AFRL-RX-TY-TP-2008-4630 HYBRID ANTIMICROBIAL ENZYME AND SILVER NANOPARTICLE COATINGS FOR MEDICAL INSTRUMENTS (POSTPRINT) D. Mathew Eby and Heather R. Luckarift Universal Technology Corporation 1270 North Fairfield Road Dayton, OH 45432 Glenn R. Johnson Airbase Technologies Division Air Force Research Laboratory 139 Barnes Drive, Suite 2 Tyndall Air Force Base, FL 32403-5323 Contract No. FA4819-07-D-0001 December 2008 DISTRIBUTION A: Approved for release to the public; distribution unlimited. This work is copyrighted. The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright restrictions. AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE Air Force Materiel Command United States Air Force Tyndall Air Force Base, FL 32403-5323 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 15-DEC-2008 Journal Article - POSTPRINT 01-APR-2007 -- 30-NOV-2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hybrid Antimicrobial Enzyme and Silver Nanoparticle Coatings for Medical FA4819-07-D-0001 Instruments (POSTPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0909999F 6. AUTHOR(S) 5d. PROJECT NUMBER *Eby, D. Matthew; *Luckarift, Heather R.; ^Johnson, Glenn R. 4918 5e. TASK NUMBER L0 5f. WORK UNIT NUMBER Q140LA62 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER *Universal Technology Corporation 1270 North Fairfield Road Dayton, OH 45432 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) ^Air Force Research Laboratory AFRL/RXQL Materials and Manufacturing Directorate Airbase Technologies Division 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 139 Barnes Drive, Suite 2 Tyndall Air Force Base, FL 32403-5323 AFRL-RX-TY-TP-2008-4630 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution Statement A: Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES Document contains color images. Ref Public Affairs Case # AFRL/RXQ 08-203. Published on http://pubs.acs.org | doi: 10.1021/am9002155. 14. ABSTRACT We report a method for the synthesis of antimicrobial coatings on medical devices that combine the bacteriolytic activity of lysozyme and the biocidal properties of silver nanoparticles. Colloidal suspensions of lysozyme and silver nanoparticles were electrophoretically deposited onto the surface of stainless steel surgical blades and needles. The coatings retained the hydrolytic properties of lysozyme and exhibited antimicrobial activity against a range of bacterial species. In particular, coated blades demonstrated potent bactericidal activity, reducing cell viability by > log 10 within 1.5 h for Klebsiella pneumonia, Bacillus anthracis Sterne and Bacillus subtilis and within 3 h for Staphylococcus aureus. The results confirmed that complex antimicrobial coatings can be easily made using facile silver nanoparticle synthesis and electrodeposition methods. 15. SUBJECT TERMS antimicrobial, lysozyme, silver, nanocomposite, electrochemistry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Glenn R. Johnson PAGES UU 19b. TELEPHONE NUMBER (Include area code) U U U 8 Standard Form 298 (Rev. 8/98) Reset Prescribed by ANSI Std. Z39.18 Hybrid Antimicrobial Enzyme and Silver Nanoparticle Coatings for Medical A R Instruments T I C D. Matthew Eby,*,†,‡ Heather R. Luckarift,†,‡ and Glenn R. Johnson*,‡ L E MicrobiologyandAppliedBiochemistry,MaterialsandManufacturingDirectorate,AirForceResearchLaboratory andUniversalTechnologyCorporation,139BarnesDrive,Suite2,TyndallAFB,Florida32403 ABSTRACT Wereportamethodforthesynthesisofantimicrobialcoatingsonmedicalinstrumentsthatcombinesthebacteriolytic activityoflysozymeandthebiocidalpropertiesofsilvernanoparticles.Colloidalsuspensionsoflysozymeandsilvernanoparticles wereelectrophoreticallydepositedontothesurfaceofstainlesssteelsurgicalbladesandneedles.Electrodepositedfilmsfirmlyadhered tostainlesssteelsurfacesevenafterextensivewashingandretainedthehydrolyticpropertiesoflysozyme.Theantimicrobialefficacy ofcoatingswastestedbyusingbladesandneedlesinaninvitrolyticassaydesignedtomimicthenormalapplicationoftheinstruments. Coatedbladesandneedleswereusedtomakeincisionsandpunctures,respectively,intoagaroseinfusedwithbacterialcells.Cell lysiswasseenatthecontactsites,demonstratingthatantimicrobialactivityistransferredintothemedia,aswellasretainedonthe 55 surfaceofthebladesandneedles.Bladecoatingsalsoexhibitedantimicrobialactivityagainstarangeofbacterialspecies.Inparticular, 1 1, 2009am9002 tcBhoaaactitlecludosmbalpandltehexrsaadcniestmiSmoteincrsrntoerba,itaaenlddcpoBoaattceininlgltusbscasacuntbetbriilecisicdaraneladatcwetdiivthuitsiyni,n3rgehfdafucocirliSentgmapceehtlyhllvooidcaosbcifcloiutryssabiulyvreaerutsnleaaansnotdp3Aalorctigincweletiotsbhyainnctt1her.e5bsihasyfaloynrid.KTlehelbeescriteerlsoluadletpspncoeousnimtfiioornnmi.aeed, y 321/ AB on Juldoi: 10.10 KEYWORDS: antimicrobial•lysozyme•silver•nanoparticle•electrochemistry•coating CH Lorg | INTRODUCTION the antimicrobial effectiveness of silver coatings has been ARacs. Infections originating from implanted devices (e.g., or- showninthelaboratory,therehavebeenmixedresultsin SEbs. thopedicfixationhardware,artificialprosthetics,endo- theclinicalsetting(7).Thepastlimitationsofsilvercoatings E REp://pu vascular stents, and catheters) are a persistent and asprophylactictreatmentsmostlikelystemfromtheinef- RChtt serioushealthissue.Thefirststeptowardsreducingthese fective release of silver ions from the surface and the AIR FO2009 on ionufsecdteiovnicseissuirnfhaicbeisti.nCgubrraecntetrainalticmoliocrnoizbaiatilocnoaotninsgumbceutthaondes- ubnodpyroflduuicdtsiv(e8,a9d)s.orptionandprecipitationofsilverionsin ed by uly 2, ionfvtohlevedeeivthiceermsuordfaificecaotiroanpopfltichaetpiohnysoifocchoeamtinicgasltphraotperertsiiesst shoMwonretoreexcheinbtiltye,nshialvnecredinanntaimnoicpraorbtiiaclleefffoecrmtsohvaesrpbreeevni- dJ wnloaed on ctoelblaedehfefesicotnivaen,dthbeiyofimlmusftoirnmcaotripoonr(a1t)e.Iandoirrdeecrt,foornc-cooantitnagcst onuasnosiplvaertricfolersmpurloavtiiodness.aThsuebhsitgahntsiuarlfaanced-tsou-svtoaliunmedecroatniotaocft oh Dblis biocideandalsoprovidesustainedantimicrobialactivity,so withthebacterialcellthatisnoteasilyquenchedbyother Pu toneutralizeanyinitialcontaminationofthesurfaceandalso salts and proteins (10, 11). Numerous methods for silver inhibit colonization over time from a wide range of op- nanoparticlesynthesisandincorporationintomaterialsare portunistic microorganisms. These issues and the rise of currentlyunderinvestigation(12-20),andsilvernanopar- microbialresistancetocommonlyusedantibioticsdrivea ticle coatings are beginning to see more prevalent use in continuoussearchfornewantibioticformulationsthatare healthcare(1,5,8).Inrecentwork,wediscoveredthatthe amenabletoadhesionandimmobilizationonsurfaces. hydrolytic enzyme, lysozyme, catalyzes the reduction of Onestrategygivenconsiderableattentioninrecentyears silver, which yields a stable colloid of silver nanoparticles istheuseofsilveronmedicaldevicesurfacesandinwound and active lysozyme (21). The use of lysozyme in the dressings (2-4). These coatings are particularly attractive synthesisofsilvernanoparticlesisadvantageousbecauseit becausesilverionsactagainstabroadrangeofbacteriaand combinestwodifferentbiocidalmechanismsintoonema- yetarerelativelynontoxictomammaliancells(5,6).While terial;lysozymeprimarilyinhibitsgrowthoftheGram-type positivestrainsthroughitsmuramidaseactivity(22),while silvernanoparticlesinhibitgrowthofbothGram-typenega- *Corresponding author. Tel.: 850-283-6026. Fax: 850-283-6090. Email: [email protected](D.M.E.),[email protected](G.R.J.). tive and positive strains by inhibiting membrane function ReceivedforreviewMarch30,2009andacceptedJune16,2009 and enzyme activity (23). In a few cases, the synthesis of †UniversalTechnologyCorporation. bioactivecoatingshasbeenachievedbyaddingnoblemetal ‡MicrobiologyandAppliedBiochemistry,MaterialsandManufacturingDirector- nanoparticlestoenzymesolutionsandelectrodepositingthe ate,AirForceResearchLaboratory. DOI:10.1021/am9002155 mixture onto surfaces (24-27). Because of the unique ©2009AmericanChemicalSociety propertiesofsilvernanoparticles,theirutilityastheprecur- www.acsami.org VOL.1•NO.7• 1553–1560•2009 1553 PublishedonWeb07/02/2009 sorforelectrodepositedcoatingsmayproducemoreeffec- into 5 mL of the lysozyme-silver nanoparticle deposition tiveantimicrobialactivitiesthanpreviousmethodsbasedon solution.Aplatinumwirewasalsosubmergedapproximately 1cmintothesolutionandservedasthesecondaryelectrode. E conventional electrodeposition solutions (e.g., silver salt Thedistancebetweeneachelectrodewasapproximately1cm. L solutions).Herein,wereportamethodtoproduceantimi- A power source [1735 direct-current (dc) power supply, BK C crobialcoatingsthroughelectrophoreticdepositionofsilver Precision,Placentia,CA]appliedadcvoltage(3V)for10min. I nanoparticles formed from the lysozyme-mediated reduc- Afterelectrodeposition,bladesandneedleswererinsedexten- T tionofsilverions.Theantimicrobialeffectivenessofcoated sivelywithultrapurewaterandstoredatroomtemperature. R surfaceswastestedagainstavarietyofmicroorganismsto Threeadditionalelectrophoreticcoatingexperimentswere A demonstratetheretentionofantimicrobialpropertieswithin completedtodeterminetheindividualeffectsthatlysozymeand silvernanoparticleshaveondepositionandwhenlysozymeand coatings. silver acetate were combined in the deposition solution but without prior formation of nanoparticles. For the first two EXPERIMENTAL SECTION controlexperiments,lysozymeandsilvernanoparticleswere Reagents and the Synthesis of Silver Nanoparticles. Hen usedinseparateelectrodepositionsolutions.Forelectrophoretic eggwhitelysozyme(∼95%,∼50000unitspermgofprotein) deposition containing only lysozyme, the procedure was fol- and silver(I) acetate (99.99%) were obtained from Sigma- lowedasdescribedabove,exceptasolutioncontaining5mg Aldrich (St. Louis, MO). Unless stated otherwise, all other mL-1 lysozyme in 50% methanol served as the deposition chemicalswereobtainedfromeitherSigma-AldrichorFisher solution.Forelectrophoreticdepositionprimarilycomposedof Scientific(Pittsburgh,PA)andwereofthehighestpurityavail- silver nanoparticles, a dialysis method was used to remove able.Forexperimentsmeasuringtheelectrochemicalproperties soluble lysozyme from the deposition solution that was not oflysozyme,alysozymesolutionmadefromastockpowder tightlyassociatedwithnanoparticles(21).Priortodeposition, wasdialyzedagainsttwochangesofultrapurewater(1:100,v/v) a5mLsolutionoflysozyme-silvernanoparticleswasplaced 155 usinga5000Damolecularweightcut-offdialysismembrane intoa25000Damolecularweightcut-offdialysisbag(Spectra/ AB on July 31, 2009doi: 10.1021/am9002 (tsslwAySoittsoipnistoorhe,izelncTvyudt,eXrmlutra)ran/eaoaPtd-pcvoieue-sartirrllcay2ev2etz0eew4lelrudahsn°ltooalCetyslnourseotoairinepeznosamyndtr3metotr0iihcnve,leeSesm5npors0eelgodu%cslituitlimdurtouitumoneLmansd-els1t(Mbwh2fuo0aaeiftrndlfhmieeqoicmrllugeaaoc(lem1nttItrnsdhLom.da-psun1TaMh)soloottw)lrsri(eweega1trsenia:ec,1nsdHm,dettveorhha/apuevedtosn)nee.-- vPwitt(n1hi/ocav0ilrart)edemcsdsreceegbfloorlpuumvnrotleto7sLrdsis2o-tteiil1ahlo)leesnatxcsonttopsherdonereelrt)smuaiiametiliovnnloeeevedncnredtdtratt,hoishcafmdaeerlyteetmaazspcltehlooaedlnjasyo(imt1atramiigomtioanyinuxieMonnedsfst)dostlmiylnsfuosoooto5fuilszou0rltyyntl%cyimsohoasnmeaznis.lnyvdeTogmethefhwreislasnye.norsarFefoeonosl1zouru(yp1Llsmtta:eheo1rddeef,- CH Lorg | aodfd5edmtgotmheL-ly1solyzsyomzyemsoeluatniodn0to.5prmodMucseilavefirnaalcceotantceenintra5t0io%n immediatelyintheelectrophoreticcellintheabsenceoflight, Rs. inordertopreventsilverreductionandsubsequentnanoparticle E RESEAp://pubs.ac mpTinrheotethxhreiemasndauaotlrlte.kilnyTag2htl4ey4sh°osCotzoylutmaotliloeion-nwhsiwtibhlviaetespfrorctrehomcelilnoaptiiditeoaaxntliposoounfssseupidlnevtneitlsroiunosalnieng.whotpasafrosttrioclraeepsd-. fsoprePmchtayrtosiisoccnao.lpaynwdaSspceocmtrpolsecteodpiucsiCnhgaaraCcateryri3zaEtisopne.ctUroVp-hvoitsoibmle- ORCn htt ElectrochemicalMeasurements.Electrochemicalmeasure- eAtteorm(VicafroiarcneImnci.c,roPsacloopAylt(oA,FCMA))imanadge0s.5wemreLoqbutaaritnzedcuuvseitntgesa. AIR F2009 o mceellnattsrwoeormepteemrfopremraetdurienuasoinnge-aco7m57paVrAtmCeonmt,pthurtreaec-eeleScytsrtoedme NmaicnroossccooppeeVa,nedquaipPpiceodFworicthe astaMguelt(iVmeoedceoVInssctraunmnienngtsprIonbc.e, ed by uly 2, pinogt-ednistikosetlaetct(rMoedtero(2h.m0mAGm,Hdiesrkisdaiua,mSewteitrz)ewrlaasndem).Aplosiylveedrarsottahte- Wforoo1d0bmuriyn,bNeYf)o.rBelaimdeasgwinegreinfirtsatpdpriinegdmunoddeer,vuascinuugmanate5tc0h°eCd dJ workingelectrodeinconjunctionwithaplatinumrodauxiliary wnloaed on ealnedctraodAeg(/1A5gCmlmel×ec2tromdme diniamsaetuterra,t1e0dmKmClsausbmtheergreedfeinrecneclle) pVheeocsophInosrtoruusm(enn)-tdsoInpce.d).sTihlieconnatcuarnaltiflreevqeurepnrcoyboeft(htyepceanRtTilEeSvPer, DoPublish esulercetmroednet..BTehfeorweoerakcihngmeelaescutrroemdeenwta,sthsetawtioornkainrygadnudrianugxmiliaeray- w<1a0sinnmth.eTr2a0n0smkHiszsiroanngeel,ecatnrdonthmeircardoisucsoopfyth(TeEpMro)bweatsipcowmas- pletedusinga100CXIIelectronmicroscopefromJEOLLtd. electrodeswerecleanedbypolishingwith8000gritsandpaper (Tokyo,Japan).AttenuatedtotalreflectanceFouriertransform andthenrinsedwithultrapurewater.Noadditionalelectrolyte was added to the potentiostat cell. Current-potential curves infrared (ATR FT-IR) spectroscopy was performed using a NicoletFT-IR6700spectrophotometerequippedwithaSmart (cyclicvoltammograms)weregeneratedbylinearvoltagesweeps between-1and1Vat0.1Vs-1(vsAg/AgCl). Miraclesingle-bouncediamondATRaccessory(ThermoFisher Electrophoretic Deposition of Lysozyme-Silver Nano- Scientific, Waltham, MA). The data collection was completed particles. Surfaces to accept electrophoretic deposition were using OMNIC 2.1 software. Before measurement, coated and stainlesssteelsurgicalblades(#10,ExelintInternationalCo.,Los uncoatedbladeswerewashedwithmethanolanddriedat50 Angeles,CA)andsyringeneedles(single-use,22Gauge,1.5in. °Cfor30min.ForATRFT-IRofthelysozymestockpowder, length,BectonDickinsonCo.,FranklinLakes,NJ).Beforedepo- 10µLofalysozymepowderslurryinmethanolwasdriedon sition,metalsurfaceswerecleanedandetched,usingaproce- theinstrumentcrystalbeforemeasurement. dure similar to that described previously (28). Blades and Measurement of the Lysozyme Activity. Qualitative mea- needles were cleaned by ultrasonication for 15 min each in surementofthelysozymeactivityincoatingswasadaptedfrom dichloromethane,acetone,andwater.Cleansurfaceswerethen theMicrococcuslysodeikticuscelllysisassayinsolidmedia,first etchedfor1mininasolutioncontaining0.25%hydrochloric describedbyFleming(29).Bladesandneedleswerefirstused acidand2.5%nitricacid.Afteretching,metalsurfacepassiva- tocutandpuncture,respectively,solidmediaplatescontaining tionwascompletedin40%nitricacidfor40min.Bladesand a suspension of 0.5 mg mL-1 M. lysodeikticus cells (Sigma- needles were then extensively washed with ultrapure water, Aldrich)ina50mMpotassiumphosphatebuffer(pH8)and1% dried,andstoreduntiluse. agarosebeforebeingplacedontopoftheplatesurface.Plates A two-electrode electrophoretic cell was constructed that wereincubatedat37°Cfor16handperiodicallyinspectedfor containedeitherabladeoraneedleastheworkingelectrode. celllysis,whichresultedinaclearingofthesolidagaratthe Approximately1cmofthebladeorneedletipwassubmerged bladeandneedlecontactpoints. 1554 VOL.1•NO.7• 1553–1560•2009 Ebyetal. www.acsami.org AntimicrobialActivityAssays.Thefollowingstrainsusedin theantimicrobialassayswereobtainedfromtheAmericanType CultureCollection(ATCC,Manassas,VA):Escherichiacoli(ATCC A 25922),Staphylococcusaureus(ATCC25923),Klebsiellapneu- moniae(ATCC4352),Pseudomonasfluorescens(ATCC13525), R Candidaalbicans(ATCC10231),andStaphylococcusepidermidis T (ATCC 14990). Bacillus anthracis Sterne strain 34F2 was ob- I tainedfromColoradoSerumCo.,Denver,CO(30).Acinetobacter C baylyi strain ADP1 (31) was a gift from Dr. Ellen Neidle L (University of Georgia, Athens, GA). Luria-Bertani and Yeast Mold (Difco Laboratories, Sparks, MD) were used to grow E bacterialstrainsandC.albicans,respectively,inliquidandon solidmediaplates(platesalsocontained1.5%agarose). Atthestartoftheantimicrobialassay,coatedbladeswere incubatedingrowthmediacontainingapproximately105cells in the exponential growth phase (1 mL). Viable cells were quantitatedafter0,1.5,and3hofincubationbyremoving100 µL from the cultures, spreading all or a serial dilution of the aliquotontosolidmedia,andenumeratingcolony-formingunits (cfu). After cultures were incubated for 24 h, blades were removedfromculturesandplacedintofresh,sterilemedia(1 mL).Inaddition,theremaininggrowthmediafromtheblade culturewasdilutedintofresh,sterilemedia(1:10dilution).The 5 two subcultures were incubated overnight and then visually 5 1, 2009am90021 irsneesppplaiecrcaattteeedsc.ufoUltrungrceroosawtteotdhe,.nResetucsrhueelttdshaabtrleacedtlhelssegawrveeewrreaignaeltshoofeaiantbclseueabnsactteethdorfeinae FIGURE1.Lysozyme-catalyzedsilvernanoparticles(A).TEMimage y 321/ coatingmaterial,andtheetchedstainlesssteeldidnotadversely of lysozyme-silver nanoparticles (B). UV-visible spectrum of CH LAB on Julorg | doi: 10.10 aRffEeSScytUntLhteThgSersoAiwsNthDa.nDdISCEUleScStIrOocNhemical Behavior of vnlsyoiosdrotbuzaapynlmrcsoeepd-meucscaiileexvisemcr(u3unr3mar)en.anoCtpto4anp2rts0eiicadnlkeemssri(snuChgn)o.dtwheianrtgosaiulvrpelcarsoamncedontiatitroeensaoslno(andneacsdehoaeebds- ARacs. Lysozyme-SilverNanoparticles.Inourrecentwork, gray line in Figure 2B), the shift in the peak potential of Es. E RESp://pub wfroemfouthneditnhcautbsatatibolneocoflmloiicdrsoogfrasmilvserpenranmoipllailritteicrleqsufaonrtmitieeds lwysitohzylymsoezayfmteersailnvderfaodrmditsioannseuwggeesletscttrhoacthseilmveircaalslysoacciatitvees RChtt oflysozymeandsilveracetatein100%methanol(21).The species. As seen with lysozyme alone, additional voltage AIR FO2009 on gtorolwigthhtoafnsidlveornnlyanroepqaurirtiecdleslywsoaszydmepee,nwdehnicthupaocnteedxpaossuthree ciryreclveesrsailbsloysdheopwoseidtetdhaantdthfeorlmyseodzyamcoea-tisnilgveornctohmeeplleecxtrwodaes ed by uly 2, rdeedpuocstiatinotna,ntdhceolploriedvailosutsabfiolirzminuglaagtieonnt.wFoarseolepcttirmopizheodrebtiyc saunrdfascielv.eArsascielvteartenasonlouptiaornti,clceyscdlicevveololtpaemdminettrhyewlyassozcyomme- dJ wnloaed on cinocmrepalseitninggththeelynsaonzoypmareticcolenscyenntthraetsiiosnretaoc5tiomnginmaLn-a1qauned- p2,leatnedd2a4tihn)t.eSrammitptelenstwtiemreetiankteenrvfarlosmduthriensgyinntchuebsaistiroenac(0ti.o3n, oh Dblis oussolutioncontaining50%methanol(Figure1).Thefinal forvoltammericanalysisandtheelectrodeswerepolished u P solutioncontainedasufficientconcentrationofionicspecies betweeneachuse.Ineachcase,therewasnochangeinthe to facilitate electrophoretic deposition without additional potentialandintensityofthecurrentpeaks,whichindicated electrolytes,whilealsomaintainingastablesuspensionof that the electrochemical properties of lysozyme were not nanoparticles. When stored in the dark at ambient condi- alteredduringandafternanoparticlesynthesis(resultsnot tions,thelysozyme-silvernanoparticlescanbemaintained shown). When silver nanoparticles were present in the asacolloidforseveralmonths. potentiostatcell,aresilientredfilmformedontheelectrode The electrochemical properties of lysozyme were mea- surface during repeated voltage cycling, which required suredusingcyclicvoltammetrywithasilverdiskelectrode. removal by physical abrasion using fine-grit sandpaper. Lysozyme was oxidized at 745 mV and underwent two Takentogether,theseobservationsshowedthatlysozyme- reductions at -640 and -800 mV (Figure 2A). Repeated silvernanoparticlesformacomplexthatwaselectrophoreti- potentiostat cycling resulted in successively smaller peak cally deposited onto the electrode surface. The results led currents,whichwereindicativeofirreversibledepositionof us to investigate whether the antimicrobial properties of protein on the electrode surface (32). When silver acetate lysozymeandsilverwereretainedwithinthecoatings. was added to lysozyme, voltammograms completed im- Electrophoretic Deposition of Lysozyme- mediatelyaftermixingshowashiftinthereductionpeaks SilverNanoparticlesontoStainlessSteel.Stainless oflysozymetowardalowercathodicpotential(Figure2B). steelsurgicalbladesandsyringeneedleswereinvestigated