ebook img

DTIC ADA593440: Molecular Layer Deposition of Hybrid Organic-Inorganic Polymer Films using Diethylzinc and Ethylene Glycol PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA593440: Molecular Layer Deposition of Hybrid Organic-Inorganic Polymer Films using Diethylzinc and Ethylene Glycol

DOI: 10.1002/cvde.200806756 Full Paper Molecular Layer Deposition of Hybrid Organic-Inorganic Polymer Films using Diethylzinc and Ethylene Glycol** ByByunghoon Yoon, JenniferL.O’Patchen,Dragos Seghete, AndrewS.Cavanagh,and StevenM.George* Themolecularlayerdeposition(MLD)ofahybridorganic-inorganicpolymerbasedonzincisdemonstratedusingsequential exposuresofdiethylzinc(DEZ,Zn(CH CH ) )andethyleneglycol(EG,HOCH CH OH).Thispolymerisrepresentativeofa 2 3 2 2 2 classofzincalkoxidepolymerswithanapproximateformulaof((cid:1)Zn(cid:1)O(cid:1)R(cid:1)O(cid:1)) thatcanbecalled‘‘zincones’’.Thefilm n growthandsurfacechemistryduringzinconeMLDisstudiedusingin-situFouriertransforminfrared(FTIR)measurements. TheabsorbanceoftheinfraredfeaturesofthezinconefilmincreaseprogressivelyversusthenumberofMLDcycles.TheFTIR spectraaftertheDEZandEGexposuresareconsistentwiththegainandlossofabsorbancefromC(cid:1)H,O(cid:1)H,C(cid:1)O,andZn(cid:1)O stretchingvibrations.FTIRstudiesalsoconfirmtheself-limitingnatureofthesurfacereactionsandmonitorthetemperature dependenceofthefilmgrowth.Transmissionelectronmicroscope(TEM)imagesofZrO nanoparticlesshowveryconformal 2 zinconefilmsanddeterminethatthegrowthratevariesfrom4.0A˚ perMLDcycleat908Cto0.25A˚ perMLDcycleat1708C. Quartzcrystalmicrobalance(QCM)andX-rayreflectivity(XRR)measurementsshowlinearzinconegrowthversusthenumber ofMLDcycles.XRRstudiesonsiliconwafersareconsistentwithagrowthrateof0.7A˚ perMLDcycleat1308C.Thehigher growth rate on the ZrO nanoparticles is attributed to the lower gas conductance and possible CVD reactions in the ZrO 2 2 nanoparticles. The reaction mechanism for zincone MLD is dependent on temperature. At higher temperatures, there is evidence for ‘‘double’’ reactions of EG because no free hydroxyl groups are observed in the FTIR spectrum after the EG exposures.ThezinconefilmcangrowintheabsenceoffreehydroxylgroupsifDEZcandiffuseintothezinconefilmandreact duringthesubsequentEGexposure.ThezinconefilmsinitiallyadsorbH Ouponexposuretoairandthenareverystablewith 2 time. Keywords:Hybrid organic-inorganic materials, Molecular layerdeposition,Polymer films, Surfacechemistry 1. Introduction atomic layer deposition (ALD) techniques that have been developed for the growth of inorganic materials.[3–5] Both Molecularlayerdeposition(MLD)isbasedonsequential MLD and ALD can be used to fabricate conformal, and self-limiting surface reactions of reactants containing continuous, and pinhole-free films.[6–9] The self-limiting organic constituents.[1,2] MLD methods are very similar to natureofthesurfacechemistryallowsconformalMLDand ALD films to be grown on high aspect ratio and porous structures.[10] [*] Prof.S.M.George,Dr.B.Yoon,J.L.O’Patchen,D.Seghete DepartmentofChemistryandBiochemistry,UniversityofColorado Recent work has demonstrated the MLD of organic Boulder,CO80309-0215(USA) polymer films using homobifunctional reactants. For E-mail:[email protected] example, polyamide films such as Nylon 66 have been A.S.Cavanagh DepartmentofPhysics,UniversityofColorado depositedusingadipoylchlorideand1,6–hexanediamineas Boulder,CO80309-0215(USA) the reactants.[11] Poly(p–phenylene terephthalamide) films Prof.S.M.George,A.S.Cavanagh have also been grown using terephthaloyl chloride and p– DARPACenterforIntegratedMicro/Nano-Electromechanical Transducers(iMINT),UniversityofColorado phenylenediamineasthereactants.[12]TheMLDoforganic Boulder,CO80309-0215(USA) polyimidefilmshasalsobeenreportedusingdiaminesand Prof.S.M.George carboxylic anhydrides.[13] Earlier work also demonstrated DepartmentofChemicalandBiologicalEngineering, the MLD of polyimides,[2,14] polyamides,[15] and polyur- UniversityofColorado Boulder,CO80309-0215(USA) eas.[16] In some of the these earlier studies, the method of [**] ThisworkwassupportedbytheNationalScienceFoundation(CHE- sequential, self-limiting surface reactions was known as 0715552).Someoftheequipmentusedinthisresearchwasprovidedby alternating vapordeposition polymerization.[15,17] the Air Force Office of Scientific Research. DS was supported by DARPA/MTO, SPAWAR (Contract No. N66001-07-1-2033). ASC InadditiontotheMLDoforganicpolymers,theMLDof wassupportedbytheDARPACenteronNanoscaleScienceandTech- hybridorganic-inorganicpolymerfilmswasrecentlyaccom- nology for Integrated Micro/Nano-Electromechanical Transducers plished using trimethyl aluminum (TMA, Al(CH ) ) and (iMINT)fundedbyDARPAN/MEMSS&TFundamentalsProgram 3 3 (HR0011-06-1-0048). EG.