ebook img

Dual Baxter equations and quantization of Affine Jacobian PDF

27 Pages·0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dual Baxter equations and quantization of Affine Jacobian

LPTHE-00-04 Dual Baxter equations and quantization of Affine Jacobian. 0 0 0 2 n F.A. Smirnov0 a J 1 2 LaboratoiredePhysiqueThe´oriqueetHautesEnergies1 1 Universite´PierreetMarieCurie,Tour16,1er e´tage,4placeJussieu v 75252ParisCedex05,France 2 3 0 1 0 0 0 Abstract. A quantumintegrablemodelis consideredwhichdescribesa quantization / of affinehyper-ellipticJacobian. Thismodelis shown to possess the propertyof du- h p ality: a dual model with inverse Planck constant exists such that the eigen-functions - ofits Hamiltonianscoincidewith theeigen-functionsofHamiltoniansofthe original h model. Weexplainthatthisdualitycanbeconsideredasdualitybetweenhomologies t a andcohomologiesofquantizedaffinehyper-ellipticJacobian. m : v i X r a 0MembreduCNRS 1Laboratoireassocie´auCNRS. 1 1 Introduction. TherelationbetweentheaffineJacobianandintegrablemodelsiswellknown(cf. [1]). Inthepaper[2]wehaveshownthatthealgebraoffunctionsontheaffineJacobianis generatedbyactionofhamiltonianvectorfieldsfromfinitenumberoffunctions. The latter functions are coefficients of highest non-vanishing cohomologies of the affine Jacobian.Actually,theideathatsuchdescriptionofthealgebraoffunctionsispossible appearedfromthepaper[3]whichconsidersthestructureofthealgebraofobservables forquantumandclassicalTodachain. Inthepresentpaperwegivequantumversionof[2].Aquantummechanicalmodel is formulated which gives a quantization of the affine Jacobian. As usual in Quan- tum Mechanicswe can describe notthe variety itself but the algebra of functionson it(observables). We needtoshowthatthe quantumalgebraofobservablespossesses essentialpropertyofcorrespondingclassicalalgebraoffunctions.Inourcasethisprop- ertyisthepossibilityofcreatingeveryobservablefromafinitenumberofobservables (cohomologies)byactionofHamiltonians. In the process of realization of this program we find the Baxter equations which describethespectrumofthemodel.Ithappensthattheseequationspossesstheproperty ofduality:thereisdualmodelwithinversePlanckconstantforwhichtheeigen-vectors are the same. The algebras of observables of two dual models commute. The next ingredientofourstudyisthemethodofseparationofvariablesdevelopedbySklyanin [4]. Using thismethodwe presentthematrixelementsofanyobservablein termsof certainintegrals. WeshowthattheintegralsinquestionareexpressesintermsofdeformedAbelian integrals(cf.[3,5]).Theobservablesforbothdualmodelsaredefinedintermsofcoho- mologies.Themostbeautifulfeatureofourconstructionisthatinthesecohomologies enter the integrals for matrix elements in such a way that the cohomologies of dual modelplayroleofhomologiesfororiginaloneandviseaversa.Weconsiderthisrela- tionbetweenweek-strongdualityinquantumtheorywithdualitybetweenhomologies andcohomologiesasthemostimportantconclusionofthispaper. 2 Affine Jacobian. Inthissectionwebrieflysummarizenecessaryfactsconcerningrelationbetweeninte- grablemodelsandalgebraicgeometryfollowingthepaper[2].Thereasonforrepeating certainfactsfrom[2]isthatweshallneedtheminslightlydifferentsituation. Consider2 2matrixwhichdependspolynomiallyontheparameterz: × a(z) b(z) m(z)= c(z) d(z) (cid:18) (cid:19) 2 wherethematrixelementsarepolynomialsoftheform: a(z)=zg+1+a zg+ +a , (1) 1 g+1 ··· b(z)=zg+b zg−1+ +b , 1 g ··· c(z)=c zg+c zg−1 +c , 2 3 g+2 ··· d(z)=d zg−1+d zg−2 +d 2 3 g+1 ··· InthetheaffinespaceC4g+2withcoordinatesa , ,a ,b , ,b ,c , ,c , 1 g+1 1 g 2 g+2 ··· ··· ··· d , ,d considerthe(2g+1)-dimensionalaffinevariety definedasquadric 2 g+1 ··· M f(z) a(z)d(z) b(z)c(z)=1 (2) ≡ − Weconsiderthissimplestsituation,butinprincipleitispossibletoputarbitrarypoly- nomialofdegree2ginRHS. Onthequadric letusconsiderthesectionsJ (t)definedbytheequations: aff M a(z)+d(z)=t(z) (3) wheret(z)isgivenpolynomialoftheform: t(z)=zg+1+zgt + +t , (4) 1 g+1 ··· The notation J (t) stands for affine Jacobi variety. The definition of affine Jacobi aff varietyanditsequivalencetoJ (t)describedabovearegivenintheAppendixA.We aff includeAppendixAbecausethereisminordifferencewiththesituationconsideredin [1] and [2]. The variety is foliated into the affine Jacobians J (t). Mechanical aff M modeldescribedbelowprovidesacleverwayofdescribingthisfoliation. Wewouldliketounderstandthegeometricalmeaningofquantumintegrablemod- els. The general philosophy teaches that in order to describe the quantization of a manifoldonehasto deformthe algebraoffunctionsonthismanifoldpreservingcer- tainessentialpropertiesofthisalgebra. Theclassicalalgebramustallowthe Poisson structureinorderthatquantizationispossible. CertainPoissonbracketsforthecoefficientsofmatrixm(z)canbeintroduced.We donotwritethemdownexplicitly,ifneededtheycanbeobtainedtakingclassicallimit ofthecommutationrelations(14).Thealgebra =C[a , ,a ,b , ,b ,c , ,c ,d , ,d ] 1 g+1 1 g 2 g+2 2 g+1 A ··· ··· ··· ··· becomesaPoissonalgebra.ThemostimportantpropertiesofthisPoissonstructureare b thefollowing.First,thecoefficientsofthedeterminantf(z)belongtothecenterofthe Poissonalgebra,so,theequation(2)isconsistentwithPoissonstructure. Second,the tracet(z)generatescommutativesub-algebra: t(z),t(z′) =0 { } It can be shown, actually, that the coefficientt of the trace belongsto the center, g+1 it is convenientto put t = ( 1)g+12. The subject of our study is the algebra of g+1 − functionsonthe : M = A A f(z)=1, t =( 1)g+12 g+1 { − } b 3 onwhichthePoissonstructureiswelldefined. ThePoissoncommutativealgebrageneratedbythecoefficientst , ,t iscalled 1 g ··· thealgebraofintegralsofmotion.Introducethecommutingvector-fields ∂ g = t ,g , i=1, g i i { } ··· Thevector-fields∂ describemotionalongthesub-varietiesJ (t). j aff Onecanthinkofthesevector-fieldsas ∂ ∂ = j ∂τ j where τ are ”times” correspondingto the integrals of motion t . Define the ring of j j integralsofmotion =C[t , ,t ] (5) 1 g T ··· IntroducethespaceofdifferentialformsCk withbasis xdτ dτ , x i1 ∧···∧ ik ∈A andthedifferential d=∂ dτ j j ConsidercorrespondingcohomologiesHk. Inthepaper[2]theargumentsaregivenin favourofthefollowing Conjecture1. ThecohomologiesHk arefinite-dimensionaloverthering ,theyare T isomorphictothecohomologiesoftheaffinevarietyJ (t)withtingenericposition. aff On the algebra and on the spaces Ck one can introduce degree [2]. Take the ba- A sis of Hg considered as a vector space over which is composed of homogeneous T representatives Ω =g dτ dτ α α 1 g ∧···∧ whereαtakesfinitenumberofvalues. Thefactoffoliationof intovarietiesJ (t) aff M correspondstothefollowingstatementconcerningthealgebra [2] A Proposition1. Everyelementxof canbepresentedintheform A x= p (∂ , ,∂ )g (6) α 1 g α ··· α X wherep (∂ , ,∂ )arepolynomialsof∂ , ,∂ withcoefficientsin . α 1 g 1 g ··· ··· T Therepresentation(6)isnotunique,theequations p (∂ , ,∂ )g =0 (7) α 1 g α ··· α X arecountedbyHg−1[2]. The formula (6) can be useful only if we are able to control the cohomologies. Concerningthesecohomologiesweadoptseveralconjecturesfollowing[2]. 4 3 Conjectured form of cohomologies. TheaffinevarietyJ (t)allowsthefollowingdescription. Considerthehyper-elliptic aff curveX ofgenusg: w2 t(z)w+1=0 (8) − Thiscurvehastwopointsoverthepointz = whichwedenoteby ±. ∞ ∞ Consideramatrixm(z)satisfying(2).Takethezerosofb(z): g b(z)= (z z ) j − j=1 Y and w =d(z ) j j Obviouslyz ,w satisfytheequationofthecurveX (8).Thusm(z)definesapoint j j P (divisor)onthesymmetrizedg-thpowerX[g]ofthecurveX. Thedivisor consists P ofthepointsp =(z ,w ) X. j j j ∈ Oppositelyone can reconstructm(z)starting formthe divisor . Corresponding P mapissingular,thesingularitiesbeinglocatedon D = p =σ(p )forsomei,jorp = ± forsomei (9) i j i {P | ∞ } Whereσishyper-ellipticinvolution.ThusthealternativedescriptionofJ (t)is aff J (t)=X[g] D aff − ConsiderthemeromorphicdifferentialsonX withsingularitiesat ±. Wechose ∞ thefollowingbasisofthesedifferentials: dz µ (p)=zg+k , g k 0 k y − ≤ ≤ d dz µ (p)= y (zk−g−1y) , k 1 (10) k dz ≥ y ≥ (cid:2) (cid:3) where p = (z,w), y = 2w t(z), [ ] means that only non-negative degrees of ≥ − Laurentseriesinthebracketsaretaken. Theform µ = µ (p ) k k i i X is viewed as a form on J (t). Iteis easy to see that the forms µ (hence µ ) with aff k k k g+1areexact.ConsiderthespaceWm withthebasis: ≥ e Ω =µ µ k1,···,km k1 ∧···∧ km where g k g. Following[2]weadoptthe − ≤ j ≤ e e 5 Conjecture2. Wehave Wm Hm = (11) σ Wm−2 ∧ where g σ = µ µ j −j ∧ j=1 X Accordingto(9)thesingularitiesofdiffereentialeformsoccureitheratpi =σ(pj)orat p = ±. Thenon-trivialessenceofConjecture2isthatthefirstkindofsingularities i ∞ can be eliminated by adding exact forms. There are (g 1)-forms singular at p = i − σ(p )suchthatthesesingularitiesdisappearafterapplyingd. Thisistheoriginofthe j spaceσ Wk−2[2]. ∧ Considerbrieflythedualpicture. Ontheaffinecurvewithpuncturesat ± there ∞ are 2g + 1 non-trivial cycles δ with k = g, ,g. The cycles δ , k < 0 are k k − ··· a-cycles, the cycles δ , k > 0 are b-cycles and δ is the cycle around +. One k 0 ∞ definesthecyclesδ onthesymmetricalpoweroftheaffinecurve. The -operationis k ∧ introducedforthesecyclesbydualitywithcohomologies.Thenon-trivialconsequence ofConjecture2 isethateverycycle onJ (t) canbeconstructedbywedgingδ . The aff k formuladualto(11)is W e H = m (12) m σ′ W m−2 ∧ whereW isspannedby m ∆ =δ δ k1,···,km k1 ∧···∧ km and ge e σ′ = δ δ j −j ∧ j=1 X Weneedtofactorizeoverσ′ W becauesethee2-cycleσ′intersectswithD. m−2 ∧ LetusreturntotherelationofHg tothealgebra . Noticethat A dτ dτ µ µ Ω 1 g 1 g ∧···∧ ≃ ∧···∧ ≡ Thefunctions x =Ωe−1Ω e k1,···,kg k1,···,kg are symmetricpolynomialsofz , ,z . Recall thatb , ,b arenothingbutele- 1 g 1 g ··· ··· mentarysymmetricpolynomialsofz , ,z .Hencethecoefficientsofcohomologies 1 g ··· havetheform: g =g (b , ,b ) α α 1 g ··· ThedimensionofHg isdeterminedbyConjecture2: α=1, , 2g+1 2g+1 , ··· g − g−2 Theequations(7)areconsequencesofth(cid:0)efollo(cid:1)win(cid:0)gone(cid:1)s g ∂ Ω−1(µ Ω ) =0, Ω Wg−1 (13) k −k∧ k1,···,kg−1 ∀ k1,···,kg−1 ∈ k=1 X (cid:0) (cid:1) 6 4 Quantization of affine Jacobian. Let us consider a quanization of algebra . The parameter of deformation (Planck A constant)isdenotedbyγ,weshallalsouse q =eiγ Considerthe2 2matrixm(z)withnoncommutingentries. Supposethatthedepen- × dence on the spectral parameter z is exactly the same as in classical case (1). The variablesa ,b ,c ,d aresubjecttocommutationrelationswhicharesummarizedas j j j j follows: r (z ,z )m (z )k (z )s m (z )k (z )= 21 1 2 1 1 12 1 12 2 2 21 2 =m (z )k (z )s m (z )k (z )r (z ,z ) (14) 2 2 21 2 21 1 1 12 1 12 1 2 where usual conventionsare used: the equation (14) is written in the tensor product C2 C2, a = a I, a = I 2, a = Pa P where P is the operation of 1 2 21 12 perm⊗uattions.TheC⊗-numbermatri⊗cesr,k,sare: z qz z +qz r (z ,z )= 1− 2 (I I)+ 1 2 (σ3 σ3)+ 12 1 2 1 q ⊗ 1+q ⊗ − +2(z σ− σ++z σ+ σ−), 1 2 ⊗ ⊗ k (z)=I (I σ3)+ q−σ3 +z(q2 1)σ− (I +σ3), 12 ⊗ − − ⊗ s =I I (q q−1)σ(cid:16)− σ+ (cid:17) (15) 12 ⊗ − − ⊗ These commutation relations are important because they respect the form of matrix m(z)prescribedby(1),weshallexplainhowtheyarerelatedtomoreusualr-matrix relationsinthenextsection. Definethepolynomials: t(z)=qa(z)+q2d(z) z(q2 1)b(z) − − f(z)=qd(z)t(zq−2) q2d(z)d(zq−2) qb(z)c(zq−2) (16) − − The algebra (q) is generated by a , ,a , b , ,b , c , ,c , 1 g+1 1 g 2 g+2 A ··· ··· ··· d , ,d ,Thepolynomialf(z)belongstothecenterof (q). Thecoefficientsof 2 g+1 ··· A t(z)arecommbuting,actually,t belongstothecenterof (q). Wedefine: g+1 A b (q) b (q)= A A f(z)=1, t =( 1)g+12 g+1 { − } b The non-commutativealgebra (q) defines a quantizationof the algebra of function A onthequadric . However,wecannotdefinedirectlythequantizationofthealgebra M offunctionsontheaffineJacobianbecausethecoefficientsoft(z)arenotinthecenter of (q). Whatwe candois todescribethequantumversionofProposition1 andof A descriptionofcohomologies.Theexpositionwillbemoredetailedthanintheclassical case. 7 Likeinthepaper[3]weacceptthefollowing Conjecture3. Thealgebra (q)isspannedaslinearspacebyelementsoftheform: A x=p (t , ,t )g(b , ,b )p (t , ,t ) (17) L 1 g 1 g R 1 g ··· ··· ··· wherep (t , ,t ), g(b , ,b ), p (t , ,t )arepolynomials. L 1 g 1 g R 1 g ··· ··· ··· Wewerenotabletoprovethisstatement,however,sincethealgebra (q)isgradedwe A cancheckitdegreebydegree.Thishasbeendoneuptodegree8. Noticethesimilarity between the representation (17) and the representation for spin operators proved in [6]. Conjecture 3 implies that certain generalization of the results of [6] is possible. In fact the formula (17) is similar to the formula (6): we can either symmetrize or anti-symmetrize t in (17) which correspondsin classics to multipilation by t or to j j applying∂ . Inordertohavecompleteagreementwithclasicalcasewehavetoshow j thatonlyfinitelymanydifferentpolynomialsg(b , b )(cohomologies)createentier 1 g ··· algebra (q). A Noticethatthecommutationrelations(14)implyinparticularthat [b(z),b(z′)]=0 whichmeansthatwehavethecommutativefamilyofoperatorsz definedby j b(z)= (z z ) j − Y So, every polynomialsg(b , ,b ) can be considered as symmetric polynomialof 1 g ··· z andviceversa. j Itisveryconvenienttouse thefollowingformaldefinitions. Considerthering T definedin(5).By kwedenotethespaceofanti-symmetricpolynomialsofkvariables V suchthattheirdegreeswithrespecttoeveryvariableisnotlessthan1withcoefficients in . Inotherwords k isthespacespannedbythepolynomials: T ⊗T V p h p p (t , ,t )h(z , ,z )p (t′, ,t′) L· · R ≡ L 1 ··· g 1 ··· k R 1 ··· g wherehisanti-symmetric,vanishingwhenoneofz vanishes. Thefollowingopera- j tionscanbedefined. 1. Multiplicationbyt andt′. j j 2. Operation : k l k+l whichisdefinedasfollows: ∧ V ⊗V →V (p h p ) (p′ h′ p′ )=p p′ (h h′) p p′ L· · R ∧ L· · R L L· ∧ · R R where (h h′)(z , ,z )= 1 k+l ∧ ··· 1 = ( 1)π h(z , ,z )h′(z , ,z ) k!l! − π(1) ··· π(k) π(k+1) ··· π(k+l) π∈XSk+l Wehaveamap g χ (q) V −→A 8 definedonthebasiselementsas h(z , ,z ) χ(p h p )=p (t , ,t ) 1 ··· g p (t , ,t ) L· · R L 1 ··· g z (z z ) R 1 ··· g i i<j i− j andcontinuedlinearly. TheConjecture3QstatesQthatthismapissurjective. Wewantto describethekernelofthemapχ. First, consider the space 1. The elements of this space are polynomials of one V variable z with coefficients in . In Appendix B we describe certain basis in T ⊗ T 1 considered as a linear space over . The basis in question consists of the V T ⊗ T polynomials: s with k g such that the degree of s with respect to z equals k k ≥ − g+k+1. Thekernelofχisthejointofthreesub-spaces,letusdescribethem. 1. Fork g+1wehave: ≥ χ s g−1 =0 (18) k ∧V (cid:0) (cid:1) 2. Considerc 2definedas ∈V g c= s s j −j ∧ j=1 X wehave χ c g−2 =0 (19) ∧V (cid:0) (cid:1) 3. Considerd 1definedas ∈V d=(t t′)s j − j −j wehave χ d k−1 =0 (20) ∧V Theconstructionofthespace (cid:0) (cid:1) g V (q) Ker(χ) ≃A is in complete correspondence with the classiccal case. In classics we start with all the 1-forms µ . Imposing (18) corresponds to throwing away the exact forms and k working with µ for k = g ,g only. Imposing (19) correspondsto factorizing k − ··· overσ Wk−2 inclassics. Finally,(20)correspondstotheequation(13). e ∧ Theoriginoftheequations(18),(19),(20)willbeexplainedintheSection9.There e shouldbepurelyalgebraicmethodofproovingtheseequations,butwedonotknowit. Itisimportantto mentionthatacceptingConjecture3 weare forcedto concludethat thekernelofχiscompletelydescribedbytheequations(18),(19),(20).Thisisproved bycalculationofcharacterssimilarlytothatof[3]. 9 5 The realization of A(q). Wewanttodescribearealizationofthealgebra (q)inaspaceoffunctions.Consider A thequantummechanicalsystemdescribedbytheoperatorsx withj =1, ,2g+2 j ··· andy(zeromode). Theoperatorsx andy areself-adjoint,theysatisfythecommuta- j tionrelations: x x =q2x x k <l, k l l k yx =q2x y k k k ∀ Thehamiltonianofthesystemis 2g+2 h=q−1 x x−1 k k−1 k=1 X where x qyx 2g+3 1 ≡ PhysicallythismodeldefinesthesimplestlatticeregularizationofthechiralBosefield withmodifiedenergy-momentumtensor. It is usefulto double the numberof degreesof freedom. Consider the algebra A generatedbytwooperatorsuandvsatisfyingthecommutationrelations: uv =qvu TakethealgebraA⊗(2g+2) theoperatorsu , v (j = 1, ,2g+2)aredefinedasu j j ··· andvactinginj-thtensorcomponent.Theoriginaloperatorsx areexpressedinterms i ofu ,v asfollows: i i k−1 2g+2 x =v u−2, y = u k k j j j=1 j=1 Y Y Considerthe“monodromymatrix” a(z) b(z) m(z)= =l (z) l (z) (21) 2g+2 1 c(z) d(z)! ··· e e wherethel-operatorfsare e e 1 zu qvu l(z)= − (22) √z zv−1u−1 0 (cid:18) (cid:19) This is a particular case of more genaral l-operator l(z,κ) in which the last matrix elementisnot0butκzu,themodelcorrespondingtothelatterl-operatorisasubject ofstudyinaseriesofpapers[7]. Thematrixelementsofthematrixm(z)satisfythecommutationrelations: r (z ,z )m (z )m (z )=m (z )m (z )r (z ,z ) (23) 12 1 2 1 1 2 2 2 2 1 1 12 1 2 f f f f 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.