ebook img

DUAL BANACH ALGEBRAS: CONNES-AMENABILITY, NORMAL, VIRTUAL PDF

21 Pages·2004·0.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DUAL BANACH ALGEBRAS: CONNES-AMENABILITY, NORMAL, VIRTUAL

MATH.SCAND.95(2004),124–144 DUAL BANACH ALGEBRAS: CONNES-AMENABILITY, NORMAL, VIRTUAL DIAGONALS, AND INJECTIVITY OF THE PREDUAL BIMODULE VOLKERRUNDE∗ Abstract Let(cid:1)beadualBanachalgebrawithpredual(cid:1)∗ andconsiderthefollowingassertions:(A)(cid:1) isConnes-amenable; (B)(cid:1)hasanormal,virtualdiagonal; (C)(cid:1)∗ isaninjective(cid:1)-bimodule. Forgeneral(cid:1),allthatisknownisthat(B)implies(A)whereas,forvonNeumannalgebras,(A), (B),and(C)areequivalent.Weshowthat(C)alwaysimplies(B)whereastheconverseisfalse for(cid:1) = M(G)whereGisaninfinite,locallycompactgroup.Furthermore,wepresentpartial solutionstowardsacharacterizationof(A)and(B)for(cid:1)=B(G)intermsofG:Foramenable, discreteGaswellasforcertaincompactG,theyareequivalenttoGhavinganabeliansubgroup offiniteindex.Thequestionofwhetherornot(A)and(B)arealwaysequivalentremainsopen. However,weintroduceamodifieddefinitionofanormal,virtualdiagonaland,usingthismodified definition,characterizetheConnes-amenable,dualBanachalgebrasthroughtheexistenceofan appropriatenotionofvirtualdiagonal. Introduction In [15], B. E. Johnson, R. V. Kadison, and J. Ringrose introduced a notion ofamenabilityforvonNeumannalgebraswhichmodifiesJohnson’soriginal definition for general Banach algebras ([12]) in the sense that it takes the dual space structure of a von Neumann algebra into account. This notion of amenabilitywaslaterdubbedConnes-amenabilitybyA.Ya.Helemski˘ı([11]). In[18],theauthorextendedthenotionofConnes-amenabilitytothelarger class of dual Banach algebras (a Banach algebra is called dual if it is a dual Banachspacesuchthatmultiplicationisseparatelyw∗-continuous).Examples ofdualBanachalgebras(besidesvonNeumannalgebras)are,forexample,the measure algebras M(G) of locally compact groups G. In [20], the author proved that a locally compact group G is amenable if and only if M(G) is Connes-amenable–thusshowingthatthenotionofConnes-amenabilityisof interestalsooutsidetheframeworkofvonNeumannalgebras. In[8],E.G.EffrosshowedthatavonNeumannalgebraisConnes-amenable ifandonlyifithasaso-callednormal,virtualdiagonal.LikeConnes-amena- ∗ResearchsupportedbyNSERCundergrantno.227043-00. ReceivedJune3,2003;inrevisedformJuly10,2003. dualbanachalgebras:connes-amenability,normal,virtual... 125 bility,thenotionofanormal,virtualdiagonaladaptsnaturallytothecontextof generaldualBanachalgebras.ItisnothardtoseethatadualBanachalgebra with a normal, virtual diagonal is Connes-amenable (the argument from the vonNeumannalgebracasecarriesoveralmostverbatim;see[4]). Let(cid:1)beadualBanachalgebrawith(notnecessarilyunique)predual(cid:1)∗; itiseasytoseethat(cid:1)∗ isaclosedsubmoduleof(cid:1)∗.Considerthefollowing threestatements: (A) (cid:1)isConnes-amenable. (B) (cid:1)hasanormal,virtualdiagonal. (C) (cid:1)∗ isaninjective(cid:1)-bimoduleinthesenseof[10]. If (cid:1) is a von Neumann algebra, then (A), (B), and (C) are equivalent (the equivalenceof(A)and(B)wasmentionedbefore;thattheyareequivalentto (C) is proved in [11]). If (cid:1) = M(G) for a locally compact group G, then (A) and (B) are also equivalent ([21]). For a general dual Banach algebra (cid:1), weknowthat(B)implies(A),butnothingelseseemstobeknownaboutthe relationsbetween(A),(B),and(C). Asweshallseeinthepresentpaper,(C)alwaysimplies(B)–andthus(A) – whereas the converse need not hold in general: this answers a question by A.Ya. Helemski˘ı ([19, Problem 24]) in the negative. The counterexample is themeasurealgebraM(G)foranyinfinite,amenable,locallycompactgroup G; the proof relies on recent work by H. G. Dales and M. Polyakov ([6]). (AsO.Yu.Aristovinformedusuponseeingapreprintversionofthispaper,it hadpreviouslybeenshownbyS.TabaldyevthattheBanach(cid:8)1(G)-bimodule c (G)isnotinjectiveforeveryinfinitediscretegroupG,whichalreadyanswers 0 Helemski˘ı’squestion;see[25].) TheFourier-StieltjesalgebraB(G)ofalocallycompactgroupG,asintro- duced in [9], is another example of a dual Banach algebra. In view of [20], [21],and[22],itisnotfarfetchedtoconjecturethat(A)and(B)for(cid:1)=B(G) areequivalentandholdtrueifandonlyifGhasanabeliansubgroupoffinite index.Eventhoughwearenotabletosettlethisconjectureinfullgenerality, wecancorroborateitforcertainG:(A)and(B)holdforB(G)–withGdis- creteandamenableoratopologicalproductoffinitegroups–ifandonlyifG hasanabeliansubgroupoffiniteindex. Inthelastsectionofthepaperwemodifythedefinitionofanormal,virtual diagonal by introducing what we call a σWC-virtual diagonal. For a dual Banachalgebra(cid:1),wethenconsiderthestatement: (B(cid:3)) (cid:1)hasaσWC-virtualdiagonal. Unlikefor(A)and(B),wecanshowthat(A)and(B(cid:3))areindeedequivalent. ItthusseemsthatthenotionofaσWC-virtualdiagonalseemstobethemore 126 volkerrunde naturalonetoconsiderinthecontextofConnes-amenabilityifcomparedwith thenotionofanormal,virtualdiagonal. 1. Preliminaries 1.1. Notions of amenability WestartwiththedefinitionofadualBanachmodule: Definition1.1. Let(cid:1)beaBanachalgebra.ABanach(cid:1)-bimoduleE is calleddualifitisthedualofsomeBanachspaceE∗suchthat,foreacha ∈(cid:1), themaps (cid:1) a·x, E →E, x (cid:6)→ x ·a areσ(E,E∗)-continuous. Remarks. 1.The predual space E∗ in Definition 1.1 need not be unique. Nevertheless,E∗ willalwaysbeclearfromthecontext,sothatwecanspeak ofthew∗-topologyonE withoutambiguity. 2.ItiseasilyseenthatadualBanachspaceE (withpredualE∗)whichis alsoaBanach(cid:1)-bimoduleisadualBanach(cid:1)-bimoduleifandonlyifE∗ isa closedsubmoduleofE∗.Hence,ourdefinitionofadualBanach(cid:1)-bimodule coincideswiththeusualone(givenin[19],forinstance). Let(cid:1)beaBanachalgebra,andletEbeaBanach(cid:1)-bimodule.Aderivation from(cid:1)toE isabounded,linearmapD:(cid:1)→E satisfying D(ab)=a·Db+(Da)·b (a,b ∈(cid:1)). AderivationD:(cid:1)→E iscalledinner ifthereisx ∈E suchthat Da =a·x −x ·a (x ∈(cid:1)). Definition1.2. ABanachalgebra(cid:1)iscalledamenableifeveryderivation from(cid:1)intoadualBanach(cid:1)-bimoduleisinner. The terminology is, of course, motivated by [12, Theorem 2.5]:A locally compactgroupGisamenableifandonlyifitsgroupalgebraL1(G)isamenable inthesenseofDefinition1.2. ForsomeclassesofBanachalgebra,Definition1.2seemstobe“toostrong” in the sense that it only characterizes fairly uninteresting examples in those classes:AvonNeumannalgebraisamenableifandonlyifitissubhomogen- eous ([26]), and the measure algebra M(G) of a locally compact group G is amenableifandonlyifGisdiscreteandamenable([5]). BothvonNeumannalgebrasandmeasurealgebrasaredualBanachalgebras inthesenseofthefollowingdefinition: dualbanachalgebras:connes-amenability,normal,virtual... 127 Definition1.3. ABanachalgebra(cid:1)whichisadualBanach(cid:1)-bimodule iscalledadualBanachalgebra. Examples. 1.EveryvonNeumannalgebraisadualBanachalgebra. 2.ThemeasurealgebraM(G)ofalocallycompactgroupGisadualBanach algebra(withpredualC (G)). 0 3. If E is a reflexive Banach space, then B(E) is a dual Banach algebra (withpredualE⊗ˆ E∗,where⊗ˆ denotestheprojectivetensorproductofBanach spaces). 4. The bidual of every Arens regular Banach algebra is a dual Banach algebra. WeshallnowintroduceavariantofDefinition1.2fordualBanachalgebras thattakesthedualspacestructureintoaccount: Definition1.4. Let(cid:1)beadualBanachalgebra,andletEbeadualBanach (cid:1)-bimodule.Anelementx ∈E iscallednormalifthemaps (cid:1) a·x, (cid:1)→E, a (cid:6)→ x ·a arew∗-continuous.ThesetofallnormalelementsinE isdenotedbyEσ.We saythatE isnormalifE =Eσ. Remark. Itiseasytoseethat,foranydualBanach(cid:1)-bimoduleE,theset Eσ isanormclosedsubmoduleofE.Generally,however,thereisnoneedfor Eσ tobew∗-closed. Definition 1.5. A dual Banach algebra (cid:1) is called Connes-amenable if everyw∗-continuousderivationfrom(cid:1)intoanormal,dualBanach(cid:1)-bimodule isinner. Remarks. 1. “Connes”-amenability was introduced by B. E. Johnson, R. V. Kadison, and J. Ringrose for von Neumann algebras in [15]. The name “Connes-amenability” seems to originate in [11], probably in reverence to- wardsA.Connes’fundamentalpaper[2]. 2.ForavonNeumannalgebra,Connes-amenabilityisequivalenttoanum- berofimportantproperties,suchasinjectivityandsemidiscreteness;see[19, Chapter6]forarelativelyself-containedaccount. 3. The measure algebra M(G) of a locally compact group G is Connes- amenableifandonlyifGisamenable([20]). 128 volkerrunde 1.2. Virtual diagonals Let(cid:1)beaBanachalgebra.Then(cid:1)⊗ˆ (cid:1)isaBanach(cid:1)-bimodulevia a·(x ⊗y):=ax ⊗y and (x ⊗y)·a :=x ⊗ya (a,x,y ∈(cid:1)), sothatthemultiplicationmap (cid:19):(cid:1)⊗ˆ (cid:1)→(cid:1), a⊗b (cid:6)→ab becomesahomomorphismofBanach(cid:1)-bimodules. ThefollowingdefinitionisalsoduetoB.E.Johnson([13]): Definition1.6. AvirtualdiagonalforaBanachalgebra(cid:1)isanelement M ∈((cid:1)⊗ˆ (cid:1))∗∗ suchthat a·M =M·a and a(cid:19)∗∗M =a (a ∈(cid:1)). In[13], JohnsonshowedthataBanachalgebra(cid:1)isamenableifandonly if it has a virtual diagonal. This allows to introduce a quantified notion of amenability: Definition1.7. ABanachalgebra(cid:1)iscalledC-amenableforsomeC ≥1 ifithasavirtualdiagonalofnormatmostC.TheinfimumoverallC ≥1such that(cid:1)isC-amenableiscalledtheamenabilityconstant of(cid:1)anddenotedby AM . (cid:1) Remark. It follows from the Alaoglu–Bourbaki theorem ([7, Theorem V.4.2]),thattheinfimuminthedefinitionofAM isattained,i.e.isaminimum. (cid:1) Definition 1.6 has a variant that is better suited for dual Banach algebras. Let(cid:1)beadualBanachalgebrawithpredual(cid:1)∗,andletBσ2((cid:1),C)denotethe bounded,bilinearfunctionalson(cid:1)×(cid:1)whichareseparatelyw∗-continuous. Since(cid:19)∗ maps(cid:1)∗ intoBσ2((cid:1),C),itfollowsthat(cid:19)∗∗ dropstoan(cid:1)-bimodule homomorphism(cid:19)σ:Bσ2((cid:1),C)∗ →(cid:1).Wedefine: Definition1.8. Anormal,virtualdiagonal foradualBanachalgebra(cid:1) isanelementM ∈B2((cid:1),C)∗ suchthat σ a·M =M·a and a(cid:19)σM =a (a ∈(cid:1)). Remarks. 1.EverydualBanachalgebrawithanormal,virtualdiagonalis Connes-amenable([4]). 2.AvonNeumannalgebraisConnes-amenableifandonlyifithasanormal, virtualdiagonal([8]). dualbanachalgebras:connes-amenability,normal,virtual... 129 3. The same is true for the measure algebras of locally compact groups ([21]). In[18],weintroducedastrongervariantofDefinition1.5–called“strong Connes-amenability” – and showed that the existence of a normal, virtual diagonalforadualBanachalgebrawasequivalenttoitbeingstronglyConnes- amenable([18,Theorem4.7]).Thefollowingproposition,observedbythelate B.E.Johnson,showsthatstrongConnes-amenabilityisevenstrongerthanit seems: Proposition1.9.ThefollowingareequivalentforadualBanachalgebra (cid:1): (i) Thereisanormal,virtualdiagonalfor(cid:1). (ii) (cid:1) has an identity, and every w∗-continuous derivation from (cid:1) into a dual,unitalBanach(cid:1)-bimoduleisinner. Proof. Inviewof[18,Theorem4.7],only(i)(cid:14)⇒(ii)needsproof. LetEbeadual,unitalBanach(cid:1)-bimodule.Dueto[18,Theorem4.7],itis sufficienttoshowthatD(cid:1)⊂Eσ.This,however,isautomaticallytruebecause a·Db =D(ab)−(Da)·b and (Db)·a =D(ab)−b·Da (a,b ∈(cid:1)) holds. 1.3. Injectivity for Banach modules Let (cid:1) be a Banach algebra, and let E be a Banach space. Then B((cid:1),E) becomesaleftBanach(cid:1)-bimodulebyletting (a·T)(x):=T(xa) (a,x ∈(cid:1)). IfEisalsoaleftBanach(cid:1)-module,thereisacanonicalmodulehomomorph- ismι:E →B((cid:1),E),namely ι(x)a :=a·x (x ∈E, a ∈(cid:1)). Forthedefinitionofinjective,leftBanachmodulesdenote,foranyBanach algebra(cid:1),by(cid:1)# theunconditionalunitization,i.e.weadjoinanidentityto(cid:1) nomatterif(cid:1)alreadyhasoneornot.Clearly,ifEisaleftBanach(cid:1)-module, themoduleoperationextendscanonicallyto(cid:1)#. Definition1.10. Let(cid:1)beaBanachalgebra.AleftBanach(cid:1)-moduleE iscalledinjectiveifι:E →B((cid:1)#,E)hasaboundedleftinversewhichisalso aleft(cid:1)-modulehomomorphism. 