LASER & www.lpr-journal.org PHOTONICS REVIEWS T N I R P E R Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED OCT 2008 2. REPORT TYPE 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Laser cooling of solids 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of New Mexico,Department of Physics & REPORT NUMBER Astronomy,Albuquerque,NM,87106 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocoolers. We chart the evolution of this science in rare-earth doped solids and semiconductors. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 19 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Laser&Photon.Rev.3,No.1–2,67–85(2009)/DOI10.1002/lpor.200810038 67 Abstract Wepresentanoverviewofsolid-stateopticalrefrig- erationalsoknownaslasercoolinginsolidsbyfluorescence upconversion.Theideaofcoolingasolid-stateopticalmaterial bysimplyshiningalaserbeamontoitmaysoundcounterintu- itivebutisrapidlybecomingapromisingtechnologyforfuture cryocoolers.Wecharttheevolutionofthisscienceinrare-earth dopedsolidsandsemiconductors. Measured cooling efficiency as a function of the pump laser wavelengthfora1.2%Tm+3 dopedBaY F crystalatroom 2 8 temperature.Thesolidlineiscalculatedusingtheabsorption spectrum[30]. ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Laser cooling of solids MansoorSheik-Bahae1,*andRichardI.Epstein1,2 1OpticalScienceandEngineering,DepartmentofPhysics&Astronomy,UniversityofNewMexico,Albuquerque,NM,USA 2LosAlamosNationalLaboratory,LosAlamos,NM,USA Received:1August2008,Revised:8September2008,Accepted:10September2008 Publishedonline:27October2008 Keywords: Solid-statelasercooling,opticalrefrigeration,anti-Stokesfluorescence,luminescenceup-conversion,rare-earthdopedsolids, directband-gapsemiconductors,all-solid-statecryocooler,externalquantumefficiency,GaAs,differentialluminescencethermometry. PACS: 32.80.Pj,78.20.–e,78.55.Cr,78.66.Fd 1. Basicconcepts tialsimilaritiestoatomcooling:lightquantaintheredtail oftheabsorptionspectrumareabsorbedfromamonochro- Theterm“lasercooling”ismostoftenusedinassociation maticsourcefollowedbyspontaneousemissionofmore withcoolingandtrappingofdilutegasesofatomsandions energetic(blue-shifted)photons.Inthecaseofsolids,the to extremely low temperatures. This area of science has extraenergyisextractedfromlatticephonons,thequantaof progressed rapidly in the last two decades and has facil- vibrationalenergyinwhichheatiscontained.Theremoval itated the observation of Bose-Einstein condensates and of these phonons is equivalent to cooling the solid. This manyrelatedphenomena[1,2].Itissurprisingthatnearly process has also been termed “anti-Stokes fluorescence” halfacenturybeforeDopplercoolingofatomswasever and“luminescenceup-conversion”cooling. contemplatedandmorethanthirtyyearsbeforeinvention Lasercoolingofsolidscanbeexploitedtoachievean ofthelaser,GermanphysicistPeterPringsheim(Fig.1)pro- all-solid-state cryocooler [4–6] as conceptually depicted posedcoolingofsolidsbyfluorescenceup-conversion[3]. in Fig.2. The advantages of compactness, no vibrations, In the solid phase, atoms do not possess relative transla- nomovingpartsorfluids,highreliability,andnoneedfor tionalmotion–theirthermalenergyislargelycontained cryogenicfluidshavemotivatedintensiveresearch.Space- inthevibrationalmodesofthelattice.Thephysicsoflaser borneinfraredsensorsarelikelytobethefirstbeneficiaries, coolingofsolids(oropticalrefrigeration)doeshaveessen- withotherapplicationsrequiringcompactcryocoolingreap- *Correspondingauthor:e-mail:[email protected] ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 68 M.Sheik-BahaeandR.I.Epstein:Lasercoolingofsolids beingcooled,theload,byathermallink;seeFig.2.This Excited State linksiphonsheatfromtheloadwhilepreventingthewaste fluorescencefromhittingtheloadandheatingit. Anotherpotentialapplicationoflasercoolingofsolids istoeliminateheatproductioninhigh-powerlasers.Even thoughlaseremissionisalwaysaccompaniedbyheatpro- duction,Bowman[8,9]realizedthatinsomelasermaterials, thepumpwavelengthcanbeadjustedsothatthesponta- Ground State neous anti-Stokes fluorescence cooling compensates for thelaserheating.Suchthermallybalancedlaserwouldnot sufferthermaldefocusingorheatdamage. Figure1 (onlinecolorat:www.lpr-journal.org) In1929,Peter Theprocessofopticalrefrigerationcanoccuronlyin Pringsheimsuggestedthatsolidscouldcoolthroughanti-Stokes specialhighpuritymaterials(seesectionIII)thathaveap- fluorescenceinwhichasubstanceabsorbsaphotonandthenemits oneofgreaterenergy.Theenergydiagramontherightshowsone propriatelyspacedenergylevelsandemitlightwithhigh waythiscouldoccur.Anatomwithtwobroadlevelsisembedded quantumefficiency.Todate,opticalrefrigerationresearch inatransparentsolid.Thelightsourceoffrequencyhν excites hasbeenconfinedtoglassesandcrystalsdopedwithrare- atomsnearthetopofthegroundstateleveltothebottomofthe earth elements and direct-band semiconductors such as excitedstate.Radiativedecaysoccurringafterthermalizationemit galliumarsenide.Lasercoolingofrare-earthdopedsolids photonswithaverageenergyhν >hν. havebeensuccessfullydemonstrated,whileobservationof f netcoolinginsemiconductorshasremainedelusive.Fig.1 schematicallydepictstheopticalrefrigerationprocessesfor ingthebenefitsasthetechnologyprogresses.Astudyby a two level system with vibrationally broadened ground BallAerospaceCorporation[7]showsthatinlow-power, andexcitedstatemanifolds.Photonsfromalowentropy space-borneoperations,ytterbium-basedopticalrefriger- lightsource(i.e.alaser)withenergyhν exciteatomsfrom ation could outperform conventional thermoelectric and the top of the ground state to the bottom of the excited- mechanicalcoolersinthetemperaturerangebetween80– state.Theexcitedatomsreachquasi-equilibriumwiththe 170K.Efficient,compactsemiconductorlaserscanpump latticebyabsorbingphonons.Spontaneousemission(flu- opticalrefrigerators.Inmanypotentialapplications,there- orescence) follows with a mean photon energy hνf that quirementsonthepumplasersarenotveryrestrictive.The is higher than that of the absorbed photon. This process spectralwidthofthepumplighthastobenarrowcompared hasalsobeencalledanti-Stokesfluorescence.Therewere tothethermalspreadofthefluorescence.Multimode,fiber initial concerns that the second law of thermodynamics coupledlaserwithspectralwidthsofseveralnanometers mightbeviolateduntilLandauclarifiedtheissuein1946 wouldbeadequate.Inanopticalrefrigeratorthecooling byassigninganentropytotheradiation[10]. powerisoftheorder1percentofthepumplaserpower.For In the aforementioned simple model, the interaction micro-coolingapplications,withmWheatlift,onlymodest ratebetweenelectronsandphononswithineachmanifold lasersareadequate.Forlargerheatlifts,correspondingly isassumedtobefarfasterthanthespontaneousemission more powerful lasers are needed. In all cooling applica- rate, which is valid for a broad range of materials and tions,thecoolingelementhastobeconnectedtothedevice temperatures.Thecoolingefficiencyorfractionalcooling thermal link (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:6)(cid:8)(cid:7)(cid:9)(cid:10) Figure2 (onlinecolorat:www.lpr- journal.org) Schematicofanoptical (cid:18)(cid:5)(cid:12)(cid:9)(cid:5)(cid:6)(cid:19)(cid:4)(cid:15)(cid:17)(cid:14)(cid:6)(cid:10) (cid:14)(cid:9)(cid:15)(cid:12)(cid:5)(cid:16)(cid:14)(cid:7)(cid:17)(cid:7)(cid:6)(cid:4)(cid:8)(cid:9)(cid:9)(cid:15)(cid:17)(cid:13)(cid:7)(cid:4) refrigeration system. Pump light is efficiently generated by a semicon- ductordiodelaser.Thelaserlighten- tersthecoolerthroughapinholein (cid:11)(cid:12)(cid:13)(cid:5)(cid:9)(cid:11) onemirrorandistrappedbythemir- rorsuntilitisabsorbed.Isotropicflu- vacuum orescenceescapesthecoolerelement andisabsorbedbythevacuumcas- heat sink ing. A sensor or other load is con- nected in the shadow region of the high reflectivity mirrors secondmirror.Fig.2hasbeenrepro- ducedfrom[6]. ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.lpr-journal.org Laser&Photon.Rev.3,No.1–2(2009) 69 energyforeachphotonabsorbedis (pumpphoton)of1eVfromroomtemperaturedemands thatη η >97%.Althoughsuitablelaserswereavail- ext abs hν −hν λ η = f = −1 (1a) ableintheearly1960’s,morethanthreedecadesofprogress c hν λf inmaterialgrowthwereneededtosatisfythiscondition. where λ = c/ν is the wavelength. The invention of the laser in 1960 prompted several unsuccessful attempts to observelasercoolingofsolids[11–13].In1995,netcool- 2. The4-levelmodelforopticalrefrigeration ingwasfirstachievedbyworkersatLosAlamosNational Laboratory[14].Twotechnicalchallengeswereaddressed Considerthe4-levelsystemofFig.3inwhichtheground andovercomeintheseexperiments.TheLosAlamosre- statemanifoldconsistoftwocloselyspacedlevelsof|0(cid:105) searchershadtohaveasysteminwhichi)thevastmajority and|1(cid:105)withanenergyseparationδE .Theexcitedmani- of optical excitations recombine radiatively and ii) there g foldconsistsoftwostates|3(cid:105)and|2(cid:105)withanenergysepara- isaminimalamountofparasiticheatingduetounwanted tionδE .Laserexcitationathν istunedtobeinresonance impurities.Bothofthesecriticalengineeringissuesareig- u withthe|1(cid:105)–|2(cid:105)transitionasshownbythesolidredarrow. noredintheidealizedsituationdescribedbyEq.(1a),but The double-line arrows depict the spontaneous emission arekeytoexperimentalsuccess. transitionsfromtheupperleveltothegroundstateswith It is also important that spontaneously emitted pho- arateofW ;thisrateisassumedtobethesameforall tonsescapethecoolingmaterialwithoutbeingtrappedand rad fourtransitions.Thenonradiativedecayrates(indicatedby re-absorbed,whichwouldeffectivelyinhibitspontaneous the dotted lines) are also assumed to be equal and given emission[15,16].Thisisacriticalissueforhighindexsemi- byW Thepopulationineachmanifoldreachesaquasi- conductorswheretotalinternalreflectioncancausestrong nr. thermalequilibriumviaanelectron-phononinteractionrate radiationtrapping.Intheabsenceofradiationtrapping,the givenbyw andw forlowerandupperstates,respectively. fractionofatomsthatdecaytothegroundstatebythede- 1 2 Therateequationsgoverningthedensitypopulations siredradiativeprocessisknownasthequantumefficiency, N ,N ,N ,andN are: η =W /(W +W )whereW andW areradia- 0 1 2 3 q rad rad nr rad nr tiveandnonradiativedecayrates,respectively.Includinga (cid:18) (cid:19) dN g I R fltuumoreesfficecniecneceysc(aEpQeEe)f:ficηieexntc=yηηeedWefirande/s(aηneWexrtaedrn+alWqunarn)-, dt1 =−σ12 N1− g21N2 hν + 2 (N2+N3) whichassumesthefluorescenceisre-absorbedwithinthe (cid:18) (cid:19) g excitationvolume(seesectionIV).Thisdescribestheef- −w N − 1N e−δEg/kBT , (3a) 1 1 g 0 ficiency by which a photo-excited atom decays into an 0 escaped fluorescence photon in free space. In a similar dN (cid:18) g (cid:19) I 2 =σ N − 1N −RN fashion,anabsorptionefficiencyηabs = αr/(αr+αb)is dt 12 1 g 2 hν 2 2 definedtoaccountforthefractionofpumplaserphotons (cid:18) (cid:19) that are engaged in cooling [6,17]. Here αr is the reso- +w N − g3N e−δEu/kBT , (3b) nantabsorptioncoefficientandα istheunwantedparasitic 2 3 g 2 b 2 (background) absorption coefficient. As will be derived insectionsIIandIV,thecombinationofalltheseeffects re-definesthecoolingefficiencyas: |3> (cid:3)E w λ u 2 η =η η −1 (1b) |2> c ext absλ f wheretheproductη η indicatestheefficiencyofcon- ext abs vertinganabsorbedlaserphotontoanescapedfluorescence photon. Note that ηabs is frequency-dependent and falls h(cid:2) Wrad W offrapidlybelowphotonenergyhν −k T wherek is nr f B B the Boltzmann constant and T is the lattice temperature. At pump photon energies much more than k T below B hν ,η istoosmalltomakeη >0andlasercoolingis f abs c |1> unattainable.Theaboveanalysisdefinestheapproximate (cid:3)E w conditionneededforlasercooling[6,17].: g 1 |0> k T η η >1− B (2) ext abs hν Figure3 (onlinecolorat:www.lpr-journal.org) Thefour-level f energymodelforopticalrefrigerationconsistingoftwopairsof Thisrelationquantifiestheneededefficiencies:coolinga closelyspacedlevels:|0(cid:105)and|1(cid:105)inthegroundstateand|2(cid:105)and materialfromroomtemperaturewithanominalenergygap |3(cid:105)intheexcitedstatemanifolds. www.lpr-journal.org ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 70 M.Sheik-BahaeandR.I.Epstein:Lasercoolingofsolids (cid:18) (cid:19) dN g 3 =−RN −w N − 3N e−δEu/kBT (3c) meansthatifw <R,decayoftheexcitedstatecanoccur dt 3 2 3 g 2 2 2 beforethermalizationwiththelattice,whichresultsinno fluorescence upconversion and no cooling [18]. This ex- N +N +N +N =N (3d) 0 1 2 3 t tremelimitofcoldelectronrecombinationisanissuefor whereR = 2Wrad +2Wnr isthetotalupperstatedecay semiconductorsatverylowtemperatureswheretheelec- rate, σ12 is the absorption cross section associated with tronsinteractwiththelatticeprimarilybyrelativelyslow |1(cid:105)–|2(cid:105)transition,I istheincidentlaserirradianceandthe acousticphonon[15]. g termsrepresentdegeneracyfactorsforeachlevel.The DividingtheEq.(5)bythetotalabsorbedpowerden- i weightingfactorintheelectron-phononinteractionterms sityP = (α+α )I givesthecoolingefficiencyη = abs b c (w1 andw2)maintainstheBoltzmanndistributionamong −Pnet/Pabs: eachmanifoldatquasiequilibrium.Thenetpowerdensity hν η =η η f −1, (8) depositedinthesystemisthedifferencebetweenabsorbed c q abs hν andout-radiatedcontributions: whichissimilartoEq.(1.b)notincludingtheluminescence (cid:18) (cid:19) g N trapping.Themostusefulfeatureofthe4-levelmodelisits P =σ N 1− 1 2 I net 12 1 g N descriptionofthetemperature-dependenceofthecoolingin 2 1 aphysicallytransparentmanner.Asthetemperatureislow- −Wrad[N2(E21+E20)+N3(E31+E30)] ered,red-shiftingofmeanfluorescencewavelengthcom- binedwiththereductionoftheresonantabsorptionreduces +α I, (4) b thecoolingefficiency.AttemperatureT =T thecooling m wherethefirsttermisthelaserexcitation(|1(cid:105)-|2(cid:105)transition) stops(i.e.ηc(Tm)=0).Thisminimumachievabletemper- andsecondtermincludesthespontaneousemissionterms ature(Tm)canbeloweredbyreducingthebackgroundab- fromlevels|2(cid:105)and|3(cid:105)withtheirrespectivephotonenergies. sorption(higherpurity),increasingthequantumefficiency, Wehavealsoincludedatermthatrepresentsparasiticab- andenhancingtheresonantabsorption(e.g.choosingama- sorptionofthepumplaserwithanabsorptioncoefficientof terialwithanarrowgroundstatemanifold).Theeffectof α .Itisstraightforwardtoevaluatethesteady-statesolution fluorescencetrappinganditsconsequentre-absorptionby b totheaboverateequationsbysettingthetimederivatives bothresonantandparasiticprocesseswillfurtherdiminish tozero.Toemphasizecertainfeatures,weignoresaturation thequantumefficiency.Wewilldiscussthisindetailwhen andassumeunitydegeneracyforalllevels.Thenetpower weanalyzeoflasercoolinginsemiconductorswheretotal densityisthenobtainedas: internalreflectionleadstosubstantialtrapping. (cid:18) (cid:19) hν P =αI 1−η f +α I, (5) net q hν b 3. Coolingrare-earth-dopedsolids. whereηq = (1+Wnr/Wrad)−1isthe(internal)quantum Theadvantagesofrare-earth(RE)dopedsolidsforlaser efficiencyandhνf denotesthemeanfluorescenceenergy coolinghadbeenforeseenfordecades.Kastler(1950[11] ofthefour-levelsystemgivenby: andYatsiv(1961[13]suggestedthesematerialscouldbe used for optical cooling. The key optical transitions in δE δE hν =hν+ g + u (6) RE-doped ions involve 4f electrons that are shielded by f 2 1+(1+R/w2)eδEu/kBT the filled 5s and 6s outer-shells, which limit interactions withthesurroundinglattice.Non-radiativedecaysdueto Thegroundstateresonantabsorptionαisgivenby: multi-phononemissionarethussuppressed.Hostswithlow (cid:16) (cid:17)−1 phononenergy(e.g.,fluoridecrystalsandglasses)further α=σ12Nt 1+eδEg/kBT (7) diminishnon-radiativedecayandhenceboostquantumeffi- ciency.In1968,KushidaandGeusic[12]attemptedtocool Despite its simplicity, the four level model reveals es- a Nd3+:YAG crystal with 1064nm laser radiation. They sential features of solid-state optical refrigeration: First, reported a reduction of heating, but no cooling; it is un- Eq.(7)exhibitsdiminishingpumpabsorptionduetother- clearwhethertheyobservedanyanti-Stokescoolingeffects. maldepletionofthetopgroundstateatlowtemperatures, Lasercoolingofasolidwasfirstexperimentallydemon- k T < δE . This implies that the width of the ground- stratedin1995withtheytterbium-dopedfluorozirconate B g state manifold (δE ) must be narrow to achieve cooling glassZBLANP:Yb3+[14].Laser-inducedcoolinghassince g atlowtemperatureswithreasonableefficiency.Thisissue beenobservedinarangeofglassesandcrystalsdopedwith willberevisitedwhendiscussingsemiconductorsinsec- Yb3+(ZBLANP[19–22],ZBLAN[23,24],CNBZn[9,25] tionIV.Second,Eq.(6)showsthatthemeanfluorescence BIG[25,26],KGd(WO ) [9],KY(WO ) [9],YAG[27], 4 2 4 2 photon energy is red shifted at low temperatures, which Y SiO [27], KPb Cl [25,28], BaY F [29–31], and 2 5 2 5 2 8 furtherlowersthecoolingefficiency.Thisshiftwouldbe YLF[32,33]). enhanced if the electron-phonon interaction rate (w ) is Fig.4 shows the cooling and heating of a sample of 2 smallerthantheupperstaterecombinationrate(R).This Yb3+dopedZBLANPforarangeofpumpwavelengths[5]. ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.lpr-journal.org Laser&Photon.Rev.3,No.1–2(2009) 71 tumefficiency[36,37].Thisisalsothecasewithcooling ofTm3+[34], The initial proof-of-principle experiments in ZBLANP:Yb3+ achieved cooling by an amount 0.3K below ambient temperature [14]. The LANL group has sincecooledZBLANP:Yb3+to208Kstartingfromroom temperature [22] as shown in Fig.5. Although progress is being made, optical refrigerators need to be more ef- ficient and operate at lower temperatures, below about 170K,tobecompetitivewithothersolid-statecoolerssuch as thermoelectric (Peltier) devices. Several studies have shownthatytterbium-orthulium-dopedsolidsshouldbe capableofprovidingefficientcoolingattemperatureswell below100K[4,27,38]. Figure4 (onlinecolorat:www.lpr-journal.org) Thetempera- turechange(normalizedtoincidentpower)inytterbium-doped ZBLANP glass as a function of pump wavelength. When the pump wavelength is considerably longer that the mean wave- lengthofthefluorescenceλ (verticaldashedline),theescaping F lightcarriesmoreenergythantheabsorbedlaserlightandthe glasscools.Heatingatwavelengthsgreaterthanλ isduetoim- F perfectquantumefficiencyofthefluorescenceandnon-resonant lightabsorption[5]. Forwavelengthsshorterthanthemeanfluorescencewave- lengthλ (verticaldashedline)thesampleheatsbecause F of the Stokes shift as well as by non-radiative processes. Atlongerwavelengths,anti-Stokescoolingdominatesand coolingaslargeas25Kperwattofabsorbedlaserpoweris measured.Atstilllongerwavelengths,absorptionbyimpu- ritiesorimperfectionsdominates,andthesampleheats. In2000,lasercoolinginTm3+ dopedZBLANPwas reportedatλ∼1.9µm[34].Thesignificanceofthisresult wastwo-fold:First,itverifiedthescalinglawofEq.(1.a,b) bydemonstratingnearlyafactoroftwoenhancementinthe coolingefficiencycomparedtoYb-dopedsystems.,Theen- hancementscalesastheratioofthecorrespondingcooling transitionwavelengths.Second,itwasthefirstdemonstra- tionoflasercoolinginthepresenceofexcitedstateabsorp- tion. A record cooling power of ∼73mW was obtained inthismaterialbyemployingamultipassgeometry[35]. Morerecently,coolingofEr3+dopedglass(CNBZn)and crystal (KPb Cl ) at λ ∼ 0.870µm were reported by a 2 5 Spanishgroup[36].Itisinterestingtonotethatthecooling Figure5 (onlinecolorat:www.lpr-journal.org) Panel(a)shows transitionusedintheseexperimentsisbetweentheground recordcoolingto208KwithZBLANP:Yb3+.Thetemperatures stateandthefourthexcitedstate(4I9/2)ofEr3+,notthe aremeasuredwiththermocouplesonthesampleandchamber;the firstexcitedstateasillustratedinFig.1.High-energytran- internaltemperatureoftheglassisinferred[22].Panel(b)com- sitionshavelowercoolingefficiency(Eq.1)butpotentially paresthecoolingefficienciesofavailablethermoelectriccoolers higherquantumefficiencyduetotheirlownonradiativede- (TECs)withZBLANP:Yb3+-basedopticalrefrigerators.Devices cayratestothegroundstate.Thepresenceofhigherexcited based on materials with low parasitic heating will outperform states in Er3+ may prove advantageous since the energy TECsbelow200.Coolersmadefromcurrentmaterialsareless upconversion transitions (i.e. at the cooling wavelengths efficientthanTECsatalltemperatures[39].Fig.5(a)hasbeen ofthemaintransition)areendothermicwithahighquan- reproducedfrom[22] www.lpr-journal.org ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 72 M.Sheik-BahaeandR.I.Epstein:Lasercoolingofsolids 10 m] p Cr3+ n [p 1 Ti3+ o ati OH r nt V3+ e c Ni2+ n 0.1 o Co2+ C d Fe2+ ol Figure 6 (online color at: www.lpr-journal.org) sh Calculatedimpuritythresholdconcentrations.Ifthe re 0.01 impuritylevelsofanionisabovethelevelshown h T Cu2+ here,thecoolingefficiencyoftheZBLAN:1%Yb3+ % willbelessthan90%ofitsidealvalueandrapidly 0 9 convertedintoheat.SeethedetailedstudybyHehlen 0.001 etal.[39]. 50 100 150 200 250 300 Temperature [K] Thereareseveralfactorsthatlimitthecoolingofrare- quencies;thiseffectisillustratedinthefour-levelsystem earth-dopedsolidsinavailablematerials.Themostsignifi- discussedabove.Theneteffectisthatatlowtemperatures cantfactoristhechoiceoflasercoolingmedium.Theideal thenumeratorofEq.(2)becomessmallandcoolingeffi- coolingefficiency(Eq.1)showsthatthereisanadvantage ciencygoestozero;seeEq.(1b).Thewidthoftheground ofpumpingwithlowerenergyphotons.Thisincreasedeffi- statemanifoldistypicallytheresultofcrystalfieldsplitting ciencywaspartofthemotivationforinvestigatingthulium- anddependsonboththedopantionandthehostmaterial. dopedcoolingmaterials,sincetheirground-andexcited Bychoosingionsandahostthatgivenarrowground-state state manifolds are separated by about 0.6eV compared manifolds,thematerialcancooltolowertemperaturesbe- to1.2eVinytterbium-dopedsolids.Thereareobstacles, forethelow-frequencytransparencyconditionsetsin. however,ingoingtolongerwavelengths.Firstisthemore Forthematerialsystemsstudiedsofar,coolingisnot limitedchoicesofpumplaserssincetherearefeweravail- limited by the reasons outlined above. It is most likely ablenear0.6eVthannear1.2eV.Whilenotafundamental hindered by parasitic heating in the bulk of the cooling consideration,itneedstobekeptinmindfornear-termcom- material or on its surface. As one can see in Fig.5b, the mercialization.Asecondandmoregeneralreasoninvolves coolingefficienciesofcurrentlyavailableZBLANP:Yb3+ the ratio of radiative to non-radiative relaxation decays. are far below that for an ideal material with no parasitic The rate of non-radiative, heat-producing, multi-phonon heating.Oneimportantsourceofheatinginthismaterial decaydecreasesexponentiallywiththeseparationbetween isquenchingofexcitedytterbiumionsbyimpuritiessuch the ground- and first excited-state manifolds; this is the asironandcopper.Theradiativedecaytimeofanexcited well-knowenergy-gaplaw.Inpracticalterms,thismeans Yb3+ ion is about 1ms. During this time, the excitation that because of the relatively large energy of the excited migratesthroughtheglassbytransferringenergytoneigh- level in ytterbium-doped materials, non-radiative decays boringions.Iftheexcitationencountersanimpurityatom, donotsignificantlydecreasethequantumefficiency.For theenergycanbetransferredtothisatomandrapidlycon- purethulium-dopedmaterial,non-radiativedecaycanover- verted into heat. A detailed study by Hehlen et al. [39] whelmanti-Stokescooling,dependingonthepropertiesof foundthattheidealcoolingefficiencycanbeapproached thehostmaterial.Formaterialswithlowmaximumphonon whenconcentrationofimpuritiessuchasCu2+ islessthan energies, such as ZBLANP and other fluoride hosts, the 0.01ppmandthatforFe2+isbelow0.1ppm;seeFig.6. non-radiative decays are relatively slow. Many thulium- Anadditionalsourceofparasiticheatingisabsorption dopedoxidecrystalsandglasseshaverapidnonradiative inthemirrorsthattrapthepumpradiationinthecooling decayratesthatpreventlasercooling. element.IntheLANLexperiments,thecoolingglasshasa Anotherconsiderationinthechoiceofcoolingmedium pairofhigh-reflectivitymirrorsdepositedontwosurfaces, is the width of the ground state manifold. According to asdepictedinFig.2.Pumplightisreflectedmultipletimes Boltzmannstatistics,lowerenergylevelsinthemanifold byeachmirror,sothatthatevenrelativelylowabsorptionof aremorepopulatedthanhigherones.Asthetemperature 0.0001persurfaceproducessignificantheating.Depositing fallsandk Tbecomessmallcomparedtotheenergywidth higherqualitydielectricmirrormayobviatethisproblem. B oftheground-statemanifold,theupperlevelsbecomede- An alternative approach is to avoid dielectric mirrors all populatedleadingtoincreasedtransparencyatlowerfre- togetherandexploitthetotal-internalrefectioninsidethe ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.lpr-journal.org Laser&Photon.Rev.3,No.1–2(2009) 73 a b Figure7 (onlinecolorat:www.lpr- journal.org) (a) Cooling cycle in GaAs T=300 K laserrefrigerationofasemiconduc- torinwhichabsorptionoflaserpho- tons with energy hν creates a cold distributionofelectron-holecarriers (onlyelectrondistributionisshown h(cid:2) h(cid:2)f forclarity).Thecarriersthenheatup by absorbing phonons followed by anup-convertedluminescenceathν . F (b)Typicalanti-Stokesluminescence E observedinGaAs/GaInPdoublehet- k erostructure[6]. coolingmediumforcirculatingthepumpbeam[40].An- Nosuchlimitationexistsinpure(undoped)semiconductors othermethodofenhancingpumpabsorptionisusingreso- –temperaturesaslowas10Kmaybeachievable[47]. nantcavityeffects.Bothintra-laser-cavity[24]andexternal Semiconductorsshouldachievehighercoolingpower resonant-cavity[41]geometrieshavebeendemonstrated. densitycomparedtoRE-materials.Themaximumcooling Thelatterapproachhasbeencapableofachievingpump power density (rate of heat removal) is ≈ N ×k T/τ , B r absorption exceeding90% [41].Most recently, usingac- whereN isthephoto-excitedelectron(-hole)densityand tive stabilization, this method was employed to achieve τ istheradiativerecombinationtime.Insemiconductors r ∆T ≈ 70K in a Yb:YLF crystal [33]. This is a highly the optimal density N is limited due to many-body pro- promisingresultconsideringthatitwasobtainedwithfull cessesanddoesnotexceedthatofmoderatelydopedRE black-bodythermalloadwhichisnearly5timeshigherthan systems.Wecangain5–6ordersofmagnitudeincooling thatreportedin[22].Ithasalsobeenproposedthatphoton powerdensitybecausetheradiativerecombinationratesin localization in nanocrystalline powders can be exploited semiconductorsaremuchfasterthaninREions. toenhancelaserpumpabsorptionincoolingofrare-earth Laser cooling of semiconductors has been examined dopedsystems[42]. theoretically[15,44,45,47–52]aswellasinexperimental studies[46,53–56].Afeasibilitystudybytheauthorsout- linedtheconditionsfornetcoolingbasedonfundamental 4. Prospectsforlasercooling materialpropertiesandlightmanagement[15].Researchers insemiconductors attheUniversityofArizona[47,50]studiedluminescence upconversioninthepresenceofpartiallyionizedexcitons, Researchers have examined other condensed matter sys- whichmustbeunderstoodtoattaintemperaturesapproach- tems beyond RE-doped materials, with an emphasis on ing10K.Theroleofbandtailstates[52],thepossibleen- semiconductors [17,43–46]. Semiconductor coolers pro- hancementoflasercoolingbyincludingtheeffectsofpho- vide more efficient pump light absorption, the potential tondensityofstatesaswellasnovelluminescencecoupling of much lower temperatures, and the opportunity for di- schemesbasedonsurfaceplasmonpolaritons[57,58]were rectintegrationintoelectronicandphotonicdevices.These recentlyintroducedbyKhurginatJohnsHopkinsUniver- materialsprovidetheirownsetofengineeringchallenges, sity.Here,weexpandonthebasicmodelof[15]andpresent however, and no net cooling has been observed yet. The thetheoreticalfoundationoflasercoolinginsemiconduc- essentialdifferencebetweensemiconductorsandRE-doped tor structures with an arbitrary external efficiency. This materialsisintheircoolingcycles.Inthelatter,thecooling treatmentaccountsfortheluminescencered-shiftdueto transition occurs in localized donor ions within the host re-absorption,theeffectparasiticabsorptionofthepump, materialwhiletheformerinvolvestransitionbetweenex- luminescencepower,andband-blockingeffects.Wethen tendedvalenceandconductionbandsofadirectgapsemi- discussthelatestexperimentalresultsattemptingtomake conductor(seeFig.7a).Indistinguishablechargecarriersin thefirstobservationoflasercoolinginasemiconductorma- Fermi-Diracdistributionsmayallowsemiconductorstoget terial. muchcolderthanREmaterials.Thehighestenergylevels Weconsideranintrinsic(undoped)semiconductorsys- ofthegroundstatemanifoldintheRE-dopedsystemsbe- temuniformlyirradiatedwithalaserlightatphotonenergy comelesspopulatedasthetemperatureislowered,dueto hν. Furthermore, we assume that only a fraction η of e Boltzmannstatistics.Thecoolingcyclebecomesineffective thetotalluminescencecanescapethematerialwhilethe whentheBoltzmannconstanttimesthelatticetemperature remainingfraction(1-η )istrappedandre-cycled,thuscon- e becomescomparabletothewidthofthegroundstate(see tributingtocarriergeneration.Fornow,wewillignorethe previoussectiondescribingthe4-levelmodel).Thissetsa parasiticabsorptionofluminescencebutwilllaterconsider limitofT ∼ 100KformostexistingRE-dopedsystems. itsimplications.Foragiventemperature,therateequations www.lpr-journal.org ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 74 M.Sheik-BahaeandR.I.Epstein:Lasercoolingofsolids fortheelectron-holepairdensity(N)isgivenby[15]: parasiticabsorptiveprocesses.Thesecondtermisthees- capedluminescencepowerdensityatameanluminescence dN αI dt = hν −AN −BN2−CN3+(1−ηe)BN2 (9) energyhν˜f definedas (cid:82) S(ν)R(ν)hνdν Hereα(ν,N)istheinterbandabsorptioncoefficientthatin- hν˜f = (cid:82) . (15) S(ν)R(ν)dν cludesmany-bodyandblockingfactors.Therecombination processconsistsofnonradiative(AN),radiative(BN2),and Notethattheescapedmeanluminescenceenergycandevi- Auger(CN3)rates.Alltheabovecoefficientsaretempera- ate(i.e.redshift)fromitsinternalvalue(S=1)depending turedependent.ThelasttermrepresentstheincreaseinN onthethicknessorphotonrecyclingconditions.Withthe fromthere-absorptionoftheluminescencethatdoesnot aidofEq.(9),werewriteEq.(14)as: escape,assumingthere-absorptionoccurswithinthelaser excitation volume. The density-dependence of α results P =η BN2(hν−hν˜ )+ANhν net e f frombothCoulombscreeningandband-blocking(satura- +CN3hν+∆P . (16) tion)effects.Thelattercanbeapproximatedbyablocking factorsuchthat[59,60]: Eq.(16)rigorouslydescribeslasercoolingofasemiconduc- torinacompactandsimpleform.Itaccountsforthepracti- α N,hν)=α (N,hν){f −f }, (10) ( 0 v c calconsiderationsofluminescencetrappingbyintroducing where α0 denotes the unsaturated absorption coefficient. aninhibitedradiativerecombination(ηeB)andashifted The strongly density-dependent blocking factor in the meanphotonenergyhν˜f fortheescapedluminescence.For brackets[61]containsFermi-Diracdistributionfunctions highexternalefficiencysystemswhereS(ν)=1,Eq.(16) forthevalence(fv)andconduction(fc)bands. approachesthatdescribedintheliteraturewithηe =1and Under steady-state conditions, Eq.(9) can be re- ν˜f = νf with νf denoting the mean fluorescence energy writtenas producedinternallyinthesemiconductor[44–46].Eq.(16) indicatesthatlasercoolingoccurswhenP <0,requir- net α(ν,N) 0= I−AN −η BN2−CN3. (11) ingadominantcontributionfromtheradiativerecombina- hν e tionwithhν < hν˜ .Thecoolingefficiencyη isdefined f c astheratioofcoolingpowerdensityP (=−P )tothe This indicates that the fluorescence trapping effectively c net absorbedlaserpowerdensity(P =αI+∆P).Withthe inhibits the spontaneous emission as it appears through abs aidofEq.(11),thisefficiencycanbeexpressedas η Bonly.Thisresulthasalsobeenshownpreviouslyby e Asbeck [16]. It is important to note that ηe is itself an η BN2(hν−hν˜ )+ANhν+CN3hν+∆P averagedquantityovertheentireluminescencespectrum. η =− e f . c η BN2hν+ANhν+CN3hν+∆P e (cid:82) (17) S(ν)R(ν)dν ηe = (cid:82) R(ν)dν . (12) Ignoringthe∆Pcontributionsforthemoment,ηc canbe writtenmoresimplyas: Here S(ν) is the geometry-dependent escape probabil- ν˜ ity of photons with energy hν and R(ν) is the lumines- ηc =ηext νf −1, (18) cence spectral density that is related to the absorption coefficientthroughreciprocityusinga“non-equilibrium” where ηext describes the external quantum efficiency vanRoosbroeck-Shockleyrelation(alsoknownasKubo- (orEQE): Martin-Schwinger(KMS)relation[59,62]: η BN2 η = e ≈(η )1/ηe, (19) 8πn2ν2 (cid:26)f (1−f )(cid:27) ext AN +η BN2+CN3 q R(ν,N)= α ν,N) c v , (13) e c2 ( f −f v c withη = BN2/(AN +BN2 +CN3)denotingthein- q wherecisthespeedoflightandnistheindexofrefraction. ternal quantum efficiency [46,63] as also defined more NotethattheradiativerecombinationcoefficientBisob- generallyfollowingEq.(5).Theapproximateequalityin tainedbyBN2 =(cid:82) R(ν)dν whichresultsinanegligible Eq.(19)isvalidonlyforηext nearunity(>0.9).Onesim- dependenceofBonNatthecarrierdensitiesofinterest. ple consequence of Eq.(19) is that there is an optimum Thenetpowerdensitythatisdepositedinthesemiconduc- carrier density Nop = (A/C)1/2 at which ηext reaches toristhedifferencebetweenthepowerabsorbedfromthe amaximum: √ 2 AC laser(Pabs)andthatoftheluminescencethatescapes(Ple): ηmax =1− (20) ext η B e P =P −P =[αI+∆P]−[η BN2hν˜ ], (14) net abs le e f Includingbackgroundparasiticabsorption(∆P=α I),re- b sultsinmoregeneralformofcoolingefficiency: where the absorbed power density includes the resonant absorption(αI)andaterm∆P thataccountsfortheun- ν˜ desirableeffectssuchasfree-carrierabsorptionandother ηc =ηabsηext νf −1, (21) ©2009byWILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.lpr-journal.org