ebook img

DTIC ADA604642: Conjugated Oligoelectrolytes Increase Current Response and Organic Containment Removal in Wastewater Microbial Fuel Cells PDF

0.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA604642: Conjugated Oligoelectrolytes Increase Current Response and Organic Containment Removal in Wastewater Microbial Fuel Cells

REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) New Reprint - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Conjugated oligoelectrolytes increase current response and organic contaminant removal in wastewater microbial fuel cells 5b. GRANT NUMBER W911NF-09-D-0001 5c. PROGRAM ELEMENT NUMBER 611104 6. AUTHORS 5d. PROJECT NUMBER Logan E. Garner, Alexander W. Thomas, James J. Sumner, Steven P. Harvey, Guillermo C. Bazan 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT NUMBER University of California - Santa Barbara 3227 Cheadle Hall 3rd floor, MC 2050 Santa Barbara, CA 93106 -2050 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) ARO U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 27709-2211 55012-LS-ICB.521 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT See attached. 15. SUBJECT TERMS See attached. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Francis Doyle UU UU UU UU 19b. TELEPHONE NUMBER 805-893-8133 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 Report Title Conjugated oligoelectrolytes increase current response and organic contaminant removal in wastewater microbial fuel cells ABSTRACT See attached. REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number 55012.521-LS-ICB Conjugated oligoelectrolytes increase current re ... Block 13: Supplementary Note © 2012 . Published in Energy & Environmental Science, Vol. Ed. 0 5, (11) (2012), ( (11). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authroize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation. Approved for public release; distribution is unlimited. View Article Online / Journal Homepage / Table of Contents for this issue C Energy & Dynamic Article Links < Environmental Science Cite this: Energy Environ. Sci., 2012, 5, 9449 COMMUNICATION www.rsc.org/ees 6. 2 Conjugated oligoelectrolytes increase current response and organic 4: 5 17: contaminant removal in wastewater microbial fuel cells† 3 1 0 2 06/ Logan E. Garner,a Alexander W. Thomas,a James J. Sumner,b Steven P. Harveyc and Guillermo C. Bazan*a 7/ 2 on Received13thJuly2012,Accepted4thSeptember2012 a bar DOI:10.1039/c2ee22839d ar B a nt a nia - S tTrhimeetchoynljaumgamtoedniuomli)ghoeexlyecl)tarmolyintoe)-s4t,y4r0-ybl)iss(t4il0b-e(Nne,N-bis(6t0e0-t(rNai,oNd,iNde- clahyaerrgeofinpjeoclytimonerblaigrhriteresmfirtotimngedleicotdroesd.6esFiunrttohetrhmeosreem, eicleocntdrouscttaintigc Califor (wDaSstSeNwa+t)erhmasicrboebeinalefmuepllocyeeldls t(oMFimCpsr)ovweiththreesppeercftortmoacnucrereontf aanggdregstartuecstuorfaclatpioronpicerCtiOesEsthaantdadllyoew-labdeilsecdrimDiNnaAtiopnossoefssvoaprtioicuasl y of generationandorganiccontaminantremoval.Thebestperformance proteinsandbacteria.5 sit was afforded by biocathode type MFCs run in the presence of Morerecently,certainCOEshavebeendemonstratedtosponta- niver DSSN+. Laser scanning confocal microscopy confirmed cellular neouslyinsertintoliposomesandwithinthemembranesofyeast.14 U Thedrivingforceforthisspontaneousself-assemblystemsfromthe y uptakeofDSSN+inthebiofilms. b hydrophobic aromatic core, which prefers the interior of the d de membranesoastominimizecontactwiththeaqueousenvironment. a nlo Conjugated oligoelectrolytes (COEs) contain a framework with a Moreover,thereisevidencethatmembrane-spanningCOEsimprove w p-delocalized electronic structure and pendant groups with ionic the ability of electrons to transverse the lipid bilayer. A specific o 2. D functionalities. These molecules have been used in biosensors,1–5 example concerns 4,40-bis(40-(N,N-bis(600-(N,N,N-trimethylammo- 01 organic optoelectronic devices,6,7 and in studies concerning the nium)hexyl)amino)-styryl)stilbene tetraiodide (DSSN+). See Fig. 1 2 er influence of polar media on linear and nonlinear photophysics of forthemolecularstructureofDSSN+andacartoonillustrationofits mb organicmaterials.8–13Forexample,COEscanbeusedtoreducethe incorporationintoacellmembrane.Introductionofyeastmodified e pt withDSSN+intomicrobialfuelcells(MFCs)leadstoanincreaseof e S 4 generated current, compared to unmodified yeast, which suggests 0 aDepartment of Chemistry & Biochemistry, Department of Materials, on CenterforPolymersandOrganicSolids,UniversityofCalifornia,Santa improvedinteractionwiththecharge-collectingelectrode.14Inrelated ed Barbara, CA 93106, USA. E-mail: [email protected]; Tel: +1 805 work,membranemodificationbywayofPdnanoparticleshasledto h ublis 8bS9e3n-5so5r3s8 and Electron Devices Directorate, U.S. Army Research iemlepctrroovdeeds.15charge transfer across insulating cell membranes to P Laboratory, Adelphi, MD 20783, USA. E-mail: james.j.sumner4.civ@ Herein,weinvestigatetowhatextentDSSN+caninduceelectro- mail.mil cU.S. Army Edgewater Chemical Biological Center, 5183 Blackhawk geniccharacter,namelytheabilitytoacceptchargefromordeliver Road, Building E3160, Aberdeen Proving Ground, MD 21010-5424, chargetoanelectrode,inadiverseandnotpredeterminedmicrobial USA.E-mail:[email protected] population. From a broader scientific perspective, this problem †Electronic supplementary information (ESI) available. See DOI: concernshowtobestinterfaceinternalmetabolicpathwayswithan 10.1039/c2ee22839d Broader context Bioelectrochemical processes are the basis of technologies that take advantage of microorganisms for generating electricity or carrying out chemical transformations. Throughout all types of device architectures one finds that the nature of the electrode– microbe interface is critical for charge extraction and/orinjection. Not all microbes have developed electrogenic capabilities and there is great interest in finding suitable, and hopefully general, methods that can induce this behavior. Here, it is shown that conjugatedoligoelectrolytescanbeaddedtobiocathode-typewastewatermicrobialfuelcellsandtherebyincreasetheconversionof carbon contaminants into electricity. Conjugated oligoelectrolytes are described by an electronically delocalized backbone and pendantionicfunctionalitiesandtheiramphiphilicpropertiesleadtospontaneousmembraneintercalation.Ofprimarysignificance isthatthemicrobialcommunityinthewastewaterwasnotpredetermined.Thus,itappearsthatconjugatedoligoelectrolytescan induceelectrogenicbehaviorinamicrobialsystemofundeterminedcomposition.Suchfindingsmayleadtoincreasesinconversion efficiencyofwastewater intoelectricity, butfroma broaderperspective, theyindicate thepossibilityof improvingaccesstoelec- troactivemetabolicintermediates. ThisjournalisªThe RoyalSociety ofChemistry 2012 Energy Environ. Sci.,2012,5,9449–9452 | 9449 View Article Online sethavealsobeenplottedtodemonstratereproducibilityandcanbe foundinFig.S1,ESI†).Currentvalueswerecalculatedbasedonthe potentialmeasuredacrossa10kUresistor.MFCsrunintheabsence ofDSSN+(blueandorangecurves)producelittlecurrentoverthe course of 30 days. Abiotic cathode MFCs run in the presence of 6. DSSN+(redcurve)begintoproducenotablecurrentafter20days 4:2 andreachmaximainthe(cid:2)1.5to3mArange.BiocathodeMFCsrun 5 7: withDSSN+(greencurve)exhibitthebestperformance,producing 1 13 current after 8 days and reaching maxima inthe range of (cid:2)3.5 to 20 4.5 mA. Most importantly the collectedsetof data demonstrates a 6/ 7/0 substantial increase in the current generated upon introduction of 2 n DSSN+.Furthermore,theimpactismostpronouncedwhentheas- o a receivedwastewater,andbyinferenceapopulationofmicroorgan- ar b isms, is present in both the anode and cathode chambers. That ar B addition of DSSN+ results in the most pronounced performance a nt increaseforbiocathodetypeMFCssuggeststhattheCOEinfluences a S a - microbe–electrodeinteractionsatbothanodeandcathode. ni Removaloforganiccontaminantswasquantifiedbyexamination or alif ofthetotalorganiccarbon(TOC)andthechemicaloxygendemand C (COD)oftheMFCeffluentafteroperation.TOCismeasuredbased of y sit er v ni U y d b Fig. 1 (A) The molecular structure of DSSN+ and illustration of its e d incorporationintoacellmembrane.TheoriginalcounterionsonDSSN+ a nlo areiodide.(B)IllustrationoftheU-tubeMFCdesignusedinthisstudy. w ShownisabiocathodetypeMFC. o D 2. 1 0 externalcircuitviaspecificallydesignedmolecularmaterials.Wefind 2 er that, indeed, addition of DSSN+ leads to better charge extraction b m from a microbial community present in wastewater onto carbon e ept electrodes, and that these communities are more effective at S 4 consumingorganiccontaminants. 0 on Wastewater MFCs were used as a testing platform.16–19 Fig. 1B ed illustrates the MFC architecture used in this study.20,21 In these h blis devices, the microbial consortia that exist in a given waste stream Pu oxidize organic contaminants in an anaerobic compartment con- taining an anode, generating electrons and protons. Electrons are donatedtotheanodeandtravel throughanexternalcircuit, while protons diffuse through a proton exchange membrane into an aerobic compartment containing the cathode, effectively balancing charge. Upon reaching the cathode, electrons then participate in reduction of oxygen, completing the overall MFC reaction.22,23 MFCsemployingmicrobialpopulationsatthecathodeaswellasthe anode have shown improved performance over abiotic cathode devices.24,25ChangesinthegeneratedcurrentinMFCdevicesthus provideinsightintothenatureofthebiofilm–electrodeinterfaces. TwodifferentMFCtypeswerefabricated:(a)abioticcathodetype containing sterilized wastewater in the cathode chamber and (b) Fig.2 (A)PerformanceofwastewaterMFCs.Thoserunintheabsence biocathodetype,inwhichboththeanodeandthecathodechambers ofDSSN+(blueandorange)yieldlittlecurrent,whilethoseemploying containtheas-receivedwastewater.Thewastewateremployedinour DSSN+(greenandred)yield(cid:2)2to8timesgreatercurrent.Eachtrace represents the average of duplicate MFC sets. * indicates a spike in studiescomprisedofthespentmediumfromthemixedcultureanoxic currentthatoccurredupondislodginggasbubblesformedduringoper- darkfermentationofpaper.26ForeachMFCtype,halfoftheruns ation. (B) Comparison of the total organic carbon remaining in MFC were carried out in the absence and half in the presence of 5 mM effluentafter(cid:2)30daysofoperation.MFCswererunintheabsence(blue DSSN+.Noadditionalnutrients,organismsororganiccompounds and orange) and presence (green and red) of 5 mM DSSN+. For bio- wereaddedtothewastestream. cathodetypeMFCstheeffluentfrombothchamberswasanalyzedwhile Results from operating MFCs plotted as a function of current the effluent from only the anode chambers was analyzed for abiotic versusoperationtimeareshowninFig.2A(resultsfromaduplicate cathodetypeMFCs.Note:TOC ¼970mgL(cid:3)1. initial 9450 | Energy Environ. Sci., 2012,5, 9449–9452 Thisjournal isªTheRoyalSociety ofChemistry2012 View Article Online on the CO released by oxidation of contaminants, whereas COD availableforcollectionof89coulombs(370mgL(cid:3)1COD)forbio- 2 quantifies the amount (in mg L(cid:3)1) of O required to oxidize the cathodetypeand69coulombs(285mgL(cid:3)1COD)forabioticcathode 2 contaminants,andcanbedirectlycomparedtocurrentproduction.27 type.However,theadditionalchargeactuallyharvestedbyMFCsrun Fig.2BshowstheresultsfromtheTOCmeasurements(reportedas withDSSN+was(cid:2)2.3coulombsand(cid:2)0.5coulombsforbiocathode anaverageofthreedatasets).ForbiocathodeMFCs,oneobserves andabioticcathodeMFCs,respectively,obtainedbyintegratingthe 6. that the anode and cathode chambers contain similar levels of current vs. time plots in Fig. 2A and S1 (ESI†). Thus, while the 2 4: contaminants.However,MFCstowhichDSSN+wasaddedshow increaseincurrentgenerationaffordedbyDSSN+is significant, it 5 7: lower remaining TOC values, (cid:2)100 mg L(cid:3)1 vs. (cid:2)250 mg L(cid:3)1. onlyaccountsforasmallportionoftheincreasedCODconsumption. 1 13 Abiotic cathode type MFCs exhibit a similar trend in terms of Fig.3Ashowsascanningelectronmicrograph(SEM)ofacarbon 0 2 remaining TOC between runs in the presence and absence feltanodeaftertheoperationofabiocathodetypeMFCruninthe 6/ 7/0 of DSSN+. Microbial populations functioning in the presence of presenceofDSSN+.Accumulationofbiomassoriginatingfromthe 2 n DSSN+ are therefore more effective at metabolizing the organic microbialpopulationinitiallypresentinthewastewaterisobserved o a contaminants in the wastewater. Moreover, the fact that the ontheelectrodesurface.Itshouldbenotedthatthebiomassfeatures ar b contaminant concentration remaining in the biocathode MFCs is range in shape, morphology and density throughout the electrode ar B lower relative to their abiotic cathode counterparts suggests fibers (Fig. S4, ESI†), consistent with biofilm growth from a a nt complementarymetabolicprocessesbetweenmicrobialpopulations consortiumofmicroorganisms.Itisclear,however,thatthecoverage a S a - intheanodeandcathodechambers. isnotcompleteaswouldbeexpectedfromthefactthatnoeffortwas ni TheCODremainingafterMFCoperationforeachsetofcondi- madetospecificallygrowabiofilmontheelectrodesurface.Fig.3B or Calif tainoanlsys(iFs:ig4.88Sm2,gELS(cid:3)I†1)vsf.o8ll5o8wmedgLth(cid:3)e1sfoamrbeiotcraenthdodoebstyerpveedMFinCTsOruCn dlaisseprlasycsananflinugocreosncfeonccaelimmiacrgoescoofptyheovcearrlbaoidnafteoltpfitbheercsoorbretsapinoenddivniga y of withandwithoutDSSN+,respectively,and1037mgL(cid:3)1vs.1322mg bright field image. The emission was obtained by excitation of sit L(cid:3)1forabioticcathodetypeMFCsrunwithandwithoutDSSN+, DSSN+ via a 488 nm laser excitation source. Since no other fluo- er v respectively. Assuming 4 moles of available electrons per mole rophorewasaddedintheseexperiments,wesurmisethattheemission ni U COD,28 these differences correspond to the additional charge originatesfromDSSN+.ThesimilaritybetweentheimagesinFig.3 y d b suggests that DSSN+ has accumulated within the microorganism e d colonies. Furthermore, an emission spectrum corresponding to a o nl emissiveregionsofaconfocalmicroscopyimage(405nmexcitation) w o ofanelectrodesurface(Fig.S3,ESI†)showedamaximumintensity D 2. at(cid:2)485nm,consistentwiththeemissionprofileofDSSN+inanon- 01 polarenvironment.14ThisobservationsuggeststhatDSSN+islikely 2 er incorporated into thelipidmembranes of themicrobes comprising b m thebiofilms. e pt e S 4 0 Conclusions n o ed Inconclusionwehavedemonstratedthatthesimpleadditionofdilute h blis solutions containing the synthetic conjugated oligoelectrolyte Pu DSSN+ enhances the ability of an undetermined microbial community to interact with electrodes. The microbial community also more efficiently metabolizes organic contaminants. These improvementsweremostpronouncedwhenDSSN+wasintroduced intobiocathodetypeMFCs.Thebiomassontheelectrodesurfaces containedDSSN+,mostlikelyasaresultofmembraneintercalation, althoughwhethertheCOEmustexistincellmembranestofacilitate microorganism–electrode interactions is still unclear and under investigation.Itisworthnoting,however,thatDSSN+isunlikelyto actasatraditional,diffusiveredoxmediator,asitdoesnotundergo reductionoroxidationwithinthepotentialwindowofanoperating MFC.14Animportantconsequenceisthatthisstudydemonstrates theabilitytoinduceelectrogeniccharacteristicsinamicrobialsystem ofundeterminedcomposition.ThatDSSN+introductionintoboth anodic and bio-cathodic chambers leads to the largest current generation and TOC consumption suggests a synergistic effect on bothinjectionandextractionofcharges. Fig.3 (A)SEMand(B)overlaidbrightfieldandconfocalimagesofthe carbon felt fibers (dark structures) of the anode of a biocathode type Acknowledgements MFCruninthepresenceofDSSN+.Noadditionalstainwasaddedprior to imaging. The emission is thus attributed to DSSN+ accumulated The authors thank the Institute for Collaborative Biotechnologies withintheelectrodebiomass. (W911NF-09-D-0001), and the Air Force Office of Scientific ThisjournalisªThe RoyalSociety ofChemistry 2012 Energy Environ. Sci.,2012,5,9449–9452 | 9451 View Article Online Research (FA9550-08-1-0248) for financial support; the National 11 G.Zotti,S.Zecchin,G.SchiavonandL.B.Groenendaal,Macromol. Center for Research Resources Shared Instrument Grant Chem.Phys.,2002,203,1958–1964. 12 E.Collini,C.FerranteandR.Bozio,J.Phys.Chem.B,2005,109,2–5. (1S10RR017753-01) for funding of confocal microscopy facilities 13 H.Y.Woo,B.Liu,B.Kohler,D.Korystov,A.Mikhailovskyand employedinthiswork;theNationalScienceFoundation(DMR05- G.C.Bazan,J.Am.Chem.Soc.,2005,127,14721–14729. 20415)forsupportofMaterialsResearchLaboratory(MRL)central 14 L. E. Garner, J. Park, S. M. Dyar, A. Chworos, J. J. Sumner and 6. facilitiesthathousetheSEMinstrumentemployedinthiswork;Mr G.C.Bazan,J.Am.Chem.Soc.,2010,132,10042–10052. 2 15 X. Wu, F. Zhao, N. Rahunen, J. R. Varcoe, C. Avignone-Rossa, 54: MarkCornishforassistanceinSEMimaging;andDrChristianJ. A. E. Thumser and R. C. T. Slade, Angew. Chem., Int. Ed., 2011, 7: Sund and Dr Amethist S. Finch for technical assistance and 50,427–430. 1 13 consultationintheoperationofwastewaterMFCs. 16 J. Cha, S. Choi, H. Yu, H. Kim and C. Kim, Bioelectrochemistry, 0 2010,78,72–79. 2 6/ 17 Y. Feng, X. Wang, B. E. Logan and H. Lee, Appl. Microbiol. 0 7/ Notes and references Biotechnol.,2008,78,873–880. 2 n 18 F.KargiandS.Eker,J.Chem.Technol.Biotechnol.,2009,84,961– a o 1 Y.Chen,H.Bai,Q.Chen,C.LiandG.Shi,Sens.Actuators,B,2009, 965. ar 138,563–571. 19 T.Shimoyama,S.Komukai,A.Yamazawa,Y.Ueno,B.E.Logan b ar 2 A. Herland, P. R. Nilsson, J. D. M. Olsson, P. Hammarstrom, andK.Watanabe,Appl.Microbiol.Biotechnol.,2008,80,325–330. a B P. Konradsson and O. Inganas, J. Am. Chem. Soc., 2005, 127, 20 C.E.MillikenandH.D.May,Appl.Microbiol.Biotechnol.,2006,73, nt 2317–2323. 1180–1189. a S 3 J.W.Hong,H.BenmansourandG.C.Bazan,Chem.–Eur.J.,2003,9, 21 C.J.Sund,M.S.WongandJ.J.Sumner,Biosens.Bioelectron.,2009, a - 3186–3192. 24,3144–3147. orni 4 K.Y.Pu,K.Li,X.ZhangandB.Liu,Adv.Mater.,2010,22,4186– 22 D.R.Lovley,Curr.Opin.Biotechnol.,2008,19,564–571. Calif 5 4H1.8L9.iandG.C.Bazan,Adv.Mater.,2009,21,964–967. 23 F19.2Z6h–1a9o3,9R.. C. Slade and J. R. Varcoe, Chem. Soc.Rev., 2009, 38, of 6 R.Yang,Y.Xu,X.-D.Dang,T.-Q.Nguyen,Y.CaoandG.C.Bazan, 24 S.V.MohonandS.Srikanth,Bioresour.Technol.,2011,102,10210– y J.Am.Chem.Soc.,2008,130,3282–3283. 10220. ersit 7 Y.Xu,R.Yang,J.Peng,A.A.Mikhailovsky,Y.Cao,T.-Q.Nguyen 25 Z. He and L. T. Angenent, Electroanalysis, 2006, 18, 2009– v andG.C.Bazan,Adv.Mater.,2009,21,584–588. 2015. Uni 8 C.R.ChenthamarakshanandA.Ajayaghosh,Chem.Mater.,1998, 26 S.HarveyandM.Dixon,Int.J.HydrogenEnergy,2010,35,9611– y 10,1657–1663. 9617. b d 9 B.S.Gaylord,S.Wang,A.J.HeegerandG.C.Bazan,J.Am.Chem. 27 C. P. L. Grady Jr, G. T. Daigger and H. C. Lim, Biological e d Soc.,2001,123,6417–6418. WastewaterTreatment,CRCPress,NewYork,1999. a nlo 10 M.Stork,B.S.Gaylord,A.J.HeegerandG.C.Bazan,Adv.Mater., 28 H.Liu,R.RamnarayananandB.E.Logan,Environ.Sci.Technol., w 2002,14,361–366. 2004,38,2281–2285. o D 2. 1 0 2 er b m e pt e S 4 0 n o d e h s bli u P 9452 | Energy Environ. Sci., 2012,5, 9449–9452 Thisjournal isªTheRoyalSociety ofChemistry2012

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.