d= (1b2).5c don).t rolvariableandcontrolledvariableforsingleinputsingleoutput(SISO) control(SRT=12.5d). Finally, considering Xs,in, Tair, and Tsludge in Figure 6a, the AT_BSM simulations were separately perforFmineadll yfo, rc othnes idcoemrinpga rXisso,inn, Toafir ,s eavnedr aTls lcudogen itnro Fl isgturartee g6aie, st.h Teh Ae Tfo_BlloSMwi nsigm euvlaaltuioantiso nw einred esxeepsa rwateerley cpoemrFfpionuramtelldeyd ,u cfsooinnr gsti htdhee erc iodnmagtpaX afsro,iirns o,thTne ao isrf,a amsenevd eprTeasrlli uocdodgen oitnfr o1Fl0 is0gt ruda r(teNeg6 =iae ,1st.0 h0Te hbAea tTfco_hlBeloSsw)M. insgim euvalalutiaotniosnw inerdeexseeps awraetreel y pecrofomrmpuetdedf oursitnhge tchoem dpaatar ifsoorn thoef ssaemveer palercioondt orof l1s0t0r adt e(Ngi e=s 1.0T0h beatfcohlleosw). ingevaluationindexeswere co(mi) puPtaesdteuusriinzgattihone dUaStEaPfAor Itnhdeexsa −m IQePpUSeErPiAo (d%o) fq1u0a0ntdifi(eNs t=he1 0q0ubalaittych oefs p).asteurization as per USEPA (i) gPuaisdteeluinriezsa [t4io,8n] :U SEPA Index − IQPUSEPA (%) quantifies the quality of pasteurization as per USEPA guidelines [4,8]: [ ] N I(j) Q(j) m[ 3d−1 ] [ ] IIQQPUPUSESEPPAA==j=jN1=1jN=IQN1Q(QpQpja)ar(a(jQw)jr)[ar(m[awmjw)33mdd−3−11d]]−1110000,,wwhheerree IIQ(Q(pj)pja)a==iN=iN=1i1iDDtts(1si(1)id[)[dd[d]]] ((77)) raw j=1 Water2017,9,426 9of15 (i) PasteurizationUSEPAIndex—emphI (%)quantifiesthequalityofpasteurizationasper QPUSEPA USEPAguidelines[4,8]: ∑N I(j) Q(j) (cid:104)m3d−1(cid:105) I = j=1 Qpa raw 100, where I(j) = ∑Ni ts1[d] (7) QPUSEPA ∑N Q(j) (cid:104)m3d−1(cid:105) Qpa i=1 D(i)[d] raw j=1 wheret =6.94×10−4disthesamplingtimeofintra-batchT–temperaturerecords,N =1440 s1 i i isthenumberofT–samplesinabatch,andD(i) (Equation(2))istheminimumtimerequired i at T–temperature. An I index value equal to 100% meant strict agreement with the i QPUSEPA regulation. I greaterthan100%wassafer,butrevealedworthlessexpenses. QPUSEPA (ii) PasteurizationEUIndex—I (%)computedthepercentageoftreated-sludgethatmettheEU QPEU recommendation(55◦Cforatleast20h)[9]: I = j∑=N1k(pja)ste Qr(aj)w(cid:104)m3d−1(cid:105) 100, where k(j) (cid:40) 0 if PTime(j) <20 h (8) QPEU ∑N Q(j) (cid:104)m3d−1(cid:105) paste 1 if PTime(j) >20 h raw j=1 wherePTime(j) (h)representsthetotaltimeinwhichthesludgehasbeenatatemperaturegreater than55◦Cduringtheaeratedreactionphaseofthej-thbatch. Onehundredpercentcorresponds tothemaximumI valuethatwasattainable. I valuessmallerthan100%indicatedthat QPEU QPEU somebatchviolatedtheEUregulation. (iii) CostIndex—I (%)considerstheaerationandpumpingenergiesemployedperunitoftreated C sludge volume. The index is normalized as a percentage of an average energy requirement (E =12kWh/m3sludge)extractedfromUSEPA[8]: ref I = EQa[kWh]+Epump[kWh] 100, where EQa =0.04j∑=N1Q(aj) tbatch (9) C Eref[kWhm−3]j=∑N1Qr(aj)wtbatch[m3] Epump =0.04j∑=N1(cid:16)Qr(aj)w tbatch+Q(oju)t tbatch(cid:17) whereE istheaerationenergy;E isthepumpingenergy;andt isthebatch-time(1day). Qa pump batch (iv) Production Index − I (%) is expressed as a ratio between the treated sludge flow and the P maximumflowthatcouldbetreated: ∑N Q(j)(cid:104)m3d−1(cid:105) out I = j=1 100, where Q = VATAD (10) P N ∑N Q(j) (cid:104)m3d−1(cid:105) rawmax SRTmin rawmax j=1 I isareliableindexonlyiftheATADisproperlyoperated(i.e.,thepasteurizationindexshould P alsoreachsuitablevalues). Forexample,anover-floweventinthepre-holdingtankorthedesireof maximizingtheproductionratewouldinvolvethedigesterbeingoperatedatfull-capacity,giving amaximumI . However,partoftherawsludgecouldnotbeproperlytreated. P The strategies compared are summarized in Table 3. The desired digester temperature was chosentomeettheminimumlevelofpasteurizationrequiredbytheregulation. Thus,either55◦C