Similarvoltammericbehaviorhasbeenpreviouslyreported asmodelsurfacesforthecoating.Anelectrodepositioncell whenprotein-metalcomplexesformintheelectrochemical was constructed using a blade or needle as the working cellandchangetheelectrochemicalpropertiesoftheindi- electrode,andthetipwassubmergedinthelysozyme-silver www.acsami.org VOL.1•NO.7• 1553–1560•2009 1555 the protein secondary and tertiary structures will alter hydrogen bonding between the CO and NH groups in the E peptidebackbone,whichresultsinaberrationsoftheamine L I, II, and III bands between 1200 and 1700 cm-1 (34). No C such significant shifts were observed in this IR region I betweenlysozyme-coatedbladesandthestockpowder.In T addition, coated blade surfaces were analyzed at the na- R nometer scale using AFM (Figure 3). A layer of spherical A nanoparticles on the surface of coated blades was clearly seeninimages.TheAFMimagesofetched,uncoatedblades didnothavethesefeatures(resultsnotshown).Thenano- particlesvisualizedinthecoatingweresimilarinshapeand diameter to the silver nanoparticles observed in the TEM imagesofthedepositionsolution(Figure1).Thenanopar- ticleswerealsoreadilyseeninphaseimages(lighterareas, Figure3E)andweresurroundedbyamaterialofcontrasting phase(darkerareas).Undercloserinspection,edgeenhance- ment illustrated in the 200 nm2 amplitude error image (Figure 3D) showed a veinlike texture between the nano- 5 particles. In the corresponding phase image (Figure 3F), 5 1 y 31, 200921/am9002 tntohaednsioespcfeaerrantitcublreeestws.Teahepenpceaoannroetrrdagsaintniinccotmhneatrtpaeshrtiaainsl,egciopmnhasagisseetsinccgoaolnofrbpetrooutsteheinde AB on Juldoi: 10.10 otviercrleoystdh(i3effr5e,hr3eyn6dt)r.ionLcytaesrrobazcoytnimocneosamwnpditohcurtynhsdetsaA,lFliaMnnedtsipiml,vreeetrsawullliotciunnlgdaiinnmocppleaaarrrt- CH Lorg | differencesinthephaseimages.Consideringthattheelec- Rs. trodepositionbuffercontainedprimarilysilverandlysozyme, Aac Es. the phase-contrasting materials are most likely distinct Sb FIGURE 2. Cyclic voltammograms of pure lysozyme (A) and the RCE REhttp://pu lminysietotihzaylamnvooell-t.asImnilvmeeaorcgnhraacmnaosipesa,srfihtiovcewlenveoillnetacbmtlraomcpkoh,goarrnaemdsisssuswcoceleursetsiiorveneco(vBord)lteiandm.5mT0h%oe- rthegeisopnhseorifctahlepsreottrwusoiosnusbsotnanthceesb.laTdheesruergfiaocnesasruerproroupnodsinedg On to be areas of lysozyme packed between the silver nano- R F09 o gpruarmeslyasroezyinmiencfrreoamsipnagrlytAligihstsehrogwrany.aTshaediansihtieadlvbollatcakmlminoegirnampaortf particles. Similar grafting features have been observed in ed by AIuly 2, 20 Bsh.oTwhenvaosltaadmamshoegdragmrayofli0n.e5.mMsilveracetatein50%methanolis AchFeMmpichaalsdeecpoonsittriaosnt iomfasgilevserofnasnurofpaacretsicalefstearntdheaecrleyclatrtoe-, wnloaded on J napapnloiepda,rtaicrleedsfiollmutifoonr.mAefdteornathceosnusrtfaanctedocfthpeotbelnatdiaelswanads wsithioernefaorscuesdtatihneedorcgaatnhoicdmicaotveerriaplooteffntthiaelsdiulvreinrgnaelneocptraordtiecpleos- Dosh andontotheelectrodesurface(36). bli needles.Muchofthiscoatingwasremovedafterextensive Pu washingwithdeionizedwater,butathincoatingremained Evaluation of the Lysozyme Activity within Surface Coatings. The hydrolytic activity of lysozyme onthemetalsurfaces(Figure3,left).Theevenlydispersed andstronglyadherentcoatingwasnotobservedwhenany retained within electrodeposited coatings on blades and of the control solutions were used in the electrophoretic needleswasinvestigatedthroughaninvitrocelllysisassay deposition assay. A uniform coating was not seen when designed to mimic the normal use of the instruments. mostofthelysozymewasdialyzedfromasilvernanoparticle Coatedbladesandneedleswereusedtomakeincisionsand solutionpriortoelectrophoresisorwithsolutionsoffreshly punctures,respectively,intoagaroseinfusedwithM.lyso- mixedlysozymeandsilveracetate,whichdidnotcontain deikticuscells.Withinminutes,zonesofclearingwereseen anynanoparticles.Atranslucentcoatingwasobservedwhen atthecontactsite,whichwasindicativeofcelllysisdueto only lysozyme was present in solutions, but the film was lysozyme hydrolytic activity (Figure 5). The spread of cell easilywashedoffthebladesurface. lysis over time within the agar demonstrated that the The coatings from lysozyme-silver nanoparticle elec- antimicrobialactivitynotonlywasretainedonthesurface trodepositionsolutionsretainedlysozyme,asshownbyATR ofthebladesandneedlesbutalsowastransferredintothe FT-IR (Figure 4). The spectrum of the coated blades was media.Bladessubjectedtoelectrodepositionusingasolution identical to the spectrum of blades that were coated with containingonlylysozymedemonstratedaminimalzoneof lysozymeonly,aswellastothespectrumofthelysozyme clearingafterincubationfor16h,incomparisontoblades stock.Theresultsconfirmedthatnomajorperturbationsin coated with lysozyme-silver nanoparticles. Cell lysis was thelysozymestructureoccurredasaresultofsilvernano- notobservedwithbladesandneedlessubjectedtoelectro- particlesynthesisorelectrophoreticdeposition.Changesin phoreticdepositionusingsolutionscontainingsolublesilver 1556 VOL.1•NO.7• 1553–1560•2009 Ebyetal. www.acsami.org A R T I C L E 5 5 1 1, 2009am9002 y 321/ FIGURE3.Left:Photographicimageofasurgicalsteelbladecoatedwithlysozyme-silvernanoparticles.Right:TypicalAFMimagesofacoated AB on Juldoi: 10.10 brpelhasapdseeec.itTmivheaelgyse.usAr(fEFaMcaenodafrFeth)aeairm2e0as0gheondwmwn2afirsmo1amgµelmewf2ta(tAso,crCoigm,haptn.ldeHteEei)dgahwntidstch2ai0nle0tbhnaemrsb2oi(nxBe,admD,aparleintaduodFfe).tihmTehaebgleaasmdaeprlesiut3ur0fda0ecae(nAsdha5on0wdnnBm)i,nafotmhrep1l1iµtumµdm2ea2enirmdroa2rg0e(0C.namnd2iDm),agaensd, CH Lorg | Rs. Aac Es. Sb E REp://pu RChtt On R F09 o AI20 ed by uly 2, dJ wnloaed on oh Ds bli u P FIGURE4.ATRFT-IRofbladesurfacesafterelectrodepositionusingeitherthelysozyme-silvernanoparticlesolution(topspectrum)ora solutioncontainingonlylysozyme(bottomspectrum).Inset:Spectrumofthelyophilizedlysozymestock. acetate (no nanoparticles) or only silver nanoparticles (re- the media, which transferred the antimicrobial properties sultsnotshown).Consideringthatsilverdidnotinitiatecell oflysozymethroughoutthecutandpuncturesites. lysis under these conditions, the higher activity of the Antimicrobial Range of Surgical Blade Coat- lysozyme-silver nanoparticle coatings versus lysozyme ings. The M. lysodeikticus lysis assay demonstrated the alone is attributed to either a more efficient deposition of antimicrobialactivityofthecoatings.However,thecon- lysozymeontothemetalsurfacewhensilvernanoparticles tributionofsilvernanoparticlestotheantimicrobialactiv- arepresentorthecapabilityoftheenzymetodiffusemore ityofthecoatingscannotbedeterminedusingthisassay. rapidlyfromlysozyme-silvernanoparticlecoatings.Either Lysozyme is primarily bacterolytic toward Gram-type way,theuniquenatureofthelysozyme-silvernanoparticle positive strains, whereas silver nanoparticles have been coatingsallowedtheefficientreleaseofactiveenzymeinto showntohaveantimicrobialactivitytowardmanydiffer- www.acsami.org VOL.1•NO.7• 1553–1560•2009 1557 E L C I T R A FIGURE5.Celllysisassaymeasuringtheantimicrobialactivityofcoatedbladesandneedles.Coatedblades(leftandmiddle)andneedles (right)wereusedtomakeincisionsandpunctures,respectively,andthenplacedontopofagaroseinfusedwithM.lysodeikticuscells.The topbladecontainsacoatingoflysozyme-silvernanoparticles,whilethelowerbladehasacoatingoflysozymeonly.Zonesofcelllysisare seenattheincisionandpuncturesites,aswellassurroundingthebladesandneedlesafterincubationat37°Cfor30minand16h. Table1. AntimicrobialActivityofCoatedBladesagainstBacterialandYeastStrains logreductiona strain 1.5h 3h inhibitiontypeb 5 5 1, 2009am90021 ABBaaciccniillelluutossbsaauncbtthetirrlaibscaiyslSyiterne 234...457908(((110...425850 234...997838(((100...765520 bbbaaacccttteeerrriiiccciiidddaaalll y 321/ Candidaalbicans growth growth none CH LAB on Julorg | doi: 10.10 EKPStsslaecebphushediryoeilmlcolhacoiopnacnaccseuouslflimuaoournreeisaucesens 1302....52606951((((1100....36268742 g303r...924o468wt(((h100...135403 nbnbaaooccnntteeeerriicciiddaall ARacs. Staphylococcusepidermidis 0.47(0.55 0.43(0.24 bacteriostatic Es. RCE REShttp://pub preodainulotcgtaiorftneedrvuacilntuiceousnbaawntaidosntchaewlcvituihalabtaielidtcyoaaostfe[ltdohgeboslaufdbvecia]u.bltlTuehrceeeslslmsta(ancdfdeuarfmrdoLmd-e1)tvhbiaeetfiioonnriteiaieslx2fp4rooshmuirnetchturobeeaaticsooenaptawerdiathtbelcaoadsaest]eady-sb.[llaobdgTehosef.tSihneeehivtbhiaietbiotleenxctteyfllopsre(dcwfeutaasmilsbL.a-s1)edatoantimloge On R F09 o entmicrobialspecies.Todeterminetherangeofantimi- fresh media (1:10) and incubated for 24 h to determine if AI20 crobialactivitydemonstratedbybothcomponentsofthe anyremainingviablecellscouldproliferateintheabsence ed by uly 2, cstoraatiinngw, eerieghutsdeidffeirnentthebaacntetirmiailcrsotrbaiianlsaasnsadyos.neCoyaetaesdt oStfecrnoea,teadndblBa.dseusb.tiSli.saduidrenuso,tvKi.sipbnlyeugmroowniaafet,erBt.haenstuhbraccuils- dJ wnloaed on bvilaabdleescweellrsetihnacturbeamteadinweidthoavcetrivteimlye-gwroewreinqgucaunlttuitraetse,danbdy tcuoraet.inTghsewtweroesruebssieliqenuetnatnsdetrsetoafincueldtuarnestimcoincrfiorbmiaeldatchtaivti(tiy) oh Ds bli spread-plating culture aliquots on solid media and enu- afteranextendedexposuretocells,(ii)coatedbladeswere u P meratingthecfu(Table1).Uncoated,etchedbladeswere abletoinhibitsubsequentgrowthofanyviablecellsthatmay alsoincubatedinseparateculturesand,ineachcase,cells have attached to coated and uncoated areas of the blade grewtohighcelldensity,ensuringthattheetchedstainless during the first incubation, and (iii) coated blades demon- steeldidnotadverselyaffectthegrowth(resultsnotshown). strated a complete kill in the initial culture after 24 h. A. Demonstratingeffectivebactericidalactivity,coatedblades baylyiwasoneexception,whereonesubculturegrewtohigh reduced the cell viability by >3 log within 1.5 h for K. cell density. We conclude that the effect on A. baylyi was pneumoniae,B.anthracisSterne,andB.subtilisandwithin bactericidal, but the potency of the coatings under our 3hforS.aureus.Alesserbiocidaleffectwasobservedwhen conditions was very close to the minimum bactericidal A.baylyicellswereexposedtocoatedblades(∼3login3h). concentration,andgrowthintheonesubculturewasdueto Growth inhibition lasted beyond 3 h because no visible standarddeviationorexperimentalerror. growth was observed in cultures when incubated in the Aninitial,bactericidaleffectwasmeasuredforE.coli,but presenceofcoatedbladesfor24h.Toassessifcoatedblades the strain was able to recover and turbid cultures were retainedantimicrobialactivityafterexposuretoculturesand observedafter24hincubation.Previousworkdemonstrated also inhibited the transfer of any viable cells on blade that silver nanoparticles were an effective antimicrobial surfaces,bladeswereremovedfromtheculture,addedto agenttowardthisparticularstrainofE.coli(16,21).Wedid freshmedia,andincubatedforanadditional24h.Withthe observehigherbactericidalactivitywhentheinitialnumber five sensitive strains mentioned above, there was no ob- ofE.colicellswasreducedto104incultures(approximately servedgrowthinthesubsequentcultures.Furthermore,the 3logreductioninviablecellswithin1.5h;datanotshown). culturemediafromthefirst24hincubationwasdilutedinto Weconcludedthattheconcentrationofsilverionsreleased 1558 VOL.1•NO.7• 1553–1560•2009 Ebyetal. www.acsami.org intotheculturebycoatedbladeswasbelowtheminimum homogeneous coatings on stainless steel surfaces. The inhibitoryconcentrationforE.coliundertheconditionsof natureofthecoatingwassuchthatthemixtureoflysozyme theantimicrobialassay.SimilartoE.coli,aninitial,bacte- and silver nanoparticles facilitated strong adsorption to A ricidaleffectwasalsomeasuredforP.fluorescens,butthe stainless steel surfaces, yet the active components also R survivingpopulationrecoveredandpropagatedafter24h. diffusedfromthecoatingfollowingcontactwithmedia.The T WhenP.fluorescensculturesweretransferredandgrownon observations indicate that the physical properties of the I solidmediatoenumerateviablecells,coloniesoriginating coatingareinherenttolysozyme,wheretheproteinactsas C fromcoatedbladecultureswerenearlyidenticalwithcolo- awater-solubleadhesiveandenablesrobustadsorptionof L niesgrownfromuncoatedbladeculturesbutdidnotproduce the silver nanoparticles to the blade surface but will also E thecharacteristicyellow-greenpyoverdinepigmentsthatare permitdiffusionofsilverionsorreleaseofthenanoparticles normallyobservedwithrobustcells(37).Thecauseofthis themselves once incubated in an aqueous environment. phenotype is not clear although it suggested that residual Hence, the effect could provide a persistent self-cleaning silverdisruptedthepyoverdinesynthesisand/orexportfrom surfaceforthemedicalinstrumentsandallowtransferofthe thecell. antimicrobialactivitytothecontactsurfaceduringuse(e.g., TheeffectofcoatedbladesonS.epidermidiswasconsid- diffusion into the surrounding flesh following an incision, ered to be bacteriostatic. On average, culture viability did injection,orimplant).Withrespecttoimplanteddevices,the notchangesignificantlyinviabilityduringthefirst3hafter integration of lysozyme within the composite may also exposure to coated blades and did not grow to visible increasethebiocompatibilityofthecoatingandnothamper turbidity after 24 h. Upon transfer of the blades in fresh tissuereconstruction,comparedtoothersilvercoatingsthat 5 media, cultures grew to a slight turbidity, suggesting that arecomposedsolelyofinorganicmaterial(39).Furthermore, 5 AB on July 31, 2009doi: 10.1021/am90021 bls2meouxl4saabetdlhcrleytsueoi.lcntdmTuohrataeheetbdeionsaifugacnsbbttteohsssreeetfiinqorilrelsucstieepnahnothomittcifebceneciudtocfelfityaaedu.tcraeSteWnd.sodehnbcpielonaiSndncd.eufieetrbrhpsmma,eidtitdeeeihniddrsemifttgoichiardreaolilatslwcsn.tuhtUgahletrdnuebdcdrwuoieettaironwthtinonhaaardegs-l ta(inon4hlporg0etet,iframeo4adfr1pfiyzea)i,adcadittcnciiiocvvoceenerapertasoaitnegefsagdirnniamnfagnosnigerttoetsuaphposlaolefordsattiteinpprcnaprltetiehlniisacesselayfnfttnooeitotoreshntddteersaahds.ninWesisrdnieahtmnitieolhdemneistddthpioseceltopamucyoldosaisyannir,ttdeuiifonuafuanggsrctetwrwthniueaeitrlsssr-l CH Lorg | ctioonndaitniodngsroowftthheoafsSs.aeypsi,decromatieddisbbluatddesidinnhoitbcitoemdprleepterolydukicl-l improveitspotency. Rs. EAs.ac cells.Onceremovedfromexposuretocoatedblades,cells Acknowledgment.WethankKarenKellyattheUniver- E RESp://pub recTohveerreedwaansdngoraepwp.arenteffectagainsttherepresentative sRietyseoafrcFhl,oErildeactrIonnteMrdiicsrcoipsclionpayryCoCreenLtearb,foGraiBnisovtiellceh,nFoLl,ofgoyr RChtt fungal strain C. albicans. When cultures of this yeast were generating TEM images, Robert K. Nichols for helpful dis- On AIR F2009 o ecuxlptuorseesdctoontcaoiantiendgubnlacdoeast,edthbelyadgerse.wInaotutrhperseavmioeusrsattuedays, ceursfsoiornassosnisetlaenctcreopinhoAreFtMicdteepcohsnitiiqoune,as.ndTKhiesnnweothrkStwraawshseucpk-- ed by uly 2, tshioenesffaegcatiivnesnteCs.saolfbliycsaonzsymincer-esaislveedrwnahneonplayrstoiczleymsuespweans- pMoarnteudfatchturoriungghDfiurnecdtionrgatfero(AmFRthLe/RAXi)raFnodrcteheMJoaitnetriSaclsieanncde dJ wnloaed on