130 volkerrunde Therearevariousequivalentconditionscharacterizinginjectivity(see,e.g., [19,Proposition5.3.5]).Thefollowingis[6,Proposition1.7]: Lemma1.11. Let(cid:1)beaBanachalgebra,andletEbeafaithfulleftBanach (cid:1)-module,i.e.ifx ∈ E issuchthata·x = 0foralla ∈ (cid:1),thenx = 0.Then E isinjectiveifandonlyifι:E →B((cid:1),E)hasaboundedleftinversewhich isalsoan(cid:1)-modulehomomorphism. Definition 1.10 and Lemma 1.11 can be adapted to the context of right modulesandbimodulesinastraightforwardway. TherelevanceofinjectivityinthecontextofamenableBanachalgebrasbe- comesapparentfrom[10,TheoremVII.2.20]andthedualitybetweeninjectiv- ityandflatness([10,TheoremVII.1.14]):ABanachalgebra(cid:1)withbounded approximateidentityisamenableifandonlyiftheBanach(cid:1)-bimodule(cid:1)∗ is injective. 2. Injectivity of the predual bimodule InviewofthecharacterizationofamenableBanachalgebrasjustmentioned, one might ask if an analogous statement holds for Connes-amenable, dual Banachalgebras(cid:1)with(cid:1)∗ replacedby(cid:1)∗.ForvonNeumannalgebras, this isknowntobetrue([11]). OurfirstresultistrueforalldualBanachalgebras: Proposition2.1. Let(cid:1)beadualBanachalgebrawithidentitysuchthat itspredualbimodule(cid:1)∗ isinjective.Then(cid:1)hasanormal,virtualdiagonal. Proof. Considertheshortexactsequence (cid:19)∗| (1) {0}→(cid:1)∗ −→(cid:1)∗ Bσ2((cid:1),C)→Bσ2((cid:1),C)/(cid:19)∗(cid:1)∗ →{0}. DefineP:Bσ2((cid:1),C)→(cid:1)∗ byletting (P(cid:25))(a):=(cid:25)(a,e ) ((cid:25)∈B2((cid:1),C), a ∈(cid:1)), (cid:1) σ where e denotes the identity of (cid:1). Then it is routinely checked that P is a (cid:1) bounded projection onto (cid:19)∗(cid:1)∗ and thus a left inverse of (cid:19)∗|(cid:1)∗. Hence, (1) is admissible ([19, Definition 2.3.12]). Since (cid:1)∗ is an injective (cid:1)-bimodule, thereisabounded(cid:1)-bimodulehomomorphismρ:Bσ2((cid:1),C) → (cid:1)∗ whichis a left inverse of (cid:19)∗| ([19, Proposition 5.3.5]). It is routinely checked that (cid:1)∗ ρ∗(e )isanormal,virtualdiagonalfor(cid:1). (cid:1) As we shall soon see, the converse of Proposition 2.1 is, in general, false. Nevertheless,forcertain(cid:1),theinjectivityof(cid:1)∗isindeedequivalenttotheex- istenceofanormalvirtualdiagonalfor(cid:1)(andeventoitsConnes-amenability). dualbanachalgebras:connes-amenability,normal,virtual... 131 Wefirstrequirealemma: Lemma2.2. Let(cid:1)beaBanachalgebrawithidentity,letI beaclosedideal of(cid:1),andletE beaunitalBanach(cid:1)-bimodulesuchthat: (a) E isinjectiveasaBanachI-bimodule. (b) E isfaithfulbothasaleftandarightBanachI-module. ThenE isinjectiveasaBanach(cid:1)-bimodule. Proof. TurnB((cid:1)⊗ˆ (cid:1),E)intoaBanach(cid:1)-bimodule,byletting (a·T)(x⊗y):=T(x⊗ya) and (T·a)(x⊗y):=T(ax⊗y) (a,x,y ∈(cid:1)). Defineι:E →B((cid:1)⊗ˆ (cid:1),E)byletting ι(x)(a⊗b):=a·x ·b (x ∈E, a,b ∈(cid:1)). Since(cid:1)hasanidentityandEisunital,itissufficientby(thebimoduleanalogue of) Lemma 1.11 to show that ι has a bounded left inverse which is an (cid:1)- bimodulehomomorphism. By(a),ιhasaboundedleftinverseρ whichisanI-bimodulehomomorph- ism.We claim that ρ is already an (cid:1)-bimodule homomorphism. To see this, leta ∈ (cid:1),T ∈ B((cid:1)⊗ˆ (cid:1),E),andb ∈ I.SinceI isanidealof(cid:1),weobtain that b·ρ(a·T)=ρ(ba·T)=ba·ρ(T), sothatb·(ρ(a·T)−a·ρ(T))=0.Sinceb ∈I wasarbitrary,andsinceEis afaithfulleftBanachI-moduleby(b),weobtainρ(a·T) = a·ρ(T);since a ∈ (cid:1) and T ∈ B((cid:1)⊗ˆ (cid:1),E) were arbitrary, ρ is therefore a left (cid:1)-module homomorphism. Analogously,oneshowsthatρ isaright(cid:1)-modulehomomorphism. Ourfirsttheorem,considerablyimproves[18,Theorem4.4]: Theorem2.3. Let(cid:1)beanArensregularBanachalgebrawhichisanideal in(cid:1)∗∗.Thenthefollowingareequivalent: (i) (cid:1)isamenable. (ii) (cid:1)∗ isaninjectiveBanach(cid:1)∗∗-bimodule. (iii) (cid:1)∗∗ hasanormal,virtualdiagonal. (iv) (cid:1)∗∗ isConnes-amenable. Proof. (i) (cid:14)⇒ (ii): We wish to apply Lemma 2.2. Since (cid:1) is amenable, it has a bounded approximate identity. TheArens regularity of (cid:1) yields that (cid:1)∗∗ has an identity and that (cid:1)∗ is a unital Banach (cid:1)∗∗-bimodule. Since (cid:1) is 132 volkerrunde amenableandthusaflat(cid:1)-bimoduleoveritself([10,TheoremVII.2.20]),(cid:1)∗ isaninjectiveBanach(cid:1)-bimoduleby(thebimoduleversionof)[10,Theorem VII.1.14].Thus,Lemma2.2(a)issatisfied.ToseethatLemma2.2(b)holdsas well, let φ ∈ (cid:1)∗ \{0}. Choose a ∈ (cid:1) such that (cid:21)a,φ(cid:22) (cid:23)= 0. Let (eα)α be a boundedapproximateidentityfor(cid:1).Sincelimα(cid:21)aeα,φ(cid:22) = (cid:21)a,φ(cid:22) (cid:23)= 0,there isb ∈(cid:1)suchthat(cid:21)ab,φ(cid:22)=(cid:21)a,b·φ(cid:22)(cid:23)=0andthusb·φ (cid:23)=0.Consequently,(cid:1)∗ isfaithfulasaleftBanach(cid:1)-module.Analogously,oneverifiesthefaithfulness of(cid:1)∗ asarightBanach(cid:1)-module. (ii)(cid:14)⇒(iii)isclearbyProposition2.1. (iii)(cid:14)⇒(iv)holdsby[4]. (iv)(cid:14)⇒(i):Thisisonedirectionof[18,Theorem4.4]. Example. LetEbeareflexiveBanachspacewiththeapproximationprop- erty,andlet(cid:1)beK(E),thealgebraofallcompactoperatorsonE.Then(cid:1)∗ canbecanonicallyidentifiedwithN(E∗),thenuclearoperatorsonE∗,andwe have(cid:1)∗∗ =B(E).ByTheorem2.3,wehavetheequivalenceofthefollowing properties: (i) K(E)isamenable. (ii) N(E∗), the space of nuclear operators on E∗, is an injective Banach B(E)-bimodule. (iii) B(E)hasanormal,virtualdiagonal. (iv) B(E)isConnes-amenable. InviewofthesituationforvonNeumannalgebras,onemightbetemptedby Theorem2.3tojumptotheconclusionthat,foradualBanachalgebra(cid:1)with predual(cid:1)∗,theinjectivityof(cid:1)∗isequivalentto(cid:1)beingConnes-amenableor havinganormal,virtualdiagonal. Our next theorem reveals that this is not the case: this gives a negative answertoaquestionposedbyA.Ya.Helemski˘ı([19,Problem24]). Lemma2.4. LetGbealocallycompactgroup,andsupposethatC (G)is 0 injectiveasaleftBanachM(G)-module.ThenC (G)isalsoinjectiveasaleft 0 BanachL1(G)-module. Proof. For (cid:2) = M(G) or (cid:2) = L1(G), turn B((cid:2),C (G)) into a left 0 BanachM(G)-moduleinthecanonicalway,andletι :C (G)→B((cid:2),C (G)) (cid:2) 0 0 betherespectivecanonicalleftM(G)-modulehomomorphism. Since C (G) is a unital left M(G)-module, it is immediate that the ho- 0 momorphism ιM(G):C0(G) → B(M(G),C0(G)) of left modules, has a lin- ear, bounded left inverse. Since C (G) is injective as a left Banach M(G)- 0 module,ιM(G) hasaleftinverseρ whichisaboundedhomomorphismofleft M(G)-modules. Let T ∈ B(M(G),C0(G)) be such that T|L1(G) = 0. Since dualbanachalgebras:connes-amenability,normal,virtual... 133 L1(G) is an ideal in M(G), it follows from the definition of the module ac- tion on B(M(G),C (G)), that f ·T = 0 for all f ∈ L1(G) and therefore 0 f ·ρ(T) = ρ(f ·T) = 0 for all f ∈ L1(G). Since C (G) is a faithful left 0 L1(G)-module, this means that ρ(T) = 0. Since L1(G) is complemented in M(G), it follows that ρ:B(M(G),C (G)) → C (G) drops to bounded ho- 0 0 momorphism of left M(G)-modules ρ˜:B(L1(G),C (G)) → C (G), which 0 0 iseasilyseentobealeftinverseofιL1(G). Sinceρ˜ istriviallyahomomorphismofleftL1(G)-modules,Lemma1.11 yieldstheinjectivityofC (G)asaleftBanachL1(G)-module. 0 Theorem2.5. LetGbealocallycompactgroup.ThenC (G)isaninjective 0 BanachM(G)-bimoduleifandonlyifGisfinite. Proof. Suppose that C (G) is an injective Banach M(G)-bimodule. By 0 [10, Proposition VII.2.1] and Lemma 2.4, C (G) is also injective as a left 0 BanachL1(G)-module.By[6,Theorem3.8],thismeansthatGmustbefinite. Theconverseisobvious. Remark. In contrast, it was proven in [20], for a locally compact group G, that M(G) is Connes-amenable – and, equivalently, has a normal, virtual diagonalby[21]–ifandonlyifGisamenable. 3. Fourier-Stieltjes algebras of locally compact groups The Fourier-Stieltjes algebra B(G) of a locally compact group G was intro- duced by P. Eymard in [9] along with the Fourier algebra A(G).We refer to [9] for further information on these algebras. It is straightforward to see that B(G)isadualBanachalgebra–withpredualC∗(G)–foranylocallycompact groupGwhereasA(G)neednotevenbeadualspace(unlessGiscompact, ofcourse). Let G be a locally compact group G with an abelian subgroup of finite index.ThenA(G)isamenableandw∗-denseinB(G),sothatB(G)isConnes- amenable.Infact,aformallystrongerconclusionholds: Proposition3.1. LetGbealocallycompactgroupwithanabeliansub- groupoffiniteindex.ThenB(G)hasanormal,virtualdiagonal. Proof. LetH beaanabeliansubgroupofGsuchthatn:=[G:H]<∞. ReplacingH byitsclosure,wemaysupposethatH isclosedandthusopen. Consequently,therestrictionmapfromB(G)ontoB(H)issurjectivesothat B(G)∼=B(H)n ∼=M(Hˆ)n, whereHˆ isthedualgroupofH.By[21],M(Hˆ)hasanormal,virtualdiagonal. It is easy to see that therefore M(Hˆ)n ∼= B(G) must have a normal, virtual diagonalaswell.

Description:
DUAL BANACH ALGEBRAS: CONNES-AMENABILITY, NORMAL, VIRTUAL DIAGONALS, AND INJECTIVITY OF THE PREDUAL BIMODULE Every dual Banach algebra with a normal,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.