[6]Theseorganic-inorganiccompositefilmscombinean 112 (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Chem.Vap.Deposition2009,15,112–121 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2009 2. REPORT TYPE 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Molecular Layer Deposition of Hybrid Organic-Inorganic Polymer Films 5b. GRANT NUMBER using Diethylzinc and Ethylene Glycol 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of Colorado,Department of Chemistry and REPORT NUMBER Biochemistry,Boulder,CO,80309 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 10 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FullPaper inorganicreactant,TMA,withanorganicreactant,EG.The general family of organic-inorganic polymers with the approximate form of ((cid:1)Al(cid:1)O(cid:1)R(cid:1)O(cid:1)) are known as n ‘‘alucones’’.[6,18] The reaction of TMA and EG is one of a largenumberofreactionsbetweenmetalalkylsandorganic diols. The metal alkyl molecule can be described by MR x and the diol can be described by HOR’OH. The general MLDreactionsbetweenthemetalalkylandthediolcanbe written asEquations 1 and2.[6] ðAÞROH(cid:2)þMR0 !RO(cid:1)MR0(cid:2) þR0H (1) x x(cid:1)1 ðBÞMR0(cid:2)þHOROH!M(cid:1)OROH(cid:2)þR0H (2) The asterisks indicate the surface species. These A and B reactions in an ABAB... sequence of metal alkyl and organic diol can lead to the growth of the hybrid organic- inorganicpolymeric films. Many metal alkyls and organic reactants can be used to define various hybrid organic-inorganic MLD polymers.[1] Fig.1.SchematicforgrowthmechanismofzinconeMLDfilmusingDEZand Forexample,zincalkylssuchasZn(CH CH ) (diethylzinc EG. 2 3 2 (DEZ))andTiCl (titaniumtetrachloride)shouldreactwith 4 diolsinasimilarMLDprocess.Othermetalalkylsthatcan becausethesamebondsarebrokenandformedduringthe easily reactwithoxygen precursorsarealso candidatesfor DEZþEG and DEZþH O reactions. There is also hybridorganic-inorganicpolymerMLD.Examplesinclude 2 precedencefortheDEZþEGMLDreaction.Polymeriza- metal alkyls based on magnesium (Mg) and manganese tionreactionsusingorganicdiolsanddialkylzincprecursors (Mn), such as Mg(C ) and Mn(C ) where C is the p 2 p 2 p cyclopentadienylligand,thatreactreadilywithH O.[19,20]In have been studied in organic solution under an argon 2 environment.[28] addition, many other oxygen-containing bifunctional This investigation of zincone MLD concentrated on in- organic reactants are possible suchas carboxylic acids and aldehydes.[21] Homobifunctional organic reactants such as situ FTIR spectroscopy to monitor the zincone MLD growth, to identify the surface species following the DEZ diaminesordithiols shouldalso bepossibleprecursors. and EG reactions, and to verify the self-limiting nature of In this paper, the MLD of a hybrid organic-inorganic thesurfacereactions.XRRstudiesmeasuredthethickness polymer based on zinc was demonstrated using DEZ and EG as the reactants.[22,23] These zinc-containing polymer of the zincone films and the linearity of zincone MLD growth versus number of MLD cycles. TEM was used to films are part of a class of zinc alkoxide polymers with a image the zincone films on ZrO nanoparticles and obtain composition approximated by ((cid:1)Zn(cid:1)O(cid:1)R(cid:1)O(cid:1)) . This 2 n the temperature dependence of the zincone MLD growth. class of zinc alkoxide films can be called ‘‘zincones’’ in analogywiththeclosely-relatedalucones.[6,18]Theproposed In-situQCMmeasurementswereusedtoverifythelinearity ofzinconeMLD.X-rayphotoelectronspectroscopy(XPS) surfacereactionsforzinconeMLDusingDEZandEGare wasemployedtocharacterizetheelementalcompositionof expected to follow the chemical reactions described by the zincone films. These studies help to establish the Equations1and2.AschematicdepictingthezinconeMLD generalityandfeasibilityofMLDreactionsbasedonmetal growth isshownin Figure1. alkylsandorganic diols. The overall zincone MLD reaction using DEZ and EG can bewritten asEquation 3. 2. Results and Discussion nZnðCH CH Þ þnHOCH CH OH 2 3 2 2 2 !ð(cid:1)Zn(cid:1)O(cid:1)CH2CH2(cid:1)O(cid:1)ÞnþnCH3CH3 (3) 2.1.Zincone MLDGrowth ThereactionofDEZandEGisanalogoustothereactionof ZinconeMLDwasstudiedusingin-situFTIRstudiesover DEZþH O!ZnOþ2C H for ZnO ALD.[24–26] This the temperature range 90–1708C. FTIR spectra were 2 2 6 reaction has favorable thermochemistry with an enthalpy recorded after various numbers of MLD cycles and after ofreactionofDH¼(cid:1)70.0kcal.[27]TheDEZþEGreaction each reactant exposure. The FTIR spectra after various is expected to have a very similar enthalpy of reaction numbersofMLDcyclesmonitortheprogressivegrowthof Chem.Vap.Deposition2009,15,112–121 (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.cvd-journal.de 113 FullPaper Fig.2.In-situFTIRspectraduringthegrowthofzinconeMLDfilmsafter1,5, 10,15,and20MLDcyclesat1308C. Fig.3.FTIRdifferencespectraafterDEZandEGexposuresduringzincone MLD film growth at 1308C. a) DEZ-EG after DEZ exposure on a film previously reacted with EG. b) EG-DEZ after EG exposure on a film the zincone film. Figure 2 displays the FTIR spectra previouslyreactedwithDEZ. following the EG exposures after 1, 5, 10, 15, and 20 MLD cycles at 1308C. The infrared absorbance grows previousstudiesthatexploredDEZreactionsonZrO and 2 progressivelywith number ofMLD cycles. BaTiO surfaces.[25] A negative absorbance feature is 3 ProminentabsorbancesareobservedinFigure2at2800– observed in Figure 3a at 3100–3730cm(cid:1)1. This feature 3000cm(cid:1)1corresponding totheC(cid:1)Hstretchingvibrations isconsistentwiththeremovalofhydroxylspecies.Thereis oftheethylenelinkagesbetweenoxygenatomsinthezinc alsoevidenceforaslightfrequencyshiftandreductionofthe alkoxidepolymer.Atlowerfrequencies,largeabsorbanceis absorbance at 1100cm(cid:1)1 corresponding to the C(cid:1)O also observed at 888cm(cid:1)1 and 1100cm(cid:1)1. These absor- stretching vibration. bances are assigned to Zn(cid:1)O and C(cid:1)O stretching InthedifferencespectrumforEG-DEZinFigure3b,the vibrations. Smaller absorbances at 1456cm(cid:1)1, 1365cm(cid:1)1, spectrumappearsastheinverseoftheDEZ-EGspectrumin and1256cm(cid:1)1arealsomonitoredinFigure2andassigned the O(cid:1)H and C(cid:1)H stretching region. The positive to CH scissors, wag, and twist modes, respectively. These absorbance features are observed for the O(cid:1)H, C(cid:1)O, 2 vibrational features are all consistent with the growth of a and Zn(cid:1)O stretching vibrations at 3100–3730cm(cid:1)1, zinc alkoxide polymer that may be approximated by 1100cm(cid:1)1, and 888cm(cid:1)1, respectively. There are also ((cid:1)Zn(cid:1)O(cid:1)CH CH (cid:1)O(cid:1)) .Thereisalsoaweakandbroad positive absorbance features for the CH symmetric and 2 2 n 2 absorbanceat3100–3730cm(cid:1)1assignedtoO(cid:1)Hstretching asymmetricstretchingvibrationsat2850and2885cm(cid:1)1.The vibrations.ThisvibrationalfeatureisobservedaftertheEG negativefeaturesaretheabsorbancesfortheCH andCH 2 3 exposures. stretchingvibrationsfortheethylgroupoftheDEZsurface Thechangeinsurfacespeciesduringeachreactioncanbe speciesat2910and2941cm(cid:1)1.ThegainandlossofCH and 2 monitored by the FTIR difference spectra. The surface CH featuresleadstoacomplicatedspectrumintheC(cid:1)H 3 species that are added appear as positive absorbance stretching vibrationregion. features and the surface species that are removed appear The integrated absorbance of the C(cid:1)H stretching as negative absorbance features. The FTIR difference vibrationsat2800–3000cm(cid:1)1andtheintegratedabsorbance spectra for the DEZ exposure referenced against the EG oftheO(cid:1)Hstretchingvibrationsat3100–3730cm(cid:1)1canbe exposure (DEZ-EG) and the EG exposure referenced usedtomonitortheself-limitingnatureoftheDEZandEG againsttheDEZexposure(EG-DEZ)at1308Careshown reactions.TheintegratedabsorbancefortheC(cid:1)Hstretch- inFigures 3aand3b, respectively. ing vibrations versus DEZ exposure at 1308C is shown in InthedifferencespectrumforDEZ-EGinFigure3a,the Figure 4a. The integrated absorbance for the O(cid:1)H positive features are the absorbances of the CH and CH stretching vibrations versus EG exposure at 1308C is 2 3 stretchingvibrationsfortheethylgroupoftheDEZsurface showninFigure4b.Inbothcases,theexposuresaredefined species at 2910 and 2941cm(cid:1)1. The gain of these C(cid:1)H by the number of microdoses of DEZ or EG. Figure 4a stretchingvibrationsfromtheethylgroupisverysimilarto indicatesthattheDEZreactionisself-limitingandreaches 114 www.cvd-journal.de (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Chem.Vap.Deposition2009,15,112–121 FullPaper viously.[29] The Zn(cid:1)O stretching vibration was assigned totheabsorbancefeatureat888cm(cid:1)1.Incontrast,arecent FTIRstudyofthereactionofDEZwithalcoholsobserveda vibrationalfeatureat755cm(cid:1)1thatwastentativelyassigned totheZn(cid:1)Ostretchingvibration.[30]OtherstudiesonZnO nanoparticles have observed features at 400–600cm(cid:1)1 that havebeenassociatedwithZn(cid:1)Ovibrations.[31]Additional investigations of the metal-organic vapor pressure epitaxy growthofZnOwithDEZandN Ohaveobservedabroad 2 infraredfeatureat760–950cm(cid:1)1.[32]Thisinfraredpeakwas believed to correspond with various polymer fragments resultingfromC H OZnC H ,Zn(OC H ) ,HOZnOC H , 2 5 2 5 2 5 2 2 5 andZn(OH) reactionproductsthatoligomerizebyforming 2 Zn(cid:1)Obonds.[32] ToconfirmthattherearenoZn(cid:1)Ostretchingvibrations atfrequencieslowerthan888cm(cid:1)1thatmaybeobscuredby absorption from ZrO nanoparticles, zincone MLD was 2 performedonSiO nanoparticles. Inthesestudies,nonew 2 vibrational features were observed in the EG-DEZ difference spectrum between 600–850cm(cid:1)1. The absence ofvibrationalfeaturesatlowerfrequencieshelpstoconfirm thatthevibrationalfeatureat888cm(cid:1)1ischaracteristicfor the Zn(cid:1)Ostretching vibration inthe zincone films. Fig.4.Integratedabsorbancefora)C(cid:1)Hstretchingvibrationsversusnumber Anothervibrationalfeaturewasobservedwithapeakat ofDEZmicrodoses,andb)O(cid:1)HstretchingvibrationsversusnumberofEG microdoses.BothDEZandEGexposureswereperformedat1308C. (cid:3)1590cm(cid:1)1whentheEGwasexposedinastaticmodewith the gate valve closed to the pumps. This feature was completionaftertenDEZmicrodoses.EachDEZdosewas accompanied by an increased absorbance in the O–H definedbya0.3sexposureat70mTorrofpartialpressure. stretching region at (cid:3)3000–3680cm(cid:1)1. These two features Likewise, Figure 4b indicates that the EG reaction also is areconsistentwiththeabsorptionofH Omoleculesonthe 2 self-limiting and reaches completion after 10 EG micro- surfaceofthezinconefilm.H OmaybeanimpurityinEG 2 doses. Each EG dose was defined by a 0.3s exposure at andisadecompositionproductofEG.[33]Thesefeaturesat 8–10mTorrofpartial pressure. (cid:3)1590cm(cid:1)1and(cid:3)3000–3680cm(cid:1)1observedafterstaticEG exposures suggest that zincone MLD growth may be strongly affected by pumping speed and purging times. 2.2.Assignmentof VibrationalFeatures Wenotethatthefeatureat(cid:3)1590cm(cid:1)1wasalsoobserved whenthe liquidN trapwas notpumpingonthe reactor. 2 Theassignmentsofthevibrationalfrequenciesobserved duringzinconeMLDgrowtharegiveninTable1.Mostof these vibrational features have been identified pre- 2.3.TemperatureDependence of ZinconeMLD The integrated absorbance of the C(cid:1)H stretching vibrations can be used to determine the temperature Table1.AssignmentofvibrationalpeaksobservedduringzinconeMLD. dependence of zincone MLD. For these experiments, the Frequency[cm(cid:1)1] Assignment absorbanceintheC(cid:1)Hstretchingregionwasmeasuredafter tenzinconeMLDcyclesatvarioustemperaturesintherange 3730 O(cid:1)Hstretch,EG 90–1708C.TheseFTIRspectraintheC(cid:1)Hstretchingregion 2941 CH3asymmetricstretch,DEZ 2910 CH2asymmetricstretch,DEZ areshowninFigure5.AftertenMLDcycles,theabsorbance 2885 CH2asymmetricstretch,EG in the C(cid:1)H stretching region decreases progressively for 2871 CH2stretch,DEZ zinconeMLD at higher temperatures. This decrease in the 2850 CH2symmetricstretch,EG zincone MLD growth per cycle at higher temperatures is 2787 CH2stretch,DEZ consistentwithpreviousresultsforaluconeMLD.[6] 2697 EGcombination ThetemperaturedependenceofthezinconeMLDgrowth 1456 CH2scissors 1365 CH2wag percyclewasalsomeasuredusingTEManalysisofzincone 1256 CH2twist filmsgrownonZrO2nanoparticlesatvarioustemperatures. 1100 C(cid:1)Ostretch TheTEMimageofazinconefilmafterthirtyMLDcyclesat 888 Zn(cid:1)Ostretch,EGandDEZ 1308CisshowninFigure6.ThisTEMimagerevealsthatthe Chem.Vap.Deposition2009,15,112–121 (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.cvd-journal.de 115 FullPaper Fig.7.ComparisonbetweentheintegratedabsorbancefortheC(cid:1)Hstretch- ingvibrationsinFig.5after10MLDcyclesandthegrowthpercyclefor zinconeMLDmeasuredbyTEManalysisofZrO2nanoparticlesat90,110, 130,150,and1708C. results from the TEM and integrated absorbance analysis are inexcellent agreement. ThedecreaseinthezinconeMLDgrowthpercycleversus temperaturecanbepartlyattributedtothediffusionofDEZ Fig.5. FTIR vibrational spectra for absorbance in the C(cid:1)H stretching intothezinconefilm.SimilartoaluconeMLD,[6]thezincone vibrationregionafter10MLDcyclesat90,110,130,150,and1708C. film growth is believed to occur by both the surface chemistry,describedbyEquations1and2,andthediffusion zincone film is very conformal on the ZrO nanoparticles. of DEZ into the zincone film. The DEZ molecules that 2 The thickness of 61A˚ after thirty MLD cycles at 1308C is diffuseintotheMLDfilmareavailabletoreactduringthe consistent with a zincone MLD growth rate of 2.0A˚ per subsequent EG exposure to form new zincone polymer MLDcycle.ThirtycyclesofzinconeMLDwasrepeatedon chains. This additional growth mechanism is similar to a ZrO nanoparticlesatvarioustemperaturesintherange90– CVD reaction in the near-surface region of the zincone 2 1708C. The TEM images were consistent with a zincone polymer. This diffusion mechanism can explain the MLD growth rate that was 4.0A˚ per MLD cycle at 908C, temperature dependence of the zincone MLD growth. At andreduced to 0.25A˚ perMLD cycle at1708C. highertemperatures,lessDEZmaydiffuseintothezincone Figure 7 displays the zincone MLD growth per cycle film. In addition, the DEZ in the zincone film may desorb versustemperaturedeterminedbytheTEManalysis.These resultsarecomparedwiththeintegratedabsorbanceforthe C(cid:1)H stretching vibrations of zincone films after ten MLD cycles at various temperatures. The integrated absorbance hasbeenscaledtomatchthegrowthpercycledeterminedby the TEM measurements. The temperature-dependent Fig.6.TEMimageofzinconeMLDfilmonZrO2nanoparticlesafter30MLD Fig.8.FTIRdifferencespectrafora)DEZ-EGat1708C,b)EG-DEZat cyclesat1308C. 1708C,c)DEZ-EGat908C,andd)EG-DEZat908C. 116 www.cvd-journal.de (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Chem.Vap.Deposition2009,15,112–121 FullPaper from the film at a faster rate at higher temperatures. Less vibrations suggests that much of the DEZ is diffusing into diffusionintothefilmandmoredesorptionofDEZfromthe thezinconepolymerwithoutreactingwithhydroxylgroups filmwouldyieldalowerzinconeMLDgrowthpercycleat at 908C. The spectrum for EG-DEZ in Figure 8d shows a highertemperatures. loss of absorbance from C(cid:1)H stretching vibrations of the InadditiontolowergrowthpercycleforzinconeMLDat ZnCH CH (cid:2) species, and a gain of absorbance from C(cid:1)O 2 3 highertemperatures,the mechanismof zinconeMLD also and Zn(cid:1)O stretching vibrations. These absorbance changes with temperature. Figure 8 compares FTIR changes,togetherwiththepresenceofabsorbancechanges difference spectra for DEZ-EG and EG-DEZ at 908C for the O(cid:1)H stretching vibrations, are consistent with the and 1708C. For growth at 1708C, there is negligible reaction between EG and ZnCH CH (cid:2) species to form 2 3 absorbancechangeintheO(cid:1)Hstretchingvibrationregion both ZnOCH CH OH(cid:2) and (cid:1)ZnOCH CH OZn(cid:1) species 2 2 2 2 in Figure 8a for DEZ-EG or Figure 8b for EG-DEZ. The at 908C. absence of hydroxyl groups either removed by DEZ or producedbyEGsuggeststhatmostoftheEGreactionsare ‘‘double’’ reactions at 1708C. If EG reacts with two 2.4.LinearZincone MLDGrowth ZnCH CH (cid:2)species,thentherearenonewO(cid:1)Hstretching 2 3 vibrationsafterthe EGexposure. The quality and thickness of zincone films grown on Si AlthoughthereisnegligibleabsorbancechangeforO(cid:1)H wafers at 1308C was also measured using ex-situ XRR stretchingvibrationsshowninFigure8a,thereisanincrease analysis. The XRR scans were fitted using the REFS data in absorbance for C(cid:1)H stretching vibrations of the fittingsoftwarefromBedeScientific.ForthisXRRanalysis, ZnCH CH (cid:2)speciesafterDEZexposures.Thisabsorbance anAl O ALDfilmwithathicknessof(cid:3)640A˚ wasinitially 2 3 2 3 increase is consistent with the diffusion of DEZ into the deposited on the silicon wafer using TMA and H O. 2 zincone film at 1708C. Figure 8aalso shows that the DEZ Subsequently,zinconefilmsweregrownontheAl O ALD 2 3 exposureproducesverylittleincreaseintheabsorbancefor layer. Figure 9a shows the XRR scan, approximately one the C(cid:1)O and Zn(cid:1)O stretching vibrations that would be hour after deposition, of a zincone film grown using consistent with (cid:1)ZnOCH CH OZn(cid:1) species. This obser- 500MLDcyclesat1308C.Thisscandisplaysanoscillatory 2 2 vation argues that the DEZ diffuses into the zincone film reflectedintensityversusangle.Theoscillationoccursasthe withoutreactingwith hydroxylgroups. intensity drops over many orders of magnitude. This Figure8bshowsthattheEGexposureat1708Cremoves behaviorisconsistentwith averysmoothandhighquality absorbance for the C(cid:1)H stretching vibrations from film.Theoscillatoryintensityresultsfromthefilmthickness ZnCH CH (cid:2) and adds absorbance for the C(cid:1)H stretching and the individual Al O and zincone layers. Figure 9b 2 3 2 3 vibrations from (cid:1)OCH CH O(cid:1) species. There are also displaystheXRRscanofthesamefilmafterfiveweeksin 2 2 increases in the absorbance of the C(cid:1)O and Zn(cid:1)O air.TheXRRscansinFigures9aand9barenearlyidentical, stretching vibrations. These absorbance changes, together andindicate that the zinconefilm isverystable. with the absence of absorbance changes for the O(cid:1)H Figure 10a shows the zincone film thicknesses measured stretchingvibrations,areconsistentwiththereactionofEG byXRRafter80,150,and500MLD cyclesat1308C.The withtwoZnCH CH (cid:2)speciestoform(cid:1)ZnOCH CH OZn(cid:1) film thickness versus number of MLD cycles is linear and 2 3 2 2 at 1708C. The ‘‘double’’ reactions of EG remove consistent with a growth rate of 0.7A˚ per MLD cycle at ZnCH CH (cid:2) sites and do not generate ZnOCH CH OH(cid:2) 1308C.Thegrowthrateof0.7A˚ perMLDcycleat1308Con 2 3 2 2 hydroxyl sites for zincone film growth. However, a finite the silicon wafer is less than the growth rate of 2.0A˚ per amountofDEZdiffusionintothezinconefilmduringDEZ exposuremaintainsthelowzinconegrowthrateof(cid:3)0.25A˚ perMLD cycle at1708C. Muchlargergrowthratesof(cid:3)4.0A˚ percycleareobserved at the low temperature of 908C. Figures 8c and 8d reveal that hydroxyl groups are active during zincone MLD at 908C.Figure8cshowsthatthereisadecreaseinabsorbance for O(cid:1)H stretching vibrations after the DEZ exposure. Likewise,Figure8drevealsagaininabsorbanceforO(cid:1)H stretchingvibrationsaftertheEGexposure.Therestillmay bedoublereactionsduringtheEGexposure.Howeverthere arealsoEGreactionsthatproducehydroxylgroupsonthe zincone film. The spectrum for DEZ-EG in Figure 8c reveals that thereisalargeabsorbanceincreaseintheC(cid:1)Hstretching region for the ZnCH CH (cid:2) species. The correspondingly 2 3 Fig.9.XRRscansofzinconefilmgrownonSiwaferusing500MLDcyclesat lowincreaseofabsorbanceforC(cid:1)OandZn(cid:1)Ostretching 1308Caftera)(cid:3)1hexposureinair,andb)(cid:3)5weeksexposureinair. Chem.Vap.Deposition2009,15,112–121 (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.cvd-journal.de 117 FullPaper exposures. Although the zincone MLD growth was linear versus number of MLD cycles under one set of reaction conditions, the absolute mass gain per cycle and the mass gainsfortheindividualDEZandEGreactionsduringone cyclewerenotconsistentforexperimentsondifferentdays. Thisinconsistencyisbelievedtoresultfromthevariationsin the pumping speed during different zincone MLD growth experiments. 2.5.Compositionand Stabilityof ZinconeFilms The composition of the zincone films was investigated using XPS.Figure 11showsXPS resultsfor a zinconefilm grown using 500 MLD cycles at 1308C. The average compositionobtainedfromseveralsuchfilmswas10%zinc, 22%carbon,and68%oxygen.Theuncertaintyontheseat.- % values is <2%. These atomic percentages are based on peakareasofeachcomponent.Theadventitiouscarbonat 285eV was not included in this XPS analysis. No other elements are present in the zincone film. In contrast, a compositioncanbepredicted(20%zinc,40%carbon,and 40% oxygen) for the zincone film based on the reaction mechanism shown in Figure 1, and a possible polymer formulaof((cid:1)Zn(cid:1)O(cid:1)CH CH (cid:1)O(cid:1)) .Thezinconefilmhas 2 2 n less zinc and more oxygen than predicted by the expected formula. The higher oxygen and lower zinc atomic percentages are related to the adsorption of H O into the 2 zincone films uponexposure to air. As discussed earlier in Section 2.2, the in-situ FTIR spectra during static EG Fig.10.a)XRRmeasurementsofzinconefilmthicknessversusnumberof exposures were consistent with H O adsorption. Features MLDcyclesat1308C.b)QCMmeasurementsofmassgainversustimefor 2 zinconeMLDfilmgrowthat1358C. assignedtoH2Oadsorptionat(cid:3)1590cm(cid:1)1werealsopresent whentheliquidN trapwasnotusedtopumponthereactor. 2 MLD cycle at 1308C on the ZrO nanoparticles. The 2 different growth rates on the Si wafer and the ZrO 2 nanoparticlescanbeexplainedbyeitherdifferentpumping speedsduringthezinconeMLDgrowthexperiments,orthe lowgasconductanceintheZrO nanoparticles.IntheZrO 2 2 nanoparticles, longer exposure times are needed for the reactantstoreachtheentiresurfacearea.Inaddition,longer purgetimesareneededtoremovethereactantsaftertheir exposure.Ifthereactantisnotcompletelypurgedfromthe bedofnanoparticles,thenthezinconeMLDgrowthratecan increaseresultingfrom CVDgrowth. In-situQCMmeasurementsalsorevealedthatthezincone MLDgrowthwaslinearversusthenumberofMLDcycles. TypicalresultsfromtheQCManalysisofzinconeMLDat 1358CareshowninFigure10b.Thereactantpulsesequence duringoneMLDcyclewas;DEZdosefor0.75s,purgefor 120s, EG dose for 0.45s, and purge for 120s. These dose times resulted in approximate exposures of 65mTorr s for DEZand80mTorrsforEG.ThemassgainperMLDcycle was 20.4ng cm(cid:1)2 for the QCM results at 1358C shown in Figure 10b. The QCM measurements also demonstrated thattheDEZandEGreactionswereself-limiting.Themass Fig.11.XPSanalysisofzinconeMLDfilmcompositionafter500MLDcycles gains reached an asymptotic limit versus DEZ and EG at1308C. 118 www.cvd-journal.de (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Chem.Vap.Deposition2009,15,112–121 FullPaper 8.9%,respectively.TheseXPSresultsindicatethatthezinc atomicpercentagesareveryconsistentoverthefullrangeof temperatures. The changes in the zincone MLD growth mechanismandtheobservationofonlydoubleEGreactions at higher temperatures do not alter the zincone film composition. 3. Conclusions The MLD of a new zinc-containing organic-inorganic polymerwasgrownusingthesequentialexposuresofDEZ andEG.Thispolymerrepresentsanewtypeofzincalkoxide polymersthatcanbecalledzincones.TheMLDprocedure used to grow the zincone film is similar to the sequential exposures of TMA and EG used for alucone MLD. This work indicates that a variety of different hybrid organic- Fig.12.a)Absolutein-situFTIRspectrumofzinconefilmgrownusing40 inorganicpolymerscanbegrownbyMLDusingmetalalkyl MLDcyclesat1108C.Thisspectrumwasrecordedwiththezinconefilm precursorsand variousorganic precursors. undervacuumintheMLDreactor.b)AbsoluteFTIRspectrumofthesame The film growth and surface chemistry during zincone filmafter(cid:3)1hexposureinair. MLDwasstudiedbyin-situFTIRmeasurements.TheFTIR spectraincreasedprogressivelyversusthenumberofMLD There was also evidence from the FTIR spectra for H O cycles.FTIRspectraaftertheEGandDEZexposureswere 2 adsorptionintothezinconefilmsafterexposingthezincone consistent with loss and gain of the absorbance for C(cid:1)H, filmsto air. O(cid:1)H,C(cid:1)O,andZn(cid:1)Ostretchingvibrations.FTIRstudies Figure12ashowstheabsolutein-situFTIRspectrumofa also confirmed the self-limiting nature of the surface zincone film deposited after 40 MLD cycles at 1108C. This reactionsandmonitored lowerzinconeMLD growthrates spectrumwasrecordedwiththezinconefilmundervacuumin athighertemperatures. the MLD reactor. Figure 12b displays the absolute FTIR TEMmeasurementsonZrO nanoparticlesobservedvery 2 spectrum of the same zincone film after approximatelyone conformalzinconefilms.TheTEMstudiesalsodetermined hour of air exposure. This spectrum reveals the growth of that the zincone MLD growth rate varied from 4.0A˚ per absorbancecorrespondingwithO(cid:1)Hstretchingvibrationsin MLDcycleat908Cto0.25A˚ perMLDcycleat1708C.XRR the range 2700–3700cm(cid:1)1. There are also adsorbed H O measurements on silicon wafers displayed linear zincone 2 modes and broadened CH features in the range 1300– MLD growth with a lower zincone MLD growth rate of 2 1700cm(cid:1)1.[34] Very little subsequent change was observed 0.7A˚ perMLDcycleat1308C.Differentpumpingspeeds, afterweeksofairexposure.TheseFTIRresultsindicatethat lower gas conductance, and possible CVD reactions may thezinconefilmsadsorbH Ouponexposuretoair.However, explainthehigherzinconeMLDgrowthratesontheZrO 2 2 theFTIRandXRRresultsrevealthatthezinconefilmsare nanoparticles.QCMmeasurementsconfirmedlineargrowth verystablefollowingthisinitialH Oadsorption. for thezincone filmsversusthe number ofMLD cycles. 2 AftertheinitialadsorptionofH Ouponexposuretoair, The FTIR difference spectra indicated that the reaction 2 the zincone MLD films are more stable than the alucone mechanism for zincone MLD was dependent on tempera- MLDfilmsstudiedpreviously.[6]Thestabilityofthezincone ture.Athighertemperatures,nofreehydroxylgroupswere films was confirmed bythe XRR measurements at various presentinthezinconefilmasdemonstratedbytheabsence timesafterfilmgrowthshowninFigure9.TheseXRRscans of O(cid:1)H stretching vibrations in the FTIR spectra. The revealed almost no change in the thickness of the zincone absence of free hydroxyl species may be explained by a films after aging for weeks at room temperature under double reaction of EG with two ZnCH CH (cid:2) species. The 2 3 ambientairconditions.Forexample,forazinconefilmwith lackofhydroxylgroupsdoesnotstopthezinconeMLDfilm a thickness of (cid:3)335A˚ grown using 500 MLD cycles at growthathighertemperatures.TheFTIRspectrasuggested 1308C,thethicknessdecreasedonly2.4%afteragingforfive thatDEZcandiffuseintothezinconefilmandnucleatethe weeks. In contrast, the alucone MLD film thicknesses growth ofa new zincone polymerchain. decreased about 22% in the first six days after growth at The zincone MLD films were observed to adsorb H O 2 roomtemperature underambient airconditions.[6] afterexposuretoair.ThisH Oadsorptionismonitoredby 2 Thezinccompositionwasalsoinvestigatedaftergrowthat theFTIRspectraandisconsistentwiththehighoxygenand varioustemperatures.XPSmeasurementsonzinconeMLD lowzinccompositioninthezinconefilmsobtainedbyXPS samplesgrownusing80MLDcyclesat90,110,130,150,and analysis. Following the H O adsorption, the zincone films 2 1708Cyieldedzinccompositionsof10.7,10.6,10.0.9.9,and are very stable for multiple weeks as determined by FTIR Chem.Vap.Deposition2009,15,112–121 (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.cvd-journal.de 119 FullPaper theXRRmeasurements.ThethicknessesofthezinconefilmsonSiwafers wereextractedusingtheREFSdatafittingsoftwarefromBedeScientific. Borondopedp-typesiliconwaferswithathinnativeoxide(SiliconValley Microelectronics,Inc.)wereusedforthisex-situanalysis. XPSimagesforC1s,O1s,andZn2pwereobtainedfromaPerkin-Elmer 5600photoelectronspectrometerwithmonochromaticKasource(12.5mA, 12kV) under a pressure of 2(cid:5)10(cid:1)10Torr. The binding energies were referencedtotheadventitiousC1speakat285eV.TheTEManalysiswas performedusingaPhilipsCM10transmissionelectronmicroscopewithan 80kVbeamenergy.ThezinconeMLDgrowthpercyclewasdeterminedby measuring the film thickness of the zincone polymer on the ZrO2 nanoparticlesanddividingbythenumberofMLDcycles. Received:October22,2008 Revised:March02,2009 [1] S.M.George,B.Yoon,A.A.Dameron,Acc.Chem.Res.2009,42,498. [2] T.Yoshimura,S.Tatsuura,W.Sotoyama,Appl.Phys.Lett.1991,59,482. [3] S.M.George,A.W.Ott,J.W.Klaus,J.Phys.Chem.1996,100,13121. [4] M.Ritala,M.Leskela,AtomicLayerDeposition,inHandbookofThinFilm Materials,Vol.1(Ed:H.S.Nalwa),AcademicPress,SanDiego,CA2002. Fig.13.SchematicdiagramofviscousflowMLDreactorequippedwithin-situ [5] T.Suntola,ThinSolidFilms1992,216,84. FTIRspectrometer. [6] A. A. Dameron, D. Saghete, B. B. Burton, S. D. Davidson, A. S. Cavanagh,J.A.Bertand,S.M.George,Chem.Mater.2008,20,3315. [7] J.D.Ferguson,A.W.Weimer,S.M.George,ThinSolidFilms2000,371,95. andXRRmeasurements.Thesenewzinconefilmsaddtothe [8] M.D.Groner,J.W.Elam,F.H.Fabreguette,S.M.George,ThinSolid growing list of possible MLD thin films. The zincone films Films2002,413,186. may have many interesting applications because of their [9] M.Ritala,M.Leskela,J.P.Dekker,C.Mutsaers,P.J.Soininen,J.Skarp, Chem.Vap.Deposition1999,5,7. hybridorganic-inorganic properties. [10] J.W.Elam,D.Routkevitch,P.P.Mardilovich,S.M.George,Chem. Mater.2003,15,3507. [11] Y.Du,S.M.George,J.Phys.Chem.C.2007,111,8509. 