rweemreovceodnsfrisotmentthweistholuotuiornp(r2e1v)i.ouTshefinredsiunlgtss ibnecthaiussestutdhye TPerocjhencotlCoogydeOAfAfi0ce6CfBoTr0C0h8e(mIlyicaalElaanshdviBlii,oJleongniciafelrDBeefceknesre, Dosh andStephenLee,ProgramManagers). bli coatings were created from nanoparticle suspensions that u P containedaconsiderablyhigherconcentrationoflysozyme REFERENCESANDNOTES and,asaresult,werelesseffectiveagainstC.albicanscells. (1) Hetrick,E.M.;Schoenfisch,M.H.Chem.Soc.Rev.2006,35,780– 789. CONCLUSIONS (2) Babu,R.;Zhang,J.;Beckman,E.J.;Virji,M.;Pasculle,W.A.;Wells, A.Biomaterials2006,27,4304–4314. Ourstudiesdemonstratedthatcompositeantimicrobial (3) Hardes,J.;Ahrens,H.;Gebert,C.;Streitbuerger,A.;Buerger,H.; coatings can be generated using methods for lysozyme- Erren,M.;Gunsel,A.;Wedemeyer,C.;Saxler,G.;Winkelmann, mediatedsilvernanoparticlesynthesisandelectrophoretic W.;Gosheger,G.Biomaterials2007,28,2869–2875. (4) Ong,S.-Y.;Wu,J.;Moochhala,S.M.;Tan,M.-H.;Lu,J.Biomaterials deposition. The coating employs two different biocidal 2008,29,4323–4332. mechanisms:theantimicrobialactivityofsilverionsandthe (5) Dowsett,C.Nurs.Stand.2004,19,56–60. muramidase activity of lysozyme. Coatings that integrate (6) Strohal,R.;Schelling,M.;Takacs,M.;Jurecka,W.;Gruber,U.; different biocidal mechanisms are of particular interest Offner,F.J.Hosp.Infect.2005,60,226–230. (7) Silver,S.FEMSMicrobiol.Rev.2003,27,341–353. becausetheycanminimizetheselectionandproliferation (8) Lansdown,A.B.G.Curr.Prob.Derm.2006,33,17–34. ofresistantstrains.Silvernanoparticleshavealreadybeen (9) Schierholz,J.M.;Lucas,L.J.;Rump,A.;Pulverer,G.J.Hosp.Infect. shown to be effective in suppression of a wide range of 1998,40,257–262. (10) Baker,C.;Pradhan,A.;Pakstis,L.;Pochan,D.J.;Shah,S.I.J. pathogens,especiallyagainststrainsresistanttomainstream Nanosci.Nanotechnol.2005,5,244–249. antibiotics(6,38).Whilethecontributionoflysozymehas (11) Pal,S.;Tak,Y.K.;Song,J.M.Appl.Environ.Microbiol.2007,73, been shown to minimally contribute to the antimicrobial 1712–1720. (12) Kim,Y.H.;Lee,D.K.;Cha,H.G.;Kim,C.W.;Kang,Y.S.J.Phys. activityofthecomposite(21),theenzymewasessentialto Chem.C2007,111,3629–3635. electrophoreticdepositionandpromotedtheformationof (13) Kong,H.;Jang,J.Langmuir2008,24,2051–2056. www.acsami.org VOL.1•NO.7• 1553–1560•2009 1559 (14) Lee,D.;Cohen,R.E.;Rubner,M.F.Langmuir2005,21,9651– (28) Spoerke,E.D.;Stupp,S.I.Biomaterials2005,26,5120–5129. 9659. (29) Fleming,A.Proc.R.Soc.London,Ser.B1922,93,306–317. (15) Li,Y.;Leung,P.;Yao,L.;Song,Q.W.;Newton,E.J.Hosp.Infect. (30) Ireland,J.A.;Hanna,P.C.Infect.Immun.2002,70,5870–5872. E 2006,62,58–63. (31) Juni,E.;Janik,A.J.Bacteriol.1969,98,281–288. L (16) Marini,M.;Niederhausern,S.D.;Iseppi,R.;Bondi,M.;Sabia,C.; (32) Barton,A.C.;Collyer,S.D.;Davis,F.;Gornall,D.D.;Law,K.A.; Toselli,M.;Pilati,F.Biomacromolecules2007,8,1246–1254. Lawrence,E.C.;Mills,D.W.;Myler,S.;Pritchard,J.A.;Thomp- C (17) Sambhy,V.;MacBride,M.M.;Peterson,B.R.;Sen,A.J.Am.Chem. son,M.;Higson,S.P.Biosens.Bioelectron.2004,20,328–337. I Soc.2006,128,9798–808. (33) PiresdeCastro,C.S.;RodriguesSouzaDe,J.;BlochJunior,C. T (18) Vigneshwaran, N.; Kathe, A. A.; Varadarajan, P. V.; Nachane, J.Inorg.Biochem.2003,94,365–371. R R.P.;Balasubramanya,R.H.Langmuir2007,23,7113–7117. (34) Socrates,G.Infraredandramanchracteristicgroupfrequencies.Tables (19) Wang,Q.;Yu,H.;Zhong,L.;Liu,J.;Sun,J.;Shen,J.Chem.Mater. andcharts,3rded.;JohnWileyandSons,Ltd.:Chichester,U.K.,2001. A 2006,18,1988–1994. (35) Lin,S.;Lee,C.K.;Lee,S.Y.;Kao,C.L.;Lin,C.W.;Wang,A.B.; (20) Zhang,Y.;Peng,H.;Huang,W.;Zhou,Y.;Zhang,X.;Yan,D.J. Hsu,S.M.;Huang,L.S.Cell.Microbiol.2005,7,1763–1770. Phys.Chem.C2008,112,2330–2336. (36) Voccia,S.;Ignatova,M.;Jerome,R.;Jerome,C.Langmuir2006, (21) Eby,D.M.;Schaeublin,N.M.;Farrington,K.E.;Hussain,S.M.; 22,8607–8613. Johnson,G.R.ACSNano2009,3,984–994. (37) Meyer,J.-M.Arch.Microbiol.2000,174,135–142. (22) Pellegrini,A.;Thomas,U.;vonFellenberg,R.;Wild,P.J.Appl. (38) Atiyeh,B.S.;Costagliola,M.;Hayek,S.N.;Dibo,S.A.Burns2007, Bacteriol.1992,72,180–187. 33,139–148. (23) Pana´eˇek, A.; Kv´ıtek, L.; Prucek, R.; Kola´rˇ, M.; Vecˇerˇova´, R.; (39) Meyers,S.R.;Khoo,X.;Huang,X.;Walsh,E.B.;Grinstaff,M.W.; Pizu´rova´,N.;Sharma,V.K.;Neveˇcˇna,T.;Zborˇil,R.J.Phys.Chem. Kenan,D.J.Biomaterials2009,30,277–286. B2006,110,16248–16253. (40) Silver,S.;Phung,L.T.;Silver,G.J.Ind.Microbiol.Biotechnol.2006, (24) Lim,S.H.;Wei,J.;Lin,J.;Li,Q.;Kuayou,J.Biosens.Bioelectron. 33,627–634. 2005,20,2341–2346. (41) U.S.FoodandDrugAdministration,CenterforFoodSafetyand (25) Luo,X.L.;Xu,J.J.;Du,Y.;Chen,H.Y.Anal.Biochem.2004,334, AppliedNutrition,OfficeofPremarketApproval.AgencyResponse 284–289. LetterGenerallyRegardedasSafe(GRAS)NoticeNo.GRN000064; (26) Wu,L.Q.;Lee,K.;Wang,X.;English,D.S.;Losert,W.;Payne, April2,2001. 5 5 G.F.Langmuir2005,21,3641–3646. 1 1, 2009am9002 (27) Zhao,G.;Xu,J.J.;Chen,H.Y.Anal.Biochem.2006,350,145–150. AM9002155 y 321/ AB on Juldoi: 10.10 CH Lorg | Rs. Aac Es. Sb E REp://pu RChtt On R F09 o AI20 ed by uly 2, dJ wnloaed on oh Ds bli u P 1560 VOL.1•NO.7• 1553–1560•2009 Ebyetal. www.acsami.org