or 56.8 ◦C were chosen to meet the USEPA or EU criteria, respectively. Accordingly, the feedback controlstrategiesadaptedtheirT . TheOLstrategylackedfeedbackcontrolloops. ItusedfixedQ avg,ref a andSRT,whichwereestimatedoff-line. First,ameanSRT=12.5dwasadopted. Then,Q =18,750 a Water2017,9,426 10of15 m3/dwasestimatedtoachieveT =55◦C,consideringatheoreticalbehavior(meantemperatures avg T =T =15◦Candidealconstantcompositionoftheinfluent,withX =30kg/m3). Another air sludge s,in Q =21,500m3/dwassimilarlyestimatedtoachieveT =56.8◦C.TheSISOstrategyusedafeedback a avg controlstructure,whichregulatedT toT bymovingQ asthefeedbackcontroller(Equation(6)) avg avg,ref a dictates; SRT was manually fixed to 12.5 d. All MISO strategies used the same control structure (Figure 4) and control elements (Equations (3)–(5)). MISO COST and MISO PROD set-points are detailedinTable1. AstandardMISOstrategy(MISOSTD)selectedQ valuesinbetweenthoseof a,ref MISOCOSTandMISOPRODstrategiesandavoidedextremebehaviorssincetheminimizationof aerationcostsinvolvesminimumproductionrates,andthemaximizationofproductionratesinvolves maximumaerationcosts. Table3.Strategiesforcomparisons. OL SISO MISOSTD MISOCOST MISOPROD Feedbackregulatedto Feedback Feedback 18,750(USEPA) Freefeedback Qa(m3/d) 21,500(EU) regulated Qa,ref=18,750(USEPA) regulatedto regulatedtoQa,ref ortoQa,ref=21,500(EU) Qa,refinTable1 inTable1 Freefeedback Freefeedback SRT(d) 12.5 12.5 Freefeedbackregulated regulated regulated TheevaluationindexesarepresentedinTable4.Sincetheset-pointtemperaturewaschosentostrictly meeteithertheUSEPAorEUregulations,theyieldedqualityindexesfullyagreedwithit.Theyrevealed howaless-detailedcriterion(EUregulation)ledtosaferqualitylevels,butinvolvedhighercostindexes. Forthefollowingcomparisons,letustakeasthemeaningfulqualityindexI forT =55◦Cand QPUSEPA avg,ref I forT =56.8◦C.ComparingtheOLandSISOstrategies,bothyieldedthesameI sinceboth QPEU avg,ref P usedthesameSRT.AsmallerexpenseI forOLinvolvedinsufficientaeration,whichwasinconsonance C withapoorerqualityindex.Therefore,closed-loopcontrolwascompulsoryforcontinuoussupervision andcorrectionofthedigestertemperatureinsuchawaythattherequiredqualitywasachieved,and theSISOandMISOcontrolstrategiesprovedthis. TheaddedvalueofMISOvs. SISOstrategiesisthe possibilityofattendingtoasecondobjectiveinMISOcontrol.Thus,theMISOCOSTstrategyreducedthe aerationexpenses(smallerI )incomparisonwiththeSISOcontroltoachieveasimilarquality. Inthe C sameway,theMISOPRODstrategyimprovedtheproduction-rateincomparisonwiththeSISOcontrol (seetheirI ).Figure3pointedoutthetrade-offbetweenminimizingtheaeration-costandmaximizing P theproduction-rate.Consequently,asmallerI intheMISOCOSTthanintheSISOwasthepricepaidfor P asmallerI intheformer.AlargerI intheMISOPRODthanintheSISOwasthepricepaidforalarger C C I intheformer.Nevertheless,theflexibilityoftheMISOcontrolensuresthattheplantoperatorhasfull P controlofthoseobjectivesthankstoaclosed-loopthatcanregulatethem.Asevidenceofthis,theMISO STDyieldedsimilarindexestotheSISOcontrol. Table4.Evaluationofstrategies. Tavg=55◦C(USEPA) Tavg=56.8◦C(EU) IQPUSEPA(%) IQPEU(%) IC(%) IP(%) IQPUSEPA(%) IQPEU(%) IC(%) IP(%) OL 100.61 7.17 34.28 74.75 175.92 44.9 39.12 74.91 106.62 35.18 74.76 191.32 40.37 74.96 SISO 0 100 (5.97%) (2.63%) (0.01%) (8.75%) (3.20%) (0.07%) MISO 106.42 34.83 73.66 190.99 39.89 73.53 0 100 STD (5.77%) (1.70%) (−1.46%) (8.57%) (1.97%) (−1.84%) MISO 105.08 32.32 63.93 188.55 37.18 64.39 0 100 COST (4.44%) (−5.72%) (−14.47%) (7.18%) (−4.96%) (−14.04%) MISO 107.81 37.04 82.93 193.9 42.54 83.42 0 100 PROD (7.16%) (8.05%) (10.94%) (10.22%) (8.74%) (11.36%) Note:InbracketstheindexesareexpressedasapercentageoftheOLindexes.
Description: