A&A551,A6(2013) Astronomy DOI:10.1051/0004-6361/201220359 & (cid:2)c ESO2013 Astrophysics No anticorrelation between cyclotron line energy and X-ray flux in 4U 0115+634 S.Müller1,C.Ferrigno2,M.Kühnel1,G.Schönherr3,P.A.Becker4,M.T.Wolff5,D.Hertel1,F.-W.Schwarm1, V.Grinberg1,M.Obst1,I.Caballero6,K.Pottschmidt7,F.Fürst8,I.Kreykenbohm1,R.E.Rothschild9,P.Hemphill9, S.M.Núñez10,J.M.Torrejón10,D.Klochkov11,R.Staubert11,andJ.Wilms1 1 Dr.KarlRemeis-Observatory&ECAP,UniversitätErlangen-Nürnberg,Sternwartstr.7,96049Bamberg,Germany email:[email protected] 2 ISDCDataCenterforAstrophysics,UniversityofGeneva,16chemind’Écogia,1290Versoix,Switzerland 3 Leibniz-InstitutfürAstrophysikPotsdam,AnderSternwarte16,14482Potsdam,Germany 4 SchoolofPhysics,Astronomy,andComputationalSciences,MS5C3,GeorgeMasonUniversity,4400UniversityDrive,Fairfax, VA22030,USA 5 SpaceScienceDivision,NavalResearchLaboratory,Code7655,4555OverlookAve.,S.W.,Washington,DC20375,USA 6 CEASaclay,DSM/IRFU/SAp-UMRAIM(7158)CNRS/CEA/UniversitéParis7,Diderot,91191Gif-sur-Yvette,France 7 CRESSTandNASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA,andCenterforSpaceScienceandTechnology, UMBC,Baltimore,MD21250,USA 8 SpaceRadiationLaboratory,290-17Cahill,Caltech,1200EastCaliforniaBlvd.,Pasadena,CA91125,USA 9 CenterforAstrophysicsandSpaceSciences,UniversityofCalifornia,SanDiego,LaJolla,CA92093,USA 10 InstitutoUniversitariodeFísicaAplicadaalasCienciasylasTecnologías, UniversityofAlicante,POBox99,03080 Alicante, Spain 11 InstitutfürAstronomieundAstrophysik,UniversitätTübingen,Sand1,72076Tübingen,Germany Received10September2012/Accepted23November2012 ABSTRACT WereportonanoutburstofthehighmassX-raybinary4U0115+634withapulseperiodof3.6sin2008March/Aprilasobserved withRXTEand INTEGRAL.Duringthe outburst theneutron star’sluminosity variedby afactor of 10 inthe3–50 keV band. In agreementwithearlierworkwefindevidenceoffivecyclotronresonancescatteringfeaturesat∼10.7,21.8,35.5,46.7,and59.7keV. Previous workhad found ananticorrelation between the fundamental cyclotron lineenergy and theX-rayflux. Weshow that this apparentanticorrelationisprobablyduetotheunphysicalinterplayofparametersofthecyclotronlinewiththecontinuummodels usedpreviously,e.g.,thenegativeandpositiveexponentpowerlaw(NPEX).Forthismodel,weshowthatcyclotronlinemodeling erroneously leadstodescribingpartof theexponential cutoff andthecontinuum variability,andnot thecyclotron lines.Whenthe X-raycontinuumismodeledwithasimpleexponentiallycutoffpowerlawmodifiedbyaGaussianemissionfeaturearound10keV, thecorrelation between theline energy and thefluxvanishes, and thelineparameters remain virtuallyconstant over theoutburst. Wethereforeconclude thatthepreviouslyreportedanticorrelationisanartifactoftheassumptionsadopted inthemodelingofthe continuum. Keywords.X-rays:binaries–pulsars:individual4U0115+634–magneticfields 1. Introduction abovethesurfaceoftheneutronstar.SeeBeckeretal.(2012)for adiscussionofthedifferentmodesofaccretionintheaccretion InallaccretingX-raypulsarstheaccretiongeometryisstrongly column. affectedbythemagneticfieldoftheneutronstar,whichhasval- Owing to the strong magnetic field of accreting X-ray pul- ues of a few 1012G at the magnetic poles. The accretedmatter sars, cyclotron resonance scattering features (cyclotron lines; is forcedto follow the magneticfield linesfromthe Alfvénra- CRSFs) are observable in many X-ray pulsars. These features dius inward to the accretion columns located at the magnetic have been reported for about 20 X-ray pulsars (Caballero & poles of the neutron star. The shape of these columns remains Wilms2011).CRSFsareproducedbyphotonsgeneratedinthe anopenquestion.Thesimplestmodelsassumecylinderorslab- accretion column of the neutron star interacting with electrons like geometries, although more complicated shapes have been (Schönherretal.2007;Mészáros1992,andreferencestherein). discussed (Mészáros 1984; Becker et al. 2012). On each mag- The motion of these electrons perpendicular to the B-field is neticpoleoftheneutronstar,ahotspotiscreated,emittingther- quantized into Landau levels with energy differences of about malphotonsintotheaccretioncolumn(Davidson1973).These (cid:2) (cid:3) photons are upscattered in energy by inverse Compton scatter- ΔE ≈12keV B · (1) ing within the accretion column, forming the hard X-ray spec- 1012G trum (Becker & Wolff 2007; Ferrigno et al. 2009). Depending on the source luminosity,and thusmass accretion rate, M˙, and Photons inelastically scattering off these electrons will imprint decelerationmechanism,aradiation-dominatedshockcanform absorption-linelikefeaturesontothespectralcontinuum. ArticlepublishedbyEDPSciences A6,page1of10 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2013 2. REPORT TYPE 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER No anticorrelation between cyclotron line energy and X-ray flux in 4U 5b. GRANT NUMBER 0115+634 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION California Institute of Technology,Space Radiation Laboratory,1200 E. REPORT NUMBER California Blvd,Pasadena,CA,91125 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We report on an outburst of the high mass X-ray binary 4U 0115+634 with a pulse period of 3.6 s in 2008 March/April as observed with RXTE and INTEGRAL. During the outburst the neutron star?s luminosity varied by a factor of 10 in the 3?50 keV band. In agreement with earlier work we find evidence of five cyclotron resonance scattering features at ∼10.7, 21.8, 35.5, 46.7, and 59.7 keV. Previous work had found an anticorrelation between the fundamental cyclotron line energy and the X-ray flux. We show that this apparent anticorrelation is probably due to the unphysical interplay of parameters of the cyclotron line with the continuum models used previously, e.g., the negative and positive exponent power law (NPEX). For this model, we show that cyclotron line modeling erroneously leads to describing part of the exponential cutoff and the continuum variability, and not the cyclotron lines. When the X-ray continuum is modeled with a simple exponentially cutoff power law modified by a Gaussian emission feature around 10 keV the correlation between the line energy and the flux vanishes, and the line parameters remain virtually constant over the outburst. We therefore conclude that the previously reported anticorrelation is an artifact of the assumptions adopted in the modeling of the continuum. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 10 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A&A551,A6(2013) MeasuringtheenergyoftheCRSFyieldsinformationabout relationbetweensourcefluxF andfundamentalcyclotronline X the B-fieldstrengthinthelineformingregion.SincetheB-field energyE .WesummarizethispaperinSect.5. 0 ofaneutronstarcanbeassumedtobedipole-liketofirstorder, in many models the centroid energy of CRSFs depends on the characteristicemissionheight,i.e.,thealtitudeofthelineform- 2. Observationsanddatareduction ingregion(Basko&Sunyaev1976;Burnardetal.1991;Mihara The outburst of 4U 0115+634 started 2008 March 12, after a et al. 2004). Since this altitude depends on the complex rela- phase of almost four years of quiescence, when Swift/BAT de- tion between the deceleration of the accreted material and the tected a significant increase of the X-ray flux (Krimm et al. mass accretion rate, it is expected to depend on the source lu- 2008). The outburst lasted about 40days and exceeded a flux minosity. Such a dependencehas indeed been observed. Three of∼200mCrabinthe2–12keVRXTE/ASMband(Fig.1).The types of behavior have been observed. One type shows a pos- wholeoutburstwasmonitoredwithpointedobservationsbythe itive correlation between the X-ray luminosity L and the cy- X Rossi X-ray Timing Explorer (RXTE, Bradt et al. 1993) and clotron line energy E (e.g., Her X-1, Staubert et al. 2007). cyc severalpointedobservationsbytheINTErnationalGamma-Ray TheothertypeshowsanegativecorrelationbetweenL andE X cyc Astrophysics Laboratory (INTEGRAL, Winkler et al. 2003). (e.g.,V0332+53,Nakajimaetal.2010,andreferencestherein). Here, we use data from RXTE’s Proportional Counter Array Finally,therearealso cyclotronsourcesknownwith a constant (PCA, Jahodaet al. 2006)and the High EnergyX-Ray Timing cyclotronlineenergy(e.g.,A0535+26,Caballeroetal.2007). Experiment (HEXTE, Rothschild et al. 1998), as well as the As suggested by Staubertet al. (2007) and Klochkovet al. INTEGRAL Soft Gamma-Ray Imager (ISGRI, Lebrun et al. (2011)andthenquantifiedbyBeckeretal.(2012),thesediffer- 2003).Data were reducedwith ourstandardanalysispipelines, entrelationsbetween L and E couldbedueto the different X cyc based on HEASOFT (v. 6.11) and INTEGRAL OSA v. 9.0. decelerationmechanismsfortheaccretedmaterial.Aboveacer- Data modeling was performed with the newest version of taincriticalluminosity,L ,theaccretedmaterialisdecelerated crit the Interactive Spectral Interpretation System (ISIS, Houck & mainlybytheradiationpressure.Inthissituation,anincreasein Denicola2000). luminositystopsthematerialearlier,leadingtothelineforming The PCA consisted of five proportional counter units region being in a region of lower B-field strength and yielding (PCUs), which were sensitive between 2 and 60 keV. Since anegativecorrelationbetweenE andL .Forverylowlumi- cyc X PCU 2 is known to have been the best calibrated one (Jahoda nosities, the deceleration is dominated by the gas pressure. In etal.2006),weonlyextractedspectrafromthetoplayerofthis thisregimehighermassaccretionrateswillcompresstheaccre- PCU inthestandard2fmode.ThehardX-rayspectrumfrom tion moundand thus lead to a positive correlationbetween the 15–250keVwasmonitoredwithHEXTE.HEXTEconsistedof luminosityandthecyclotronlineenergy.Finally,atintermediate twoindependentclusters,AandB,botharraysoffourphoswich luminosities one expects a regime where the accretion column scintillationdetectors.The“rockingmechanism”ofthese clus- is fairly stable and the deceleration is dominated by Coulomb ters allowed a near realtime measurement of the background. interactions. Since this mechanism failed for cluster A before our observa- 4U0115+634(Giacconietal.1972)isoneoftheX-raypul- tions, we only used data from cluster B. The other instrument sars for which CRSFs have been studied in great detail (see, forthehardX-rayswasthepixelizedCdTe detectorISGRIbe- e.g.,Wheatonetal.1979;Whiteetal.1983;Nagaseetal.1991; hindaCodedMaskonboardtheINTEGRALsatellite.Itcovers Heindl et al. 1999; Santangelo et al. 1999;Mihara et al. 2004; the energy range between ∼18 keV and 1MeV. We extracted Nakajima et al. 2006; Tsygankov et al. 2007; Ferrigno et al. all available ISGRI spectra, for which 4U 0115+634 was less 2009, 2011).The source shows 3.61s pulsation and has an or- than10◦ off-axis.Table1 containsan observationlog (see also bitalperiodof ∼24.3d (Cominskyetal. 1978;Rappaportet al. Fig.1). 1978).TheopticalcounterpartistheO9estarV635Cas(Johns Forthespectralanalysisweuseddatabetween3and50keV etal.1978;Ungeretal.1998). for PCA, and between 20 and 100 keV for HEXTE and for In previous outbursts, CRSFs have been detected up to the ISGRI. A systematic error has been added in quadrature to fifth harmonic (Heindl et al. 2000). This is the largest number the PCA and ISGRI data, using the canonical values of 0.5% of detected CRSFs in an accreting X-ray pulsar. In later work, and2.0%(Jahodaetal.2006,andIBISAnalysisUserManual1), a negative correlation between L and E was found (e.g., X cyc respectively.Toimprovethesignaltonoiseratioofthespectra, Nakajimaetal.2006;Tsygankovetal.2007;Mülleretal.2010), we averaged the data over 14 data blocks in time. These data meaningthatthesourceshouldbelocatedinthesupercriticallu- blocksare definedin the fifth column of Table 1 and shown in minosityregime.Otherauthorsevenfoundadiscontinuousbe- Fig. 1. We omitted one ISGRI dataset from our analysis (rev- havior of the fundamental line energy and explained this by a olution number 677), because no simultaneous RXTE data are suddenchangeoftheaccretionconditions(Lietal.2012). availableatthattimeandthesourcewasalmostin theoffstate In this work we revisit the behavior of the CRSFs in duringthatobservation. 4U0115+634.Focusingondatatakenduringagiantoutburstin 2008March/April(Fig.1).Weshowthatthepreviouslyclaimed relation between the source flux F and E strongly depends 3. Spectralanalysis X cyc onthechoiceoftheunderlyingcontinuummodel.InSect.2we summarize the observations. In Sect. 3 we describe the differ- 3.1.Pulsarcontinuummodels entcontinuummodelsandthefluxandtime dependenceofthe A large problem when analyzing X-ray spectra from X-ray bi- continuumandcyclotronlineparameters.Wearguethatthecy- narypulsarsistofindagooddescriptionofthebroadbandcon- clotronline is only modeledcorrectly whenusing an exponen- tinuum. In most cases, semi-physical models, which are some tially cutoff power law continuum with a strong emission fea- variant of a power law with a high energy exponential cutoff ture around 10 keV. Furthermore, alternative continua models, whichhavebeenusedinsomeearlierinvestigations,resultinin- 1 http://www.isdc.unige.ch/integral/analysis# correctcyclotronline parameterswhich cancause theapparent Documentation A6,page2of10 S.Mülleretal.:NoanticorrelationbetweencyclotronlineenergyandX-rayfluxin4U0115+634 Table1.Logofobservationsforthe2008outburstof4U0115+634. .1998.2000.2002.2004.2006.2008.2010 1997.1999.2001.2003.2005.2007.2009. 50 650 IDa Startdate MJD t b[s] ec V) March 2008 April 2008 01-01-00 2008Mar.20 54545.27–54545.43 83e3x6p/2413 1 ke 45 RXTE 300 600 01-01-01 2008Mar.20 54545.47–54545.49 1648/382 1 12 40 20 INTEGRAL 250 550 – 01-02-04 2008Mar.21 54546.97–54547.20 12448/3938 2 2 200 500 ( ) 01-02-00 2008Mar.23 54548.07–54548.25 9904/3082 2 1] 35 10 150 450 eV 0011--0022--0012 22000088MMaarr..2244 5544554499..1997––5544554590..3104 68383362//13914386 33 −ctss 30 1 3 5 7 911 13 51000 400 –12k 01-02-03 2008Mar.25 54550.24–54550.28 2384/934 3 e[ 25 0 epoch 2 4 6 8 1012 14 0 350 (2 01-02-05 2008Mar.26 54551.08–54551.17 4096/1679 4 at . 54560 54580 300 b] r a 01-02-06 2008Mar.26 54551.28–54551.31 752/625 4 nt 20 250 Cr 01-03-02 2008Mar.29 54554.23–54554.38 576/2112 5 u m 01-03-01 2008Mar.31 54556.14–54556.16 768/473 6 co 15 200 e[ 01-03-00 2008Mar.31 54556.25–54556.37 768/1558 6 M 150 at S 10 r 01-03-03 2008Apr.02 54558.93–54559.10 5456/3104 7 A 100 01-04-00 2008Apr.04 54560.04–54560.22 4240/2998 7 E 5 01-04-01 2008Apr.06 54562.01–54562.18 5888/2908 8 XT 50 01-04-02 2008Apr.06 54562.95–54563.09 5552/2317 8 R 0 0 01-04-03 2008Apr.07 54563.99–54564.07 3856/1548 9 51000 52000 53000 54000 55000 01-04-04 2008Apr.08 54564.82–54564.98 7808/2853 9 MJD 01-04-05 2008Apr.09 54565.86–54566.10 10896/4101 10 Fig.1.RXTE/ASMlightcurveof4U0115+634(2–12keV).Theinset 01-04-06 2008Apr.10 54566.98–54567.00 1648/699 10 shows a close-up view of this lightcurve, showing the 2008 outburst 01-05-00 2008Apr.11 54567.00–54567.01 1056/381 11 indetail.ArrowsindicatethetimesofpointedRXTEandINTEGRAL 01-05-01 2008Apr.11 54567.96–54568.13 9632/3176 11 observations.Numbersindicatetheobservationepochsusedinthedata 16-01-00 2008Apr.13 54569.98–54570.16 10192/3043 12 analysis(seealsoTable1). 16-01-01 2008Apr.15 54571.94–54572.12 10368/3162 12 16-02-00 2008Apr.18 54574.04–54574.15 7184/1924 13 16-02-01 2008Apr.22 54578.36–54578.51 6480/1679 14 wherefortypicalX-raypulsarsEbreak ∼ 10keVandwhichhas anunphysical“kink”atE ,whichcanresultinline-likeresid- 664 2008Mar.21 54546.48–54547.68 55981 2 break ualsaroundthisenergy(Kretschmaretal. 1997;Kreykenbohm 667 2008Mar.30 54555.46–54556.04 28279 6 etal.1999).ForthisreasonKlochkovetal.(2008)andFerrigno 668 2008Apr.02 54558.45–54559.05 27655 7 et al. (2009) smooth the continuum around this break, using a 669 2008Apr.07 54563.38–54564.02 28495 9 modeloftheform 670 2008Apr.10 54566.41–54567.01 30990 10 673 2008Apr.17 54573.90–54574.50 31360 13 ⎧ 675 2008Apr.24 54580.62–54581.97 70902 14 ⎪⎪⎪⎪⎨E−Γ forE ≤ Ebreak−ΔE 677 2008Apr.29 54585.69–54586.91 63662 – PLINT(E)∝⎪⎪⎪⎪⎩EAE−Γ3e+xpB(E−2E+/ECE+) D ffoorr|EE≥−EEbreak|+<ΔΔEE fold break Notes.ThefirstpartofthetablecontainstheRXTEobservations, the second part the ISGRI data. (a) For RXTE, the first column contains (4) the number of the Obs-ID after “93032-”. For ISGRI, it contains the revolution number. (b) For RXTE, the two numbers correspond to the where the coefficients A, B,C, and D are chosen such that the PCAandHEXTEexposures,respectively.(c)Epochfordatagrouping, continuumanditsfirstderivativearecontinuousatE = Ebreak± seetextfordetails. ΔE andwhereΔE (cid:2)0butsufficientlysmall. Other commonchoicesto avoid the breakare the so called negative and positive power-law exponential (NPEX, see, e.g., (Kreykenbohmet al. 2002,and referencestherein),are used to Makishima et al. 1999, and references therein), a continuum describethespectra.Thesemodelscanbejustifiedbyconsider- modelwithfivefreeparametersoftheform ingthe Comptonizationof softphotonsin an accretioncolumn (eBxpeockneernt&ialWlyocluffto2ff00p7o,waenrdlarewfemreondceels,cthaellreedinC)u.tTohfefmPLositnbIaSsIiSc NPEX(E)∝(cid:9)E−Γ1 +αE+Γ2(cid:10)exp(−E/Efold), (5) andXSPEC(Arnaud1996),hastheform with photon indices Γ1,2 ≥ 02, and the “Fermi Dirac cutoff” CutoffPL(E)∝ E−Γexp(−E/E ), (2) (FDCUT,seeTanaka1986) fold wScithhönthheerprhoettoanl.in2d0e0x7,)Γ.,Hanodwtehveerf,oltdhiinsgseimneprlgey,mEofdoledl(siseeo,fet.egn.,, FDCUT(E)∝ E−Γ 1+exp((E−1E )/E )· (6) butnotalways,insufficienttodescribethecontinuaofobserved break fold X-raypulsars,asthecurvatureinthecontinuumisoftenseento Common to all of these empirical continua is that despite the startatdifferentenergies.Toobtainagoodspectralfit,therefore, smoothertransitionaroundE theyoftenneedtobemodified break modelswithmorefreefitparametersandmorecomplexshapes furtherbyabroadexcessordepressionaround10keV.Thisso- aresometimesrequired.Themostsimpleofthesemodelsisthe called“10keVfeature”hasbeenobservedinmanyX-raypulsar powerlawwithhighenergycutoff spectra, either in absorptionor in emission, although its origin (cid:4) isstillnotclear(Coburn2001).Thisfeatureisusuallymodeled E−Γ forE ≤ E PLCUT(E)∝ break (3) E−Γexp((E −E)/E ) forE > E 2 OftenonefixesΓ =2,see,e.g.,Nakajimaetal.(2006). break fold break 2 A6,page3of10 A&A551,A6(2013) as an additive Gaussian line, with the centroid energy EG, the 3 1 widthσ ,andthefluxA . 0 G G -3 In addition to those empirical models, based on the the- 3 2 oretical description of bulk and thermal Comptonization in 0 magnetizedaccretioncolumnsofBecker&Wolff(2007,andref- -3 erencestherein),Ferrignoetal.(2009)havedevelopedacontin- 3 3 uum model depending on physical parameters like the column 0 radius, the accretion rate, the electron temperature, the B-field -3 strength.Ahybridmodelwhichcombinesthebroadbandcontin- 3 4 uumwithCRSFsiscurrentlyinpreparation(Schwarmetal.,in 0 -3 prep.).Thesephysics-basedcontinuummodelsarestillinactive developmentand,because of the large numberof free parame- 3 5 0 ters,onlysuitedforveryhighsignaltonoisedata.Forthisreason -3 mostobservationalworkusesoneofthe continuadescribedby 3 6 Eqs.(2)–(6). 0 For sources with cyclotron lines, the continuum model is -3 modified with a description of the cyclotron line. Since phys- 3 7 ically self consistent line models such as those described by 0 Schönherr et al. (2007) are still not available for all sources, σ] -3 empirical line models are generally used. The two most com- χ[ 3 8 0 mon CRSF models are those using a Gaussian or a pseudo- -3 Lorentzian profile (see discussion by Nakajima et al. 2010). 3 9 Here, we model the CRSFs with a pseudo-Lorentzian optical 0 depth profile (Miharaet al. 1990),i.e., we multiplythe contin- -3 uummodelwith 3 10 (cid:11) (cid:12) 0 τ(WE/E )2 -3 CYCLABS(E)=exp −(E−E )2cy+cW2 , (7) 3 11 cyc 0 -3 withthe centroidenergy,Ecyc, the widthofthefeature,W, and 3 12 the optical depth of the line, τ. This approach allows the com- 0 parisonofthelineparameterswithresultsfrompreviouspapers, -3 inwhichalsotheCYCLABSmodelhasbeenused(e.g.,Nakajima 3 13 0 etal.2006;Tsygankovetal.2007;Lietal.2012).Intheremain- -3 derofthepaper,welabelthecyclotronlineparameterswiththe 3 14 numberofrespectiveharmonic,where0correspondstothefun- 0 damentalline.AscommonforCRSFs,Wandτarestronglycor- -3 related(Coburn2001).Wethereforesetalowerlimitof0.5keV 10 20 30 40 50 forthewidth,whichiscomparabletothetypicalPCAresolution. energy[keV] Inordertodescribethedataof4U0115+634,inadditionto Fig.2.DeviationsbetweenthedataandthebestfitwithCutoffPLand several of the continuum models discussed above, we take in- 10 keV feature for the PCA (circles), HEXTE (crosses), and ISGRI terstellar absorption into account, modeling it with an updated (filled diamonds) in units of standard deviations σ. For these fits, no versionofTBabs3,usingabundancesbyWilmsetal.(2000)and cyclotronlineshavebeentakenintoaccount.Thenumbersontheright crosssectionsbyVerner&Yakovlev(1995).Wefurthermoreac- sideindicatetherespectiveepoch. countforanintrinsicFeKαfluorescenceline,whichwedescribe withanadditivenarrowGaussianemissionlinewithfrozencen- troidenergyat6.4keV,awidthof10−4 keV,andafluxAFe and 3.2.Fittingstrategy equivalent width W . Assuming a narrow line is justified be- Fe causeinsystemslike4U0115+63FeKαisexpectedtohavea Since the CutoffPL is the easiest continuum model for X-ray widthontheorderof(cid:2)0.5keV(see,e.g.,Torrejónetal.2010), pulsars,weusedthismodelforourfits.Furthermore,the10keV whichcannotberesolvedbyPCA. feature in emission is requiredto get a good descriptionof the Inordertotakeintoaccountthatthefluxnormalizationofthe data. For each epoch, the fits have been simultaneously per- differentinstrumentsused is notperfectly knownwe introduce formedforallavailableinstruments.Figure2showstheresidu- cross calibration constants c and c as free fit param- alsofthebestfitusingthiscontinuumwithouttakinganyCRSFs HEXTE ISGRI eters. These constants also account for flux differences of the into account. These residuals clearly indicate the need of the source between the observationswhich were not fully simulta- cyclotronlines in this model at ∼11, 22, and sometimes above neous. The PCA backgroundwas estimated using the standard 30keV.Asthequalityofindividualdatasetsisstronglyvariable models provided by GSFC. These estimates often show a flux overtheoutburst,inaninitialfitrunavariablenumberofCRSFs deviationfromtheproperbackgroundbyafewpercent.Thisde- were addedto individualfits untilthe reducedχ2, χ2 ∼ 1. To red viation was accounted for by multiplying the background flux avoidcontinuummodelingwiththeabsorptionfeatures,wefixed withanotherfitparameter,c (seealsoRothschildetal.2011). thewidthsoftheCRSFsofthesecondandhigherharmonicsto b typicalvalues,i.e.,4keV(Ferrignoetal.2009). 3 See http://pulsar.sternwarte.uni-erlangen.de/wilms/ Inordertocheckwhetherthenumberofdifferentcyclotron research/tbabs/ features in the model affects the fit results of the continuum A6,page4of10 S.Mülleretal.:NoanticorrelationbetweencyclotronlineenergyandX-rayfluxin4U0115+634 NH [1022cm−2] Efold [keV] a χ2red≈1.1 0 2 4 10 12 100 13 a bNH=! 1.7×1022cm−2 0.6 −1V] 10 V] 12 0.5 ke e −1 1 [k 0.4Γ tss Efold 11 0.3 ate[c 0.1 r 10 0.2 0.01 FeKα 10keV 0.1 line feature 10-3 c d 2 b 0.6 0.6 σ[] 0 χ 0.5 0.5 -2 5 10 20 50 100 Γ0.4 0.4Γ energy[keV] 0.3 0.3 Fig.4. a) Folded spectrum from epoch 6 together with best fit (red) andallmodelcomponents,i.e.,CutoffPL,10keVfeature,FeKαflu- 0.2 0.2 orescenceline,andfivecyclotronfeatures.b)Residualsofthebestfit, 0.1 0.1 shownasthedifferencebetweenthedataandthemodelnormalizedto 0 2 4 10 11 12 13 theuncertaintyofeachdatapoint.Darkbluedatapointscorrespondto NH [1022cm−2] Efold [keV] PCA,cyanpointstoHEXTE,andorangepointstoISGRI. Fig.3.a)c)andd)Confidencecontoursforthefoldingenergy,thepho- tonindexandthehydrogencolumndensityforepoch6.b)Confidence contours between the E and Γ with N frozen to 1.7×1022cm−2. the first fit run with the CutoffPLcontinuumand 10 keV fea- fold H Contourlinescorrespondtothe68.3%,90%,and99%level.Colorindi- ture,andfixedNH (seealsoTable2).Asalreadynotedinprevi- catesΔχ2withrespecttothebestfitvalue,withthecolorscalerunning ous analyses for 4U 0115+634, the continuum varies over the fromorange(lowΔχ2)todarkblue(largeΔχ2). outburst (e.g., Li et al. 2012). During the brightest phases of theoutburstthespectrumisthehardestone.AsshowninFig.3, thevariationofΓissignificantlylargerthantheveryslightcor- parametersand the fundamentaland first harmonicCRSF, in a relationseenbetweenΓand E .Asexpected,thesource’sin- second run all spectral fits included only the fundamental line trinsic iron Kα line is significfoalndtly present during all epochs. and its first and second harmonics.For epochs,where only the As also observedin other X-ray transient pulsars(Inoue 1985) first harmonic was necessary to obtain a good fit in our initial and expected for a line originating from fluorescence, the line run, we added the second harmonicwith fixed parametersdur- flux is positively correlated to the X-ray flux from the source. ingthesecondrun,holdingitsparametersatthemeanvaluesof Theequivalentwidthstaysconstantwithintheuncertaintiesover theresultsfromtheotherepochs. theoutburst.The10keVfeaturevariesinboth,thecentroiden- SinceinitialfitswiththeCutoffPLcontinuumshowedlarge ergyE anditsfluxA .Itsenergyseemstobeslightlyanticor- uncertaintiesforthehydrogencolumndensity,N ,withoutasig- G G H relatedwiththesourceflux,whiletherelativefluxinthefeature, nificantvariabilitybetweendifferentepochs,weheldN fixedat H i.e.,theratiobetweenthefluxinthe10keVfeatureandthetotal themeanvalueNH =1.7×1022cm−2toavoidunphysicalcorre- flux,remainsconstant.Itswidth,σ ,remainsrelativelyconstant lationsbetweenthesefitparameters(Fig.3). G between3.0keVand3.5keV. Thetwofitrunsshowthatalmostallfitparametersareequal Verydifferentfromvirtuallyallpreviousanalyses,however, withintheirrespectiveuncertaintiesforbothruns.OnlyE and fold thecyclotronlineisseentobeonlyslightlyvaryingovertheout- thelineparametersofthesecondharmonicareslightlydifferent burst.ThecoloreddatapointsinFigs.6and7showthecentroid inepoch6and7.Thesedifferencescanbeexplainedbythefact energy,E ,thewidth,W ,andtheopticaldepth,τ ,ofthefun- that for these two cases the second run has to account for the 0 0 0 damentalcyclotronlineagainsttimeandfluxfortheCutoffPL equivalent of the four harmonics required in the first run. The continuum,modified with the 10 keV feature. In these fits, the differences affect mainly the higher energies and are compen- widthW remainsconstantthroughouttheoutburst,andthereis satedbyachangeinthefoldingenergyandtheclosestcyclotron onlyasli0ght(∼3σ)indicationthattheopticaldepthτ wassome- line, i.e., the second harmonic. The remainder of this paper is 0 whatshallower duringthe initial phasesof the outburst,before basedontheresultsfromthefirstfitrun. ∼MJD54552,althoughitcannotbeexcludedthatsomeofthis An examplefor the bestfit using the CutoffPLcontinuum effect is due to a correlation with the “10 keV feature”, which with 10 keV feature and five cyclotron features (first fit run, during this time of the outburst peaks close to the cyclotron epoch6)isshowntogetherwithallmodelcomponentsinFig.4. line at around 8 keV. Most importantly, however, as shown in Thisspectrumwasrecordedbyallthreeinstrumentsduringthe Fig.6theenergyofthefundamentalcyclotronlineisonlyvery maximumoftheoutburst,i.e.,epoch6.Allfitresultsfromruns slightly variable: during early phases of the outburst the line usingtheCutoffPLcontinuumaresummarizedinTable2. is around11 keV, movingtowards 10 keV as the outburstpro- gressed.Thisresultiscontrarytoallearlierstudiesofoutbursts 4. Spectralevolution:Noanticorrelation of4U0115+634,wherestrongchangesinthelineenergywere seen(e.g.,Lietal.2012;Tsygankovetal.2007;Nakajimaetal. ofthecyclotronlineenergywithflux 2006;Miharaetal.2004). Figures5–7showtheevolutionofthecontinuumandcyclotron Where does this difference in line behavior come from? lineparametersaswellastheparametersfortheFeKαlinefor As discussed in Sect. 3.1 a large variety of continuum models A6,page5of10 A&A551,A6(2013) Table2.Continuumparametersofthetimeresolvedspectralanalysis. epa L b Γ E A c W E A c σ c c c χ2 /d.o.f. X fold Fe Fe G G G b HEXTE ISGRI red [keV] [10−3] [eV] [keV] [keV] 1 4.38+0.02 0.59+0.04 10.7+0.5 2.5+0.6 55+12 8.3+0.3 0.18+0.02 3.4+0.1 1.00+0.02 0.73+0.02 – 1.13/50 −0.02 −0.05 −0.5 −0.6 −12 −0.2 −0.02 −0.3 −0.02 −0.02 2 5.35+0.02 0.56+0.03 11.5+0.4 2.9+0.7 53+10 8.0+0.2 0.19+0.02 3.3+0.1 0.96+0.01 0.74+0.01 0.87+0.02 1.12/77 −0.02 −0.03 −0.4 −0.7 −10 −0.2 −0.02 −0.1 −0.01 −0.01 −0.02 3 7.48+0.02 0.54+0.03 11.6+0.3 3.7+0.9 46+10 7.3+0.2 0.34+0.02 3.6+0.1 0.94+0.02 0.75+0.01 – 1.32/48 −0.02 −0.03 −0.3 −0.9 −10 −0.2 −0.01 −0.1 −0.02 −0.01 4 8.66+0.03 0.45+0.03 10.8+0.3 4.4+1.0 46+10 7.1+0.3 0.37+0.03 3.5+0.1 0.94+0.02 0.78+0.01 – 0.88/48 −0.03 −0.03 −0.3 −1.0 −10 −0.2 −0.03 −0.1 −0.02 −0.01 5 9.24+0.05 0.42+0.05 10.7+0.4 5.4+1.7 52+17 7.0+0.8 0.44+0.08 3.6+0.4 0.92+0.05 0.94+0.02 – 0.79/48 −0.06 −0.08 −0.6 −1.7 −17 −0.5 −0.07 −0.3 −0.05 −0.02 6 10.18+0.04 0.36+0.04 11.3+0.5 5.8+1.6 51+13 7.2+0.6 0.31+0.07 3.0+0.4 0.93+0.04 0.88+0.02 1.04+0.02 1.09/75 −0.04 −0.07 −0.6 −1.5 −13 −0.3 −0.05 −0.3 −0.04 −0.01 −0.02 7 9.43+0.03 0.36+0.04 10.8+0.4 6.4+1.2 61+10 7.7+0.7 0.30+0.04 3.1+0.2 0.94+0.02 0.84+0.01 1.05+0.02 1.18/75 −0.03 −0.07 −0.5 −1.2 −10 −0.4 −0.04 −0.2 −0.02 −0.01 −0.02 8 8.70+0.03 0.38+0.04 10.2+0.3 5.9+1.0 61+10 7.7+0.4 0.32+0.04 3.3+0.2 0.93+0.02 0.78+0.01 – 1.27/48 −0.03 −0.04 −0.3 −1.0 −10 −0.3 −0.04 −0.2 −0.02 −0.01 9 7.84+0.03 0.50+0.03 11.5+0.4 5.1+1.0 60+10 7.7+0.4 0.32+0.03 3.3+0.2 0.93+0.02 0.75+0.01 0.96+0.02 0.99/77 −0.02 −0.04 −0.3 −1.0 −10 −0.3 −0.03 −0.2 −0.02 −0.01 −0.02 10 7.17+0.03 0.52+0.04 11.6+0.4 4.8+0.9 61+12 7.8+0.5 0.27+0.03 3.1+0.2 0.95+0.02 0.75+0.01 0.87+0.02 1.11/77 −0.02 −0.07 −0.5 −1.0 −12 −0.3 −0.03 −0.2 −0.02 −0.01 −0.02 11 5.76+0.02 0.52+0.04 10.7+0.4 3.9+0.8 61+12 8.0+0.4 0.21+0.02 3.0+0.2 0.97+0.02 0.76+0.01 – 1.17/48 −0.03 −0.07 −0.5 −0.8 −12 −0.3 −0.02 −0.2 −0.02 −0.01 12 4.33+0.02 0.56+0.06 10.5+0.6 2.6+0.6 53+12 8.2+0.5 0.18+0.02 3.0+0.2 0.96+0.01 0.73+0.01 – 1.10/48 −0.02 −0.10 −0.7 −0.6 −12 −0.3 −0.02 −0.2 −0.01 −0.01 13 2.84+0.02 0.59+0.06 9.6+0.5 1.9+0.5 55+13 7.9+0.6 0.13+0.02 3.1+0.2 0.95+0.02 0.72+0.02 0.86+0.03 0.96/81 −0.02 −0.16 −0.9 −0.5 −14 −0.3 −0.03 −0.3 −0.02 −0.02 −0.03 14 1.40+0.02 0.41+0.22 8.3+1.2 0.6+0.5 35+27 8.5+0.5 0.04+0.03 3.0+0.5 0.98+0.02 0.69+0.04 0.44+0.03 0.86/81 −0.02 −0.28 −1.2 −0.3 −17 −0.7 −0.02 −0.7 −0.02 −0.04 −0.03 epa E W τ E W τ E τ E τ E τ 0 0 0 1 1 1 2 2 3 3 4 4 [keV] [keV] [keV] [keV] [keV] [keV] [keV] 1 11.0+0.4 0.9+3.9 0.04+0.02 21.6+0.3 0.9+1.0 0.24+0.18 – – – – – – −0.8 −0.4 −0.02 −0.3 −0.4 −0.07 2 11.2+0.5 0.8+2.4 0.03+0.02 22.1+0.3 2.6+1.0 0.24+0.03 32.7+1.3 0.25+0.07 42.8+2.5 0.26+0.09 – – −0.6 −0.3 −0.02 −0.3 −0.9 −0.03 −1.3 −0.07 −2.2 −0.08 3 11.1+0.5 0.5+1.3 0.03+0.02 22.0+0.2 0.5+0.8 0.26+0.05 37.5+1.0 0.20+0.05 – – – – −0.5 −0.0 −0.02 −0.2 −0.0 −0.12 −1.0 −0.05 4 11.0+0.5 0.8+2.4 0.03+0.02 21.8+0.3 1.1+0.9 0.19+0.16 36.4+1.0 0.22+0.07 – – – – −0.7 −0.3 −0.02 −0.3 −0.6 −0.05 −1.2 −0.07 5 11.0+0.6 2.5+1.5 0.12+0.15 22.1+0.6 1.4+2.3 0.18+0.24 36.2+1.8 0.18+0.09 – – – – −0.7 −1.5 −0.07 −0.6 −0.9 −0.07 −2.0 −0.08 6 10.7+0.3 1.8+1.0 0.11+0.14 21.8+0.4 4.8+0.9 0.46+0.05 35.2+0.7 0.48+0.07 46.7+1.2 0.44+0.10 59.7+2.0 0.52+0.24 −0.4 −1.2 −0.07 −0.4 −0.9 −0.05 −1.0 −0.08 −2.0 −0.13 −3.2 −0.25 7 10.7+0.2 2.3+0.9 0.18+0.14 22.1+0.2 3.8+0.6 0.45+0.05 33.3+0.9 0.35+0.06 41.6+1.4 0.34+0.08 52.8+1.8 0.42+0.13 −0.3 −0.9 −0.08 −0.2 −0.5 −0.03 −0.8 −0.07 −1.6 −0.08 −2.0 −0.14 8 10.6+0.3 2.3+0.8 0.16+0.08 21.8+0.3 2.9+0.8 0.30+0.03 34.9+1.0 0.25+0.06 – – – – −0.3 −0.7 −0.05 −0.3 −0.7 −0.04 −0.8 −0.05 9 10.5+0.3 2.1+0.9 0.12+0.07 21.6+0.3 2.7+1.2 0.22+0.04 33.2+1.2 0.25+0.06 43.7+2.0 0.28+0.08 – – −0.3 −0.7 −0.04 −0.4 −0.9 −0.03 −1.0 −0.06 −1.7 −0.07 10 10.3+0.4 2.0+1.2 0.09+0.10 21.4+0.4 3.9+1.4 0.25+0.06 34.0+1.3 0.31+0.07 44.0+2.3 0.28+0.09 – – −0.5 −0.9 −0.04 −0.5 −1.0 −0.04 −1.0 −0.07 −1.9 −0.08 11 10.3+0.4 2.1+1.0 0.10+0.10 21.3+0.4 2.9+1.6 0.21+0.05 33.0+2.4 0.22+0.08 – – – – −0.4 −1.0 −0.05 −0.4 −1.0 −0.03 −1.5 −0.07 12 10.1+0.3 2.3+1.0 0.14+0.13 20.8+0.3 2.3+1.0 0.21+0.05 34.6+1.8 0.20+0.10 – – – – −0.3 −0.9 −0.06 −0.4 −0.8 −0.04 −1.9 −0.08 13 10.2+0.4 1.7+1.7 0.08+0.13 20.7+1.4 2.6+5.0 0.08+0.13 – – – – – – −0.5 −1.0 −0.03 −2.2 −2.1 −0.05 14 10.7+0.5 0.5+4.0 0.06+0.04 20.3+1.6 5.9+2.8 0.38+0.19 – – – – – – −0.8 −0.0 −0.03 −1.4 −3.2 −0.19 Notes.FitswereperformedwiththeCutoffPLmodelandavaryingnumberofCRSFs.Uncertaintiesandupperlimitsareatthe90%confidence levelforoneinterestingparameter.(a)Epochfordatagrouping(seetextfordetails).(b)Absorbedluminosityinunitsof1037ergs−1.L coversthe X energyband3–50keVandwascalculatedusingadistanceof7kpc(Negueruela&Okazaki2001).(c)Inunitsofphotonss−1cm−2. can be used to describe the broad band spectra of accreting differentbehaviorof the fundamentalcyclotronline, especially neutron stars. Due to the early successes of fitting spectra of thecentroidenergy. 4U0115+634withtheNPEXandPLCUTmodels,thesecontinua Given that the fits with NPEX and CutoffPLgive similarly havebeenextensivelyusedwhenmodelingtheoutburstbehav- good results, what is the fundamental difference between both iorofthispulsar.Unfortunately,however,inmostpreviousanal- modeling approaches? NPEX models generally result in very yses – including some of our own – no attempt was made at broad cyclotron lines, with W and W often exceeding 5 keV 0 1 modelingthedatawithanyoftheotheravailablemodels. (e.g., Nakajima et al. 2006, runs using the PLCUT model give Asanexample,modelingthe2008outburstof4U0115+634 similar results, see, e.g., Li et al. 2012). In contrast, using the withtheNPEXmodel(followingNakajimaetal.2006,fixingΓ2 CutoffPLcontinuumwiththe10keVfeatureresultsinwidths to2.0)resultsinfitsthatareofonlyslightworsequalityasthose oftypicallylessthan3keV,muchmoreconsistentwiththenar- usingtheCutoffPLmodelmodifiedbythe10keVfeature,and row shapesof the residualsshown in Fig. 2. When lines are as we can recoverthe strong variationof the cyclotronline found broad as in the NPEX fits, they can influence the continuumfit. in earlier analyses (Fig. 6, cyan data points)4. Depending on Toillustratehowstronglythesefeaturesactuallydistortthecon- thechoiceofthecontinuum,wethereforefindafundamentally tinuum,Fig.8showsthecontinuumshapeinferredwhensetting τ , τ , τ , andτ to zero.Theresidualsforthe CutoffPLcon- 0 1 2 3 4 ModelingthespectrawiththePLCUTmodelresultsinanunphysical tinuumwiththe10keVfeature(darkblue)showsharpabsorp- breakaroundtheenergyofthefundamentalline,wethereforeconsider tion dips at the cyclotron line energies of the fundamentaland thiscontinuumtobeunsuitableforstudyingthecyclotronlinebehavior. first harmonic line energies. For the NPEX model (green line), A6,page6of10 S.Mülleretal.:NoanticorrelationbetweencyclotronlineenergyandX-rayfluxin4U0115+634 10 15 V ke 5 0 5 − 3X 2 L 14 1 0.6 Γ 0.4 13 12 0.2 V] e 11 12 k V] [ 12 e 0 k 10 E 10 [ old 8 50 60 70 Ef 11 time(MJD-54500) 6 AFe 4 10 2 10 V] 1 2 5 10 e [k 8 LX3−50keV [1037ergs−1] G E Fig.6. Luminosity and time dependence (inset) of the energy of the 4 fundamental CRSF using the CutoffPL continuum model. The color V] 3.5 codingisthesameasinFig.5.Cyandatapoints(diamonds)showthe ke resultswhenusingtheNPEXcontinuum. [ 3 G σ 2.5 Using the results from the CutoffPL plus 10 keV feature 0.4 fitsforthelineenergyalsosolvesanotherproblemfoundinear- G lierspectralmodeling.Here,usingNPEXfits,theratiosbetween A 0.2 thefundamentalandhighercyclotronlineswereoftenfoundto deviate significantly from integers. While slightly non-integer 2 ratios are expected when taking relativistic quantum mechan- icsintoaccount(seethediscussionbyPottschmidtetal.2005), d 1.5 2re thelargedeviationsfromintegermultiplesseenpreviously(e.g., χ 1 Tsygankovetal.2007;Nakajimaetal.2006;Heindletal.1999; 0.5 Santangelo et al. 1999) require rather complex model assump- 50 60 70 1 2 5 10 tionswhichintroducesecondordereffectssuchasstrongvertical time (MJD-54500) LX3−50keV B-fieldgradients,crustalfieldstructuresonsmallscales,orther- momagnetic effects for their explanation (see Schönherr et al. Fig.5.Lefttemporalevolutionandrightluminositydependenceofthe 2007, and references therein for a discussion). Figure 9 shows continuumparameters(seetextfordefinitions)and10keVfeaturefor thatwecanrecoverthesenon-integerratiosinourNPEXfits,but thefitswiththeCutoffPLcontinuum.Thecolorgradientfromreddish whenusingtheCutoffPLplus10keVfeaturemodel,thesera- toblueishdatapointsindicatesthetemporalevolutionoftheoutburst. Thedata points show resultsfrom the initialfit run, where avariable tiosaremostlyinagreementwithintegervalues,oratleastonly numberofcyclotronlineswasused.Greendatapointsintheleftcolumn slightlyhigher,asexpectedfromthemostsimplemodelsforcy- correspondtothesecondfitrunwithafixednumberofthreecyclotron clotron line formation. We conclude that also from a physical lines(onlyintheleftcolumn),whichwasbeenperformedasaconsis- pointofview,theCutoffPLcontinuumwiththe10keVfeature tency check (see text for details). Where no green points are visible, givesamuchmoresatisfactorydescriptionofthedata. bothfitsgavethesameresults.LXisinunitsof1037ergs−1.AGandAFe Finally, we check the dependence of the line position on areinunitsofphotonss−1cm−2,whileA isinmultiplesof10−3. Fe other free fit parameters when using the CutoffPL continuum modifiedbythe10keVfeature.Sincetheoriginofthe10keV feature remains still an open questtion, possible relations be- on the otherhand,it is obviousthatrather than describingnar- tween the CRSF centroid energy and the parameters of the rowcyclotronlines,themultiplicativebroadlinemodelstrongly 10keVfeaturehavetobeinvestigated,andothercontinuumpa- influencesthe continuum.As discussed above,our spectral fits rameterssuchasE orΓcouldinfluencetheresultsforthecy- fold show that during the brightest phases of the outburst a signifi- lotronline parameters.Figure10showsthe behaviorof Δχ2 in canthardeningofthecontinuumemissionisobserved,together thevicinityofthebestfitvaluesforthreeepochsrepresentative witha changeofthe exponentialcutoff.While thisisalso seen fortheearlyphase,peak,andlatephaseofthe2008outburstfor inthevariationofthecontinuumparameters,itisverylikelythat selectedcombinationsofimportantfitparameters.Thesecontour theluminositydependenceoftheCRSFintheNPEXfitsisdueto plotsshowthatthe line energyisnotaffectedbycrosscorrela- the line partially modelingthis behaviorof the continuum,and tions with other parameters, i.e., possible variations in the line notarealphysicaleffect. energyofthefundamentalcyclotronlinearenotduetovariations A6,page7of10 A&A551,A6(2013) V] 4 1] 100 e − k V 10 NPEX [ e 0 2 k CutoffPL W −1 1 s 0.5 s ct 0.1 0.2 [ e τ0 00.0.15 rat 0.01 a 0.02 0.01 1.4 E E E E 0 1 2 3 1.2 22 ] V e 21 1 k E[1 2109 ratio 00..86 0.4 38 V] 0.2 e 36 b k 0 [ 34 5 10 20 50 100 2 E energy [keV] 32 48 Fig.8.a)PCA,HEXTE,andISGRIspectrafromepoch9(red)together ] V 46 withthebest fit modelsusing the NPEX (green) and CutoffPL (blue) e k 44 continuaaftersettingtheopticaldepthofthecyclotronlinestozero.b) [ 3 42 Ratiobetweenthedataandthemodel. E 40 6 50 60 70 1 2 5 10 time (MJD-54500) LX3−50keV [1037ergs−1] 5.5 4 Fig.7.Time(left)andluminosity(right)dependenceoftheparameters 5 = oftheCRSF.ThecolorcodingisthesameasinFig.5. n 4.5 3 observedintheparametersofthe10keVfeatureorthecontin- 4 = uumparameters. E0 n In contrast to the stable behavior of the line when using / 3.5 CutoffPLwith a 10 keVfeature,Fig. 11illustrates thedepen- En 2 denceoftheCRSFcentroidenergyonthecontinuumparameters 3 = oftheNPEXmodel.Inmanycases,strongcorrelationsbetween n E andΓ aswellasbetweenE andE arepresent.Thesecor- 2.5 0 1 0 fold relationsareafurtherindicatorthattheLorentziancomponentis 1 usedto modelthe continuumratherthana cyclotronlinewhen 2 = usingtheNPEXmodel. n 1.5 1 5. Summaryandconclusion 50 60 70 80 Inthispaperwehavepresentedastudyofthe2008outburstof time (MJD-54500) 4U 0115+634 based on RXTE and INTEGRAL data (Fig. 1). Fig.9.Ratiosofthecyclotron lineenergies E /E withrespect tothe We reproducedthe results from previouswork (e.g., Nakajima n 0 centroidenergyofthefundamental lineagainst time.Thedarkgreen, et al. 2006;Tsygankovet al. 2007;Li et al. 2012, and others), darkblue,redandpurpledatapoints(bars)correspondtoE /E ,E /E , that the spectra can be successfully modeledby,e.g., the NPEX E /E ,andE /E ,respectively,usingtheCutoffPLconti1nuu0mw2ith0a model.We showedthatforthese fits the verybroadabsorption 3 0 4 0 10keVfeature.Thelightgreenandcyandatapoints(filledcircles)show features,whicharethoughttodescribetheCRSFs,rathermodel theresultsforE /E andE /E usingNPEX.Thedashedlinesindicate 1 0 2 0 thebroadbandcontinuum.Ourresultthatthecontinuumparam- integervaluesfortheseratios. eters are strongly variable over the outburst (Fig. 5), could be responsibleforthechangein thecyclotronline energyin these fits. energyofthefundamentalcyclotronline,thePLCUTmodeldoes Wehaveshownthatthespectralcontinuumcanbealsowell not give a physical description of the continuum. Using the describedwithamodelintroducedbyKlochkovetal.(2007)for CutoffPLtogetherwiththe10keVfeature,wehaveshownthat EXO 2030+375 and Ferrigno et al. (2009) for 4U 0115+634, themodelingoflinesreflectsthetheoreticalexpectationinboth i.e., the CutoffPL,modified by strong Gaussian emission fea- thelineshapeandtheratiosoftheharmonics.Inthismodel,the ture around 10 keV and several (up to five) cyclotron lines luminositydependencyofthecentroidenergyisnotpresent.As (Table 2 and Fig. 4). Due to an unphysical break close to the shownalsobyFerrignoetal.(2011),thelinecentroidenergyis A6,page8of10 S.Mülleretal.:NoanticorrelationbetweencyclotronlineenergyandX-rayfluxin4U0115+634 5 15 4 ] V W0eV] 3 ke 10 k [ [ 0 2 W 5 1 3 0.6 2 Γ 0.4 1 Γ 1 0.2 0 12 8 ] dV] 10 V Efol[ke 8 [ked 6 ol ] Ef 4 2 − m c 10 12 14 10 12 14 10 12 14 G−1 0.4 E0 [keV] E0 [keV] E0 [keV] A s s n 0.2 Fig.11. Confidence contours between the fundamental cyclotron line o t energy and continuum parameters when using the NPEX model. The o h 0 displayedepochs,colorsandlinesarethesameasinFig.10. p [ GV] 10 inferred from the NPEX and PLCUT models was almost a jump E ke ata3–50keV luminosityofaround3×1037ergs−1 andstrong [ 8 hysteresiseffectswerepresent(Fig.6).Suchabehaviorhasnot been seen in any of the other cyclotron line sources. The sec- ondstrongestluminosity-dependentcyclotronlinevariabilityis observedin V0332+53(Mowlaviet al. 2006;Tsygankovet al. 3.5 V] 2006;Nakajimaetal.2010),inwhichthecyclotronlinesareso σGe 3 strongthatthechangecanbeseenbyeyeevenintherawdetec- [k torspectra.Whiletheboundariesbetweenthedifferentaccretion 2.5 regimesestimatedbyBeckeretal.(2012)mightthereforehave to be adjusted, the overall principal behavior of the accretion 10 12 14 10 12 14 10 12 14 columndiscussedbytheseauthorsstillholds. E0 [keV] E0 [keV] E0 [keV] With the recently successful launch of NuSTAR (Harrison etal.2010),alowbackground,focusingtelescopewithslightly Fig.10. Confidence contours between