4. Experimental [12] N.M.Adamcyzk,A.A.Dameron,S.M.George,Langmuir2008,24,2081. [13] M.Putkonen,J.Harjuoja,T.Sajavaara,L.Niinisto,J.Mater.Chem. 2006,17,664. AschematicdiagramoftheviscousflowMLDreactorequippedwithanin- [14] T. Yoshimura, S. Tatsuura, W. Sotoyama, A. Matsuura, T. Hayano, situFTIRspectrometerisshowninFigure13.ThisviscousflowMLDreactor Appl.Phys.Lett.1992,60,268. isverysimilartopreviousreactorsusedforMLD[6,11,12].Thereactantswere [15] H. I. Shao, S. Umemoto, T. Kikutani, N. Okui, Polymer 1997, 38, pumpedthroughaliquidN2trapbyamechanicalpump,whichmaintaineda 459. pressureof0.60Torrwithacarriergasflowof100sccmintothereactor.The carriergaswasultrahighpuritynitrogen(Airgas),whichhelpedtransport [16] A.Kim,M.A.Filler,S.Kim,S.F.Bent,J.Am.Chem.Soc.2005,127, reactantsintothereactorandremovereactionproductsfromthereactor. 6123. Thein-situFTIRstudieswereperformedwithaNicoletNexus870FTIR [17] A.Kubono,N.Okui,Prog.Polym.Sci.1994,19,389. spectrometerequippedwithaliquid-N2cooledmercury-cadmium-telluride [18] C.N.McMahon,L.Alemany,R.L.Callender,S.G.Bott,A.R.Barron, (MCT-B)infrareddetector.Spectrawerecollectedwithamirrorspeedof Chem.Mater.1999,11,3181. 1.8cm(cid:4)s(cid:1)1, andaveragedover100 scansusing4cm(cid:1)1resolution. TheIR [19] B.B.Burton,F.H.Fabreguette,S.M.George,ThinSolidFilms2009,(In transparent windows on the viscous flow MLD reactor were KBr disks Press). suppliedbyInternationalCrystalLaboratories.Thespectrometersetupwas purgedwithdryandCO2-freeairdeliveredfromapurgegasgenerator. [20] B.B.Burton,D.N.Goldstein,S.M.George,J.Phys.Chem.C.2009,113, ThetransmissionFTIRspectroscopymeasurementsrequiredhighsurface 1939. area samples to obtain a sufficient signal-to-noise to monitor the surface [21] O.Nilsen,H.Fjellvag,PatentCooperationTreaty(PCT),WorldIntel- species. The high surface area samples were approximately spherical lectual PropertyOrganization, PublicationNumberWO2006/071126 nanoparticles with average diameters of 25nm for ZrO2 and 11nm for A1,PublicationDateJuly6,2006,Title:ThinFilmsPreparedwithGas SiO2.Thenanoparticleswerepressedintoastainlesssteelgridusingmethods PhaseDepositionTechnique. describedearlier[7,35].ThestainlesssteelgridssupportingtheZrO2orSiO2 [22] WeinitiallyreportedourresultsonzinconeandaluconeMLDusing nanoparticles were obtained from Tech Etch. The ZrO2 and SiO2 alkylmetalsandvariousorganicdiolsattheAVSTopicalConferenceon nanoparticleswereobtainedfromSigma-Aldrich. Atomic Layer Deposition (ALD2008) in Bruges, Belgium, June 28– ThezinconeMLDgrowthwasmonitoredat90,110,130,150,and1708C. July2,2008(B.Yoon,J.L.O’Patchen,S.D.Davidson,D.Segehte,A.S. EachDEZexposureconsistedoftwo1.0sdosesofDEZ.EachDEZdose Cavanagh, S.M. George, Molecular Layer Deposition of Hybrid producedapartialpressureof200mTorr.EachEGexposureconsistedoffive Organic-InorganicPolymersBasedonMetalAlkylandDiolReactants, 1.0sdosesofEG.EachEGdoseproducedapartialpressureof20mTorr. July2,2008). Purgetimeof120swereusedaftereachDEZandEGdose.OnesetofDEZ [23] ZinchybridmaterialfromDEZandEGwasalsoreportedattheAVS andEGexposuresdefinedoneMLDcycle.TheDEZandEGreactantswere TopicalConferenceonAtomicLayerDeposition(ALD2008)inBruges, obtainedfromSigma-Aldrich. Belgium,June28–July2,2008(Q.Peng,R.M.Vangundy,G.N.Parsons, Thein-situQCMmeasurementtechniquehasbeendescribedpreviously AtomicLayerDepositionofZincOxide/OrganicHybridMaterialfrom [36].TheQCMmeasurementswereperformedinalargerviscousflowreactor DiethylZincandEthyleneGlycol,July2,2008). usingaTM-400(Maxtek)thinfilmdepositionmonitor[6].Thesemeasure- [24] J.W.Elam,Z.A.Sechrist,S.M.George,ThinSolidFilms2002,414, mentsemployedaMaxtekBSH-150bakeablesensor,andaquartzcrystal 43. withapolishedAufaceanda6MHzoscillationfrequency(ColoradoCrystal Corp.). [25] J.D.Ferguson,A.W.Weimer,S.M.George,J.Vac.Sci.Technol.A Ex-situ XRR data were acquired by a high resolution Bede D1 2005,23,118. Diffractometer(BedeScientific).ACuKaX-raytubewithawavelength [26] B.S.Sang,A.Yamada,M.Konagai,Jpn.J.Appl.Phys.Part21998,37, of1.54A˚,afilamentcurrentof40mA,andavoltageof40kVwereusedfor L206. 120 www.cvd-journal.de (cid:1)2009WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Chem.Vap.Deposition2009,15,112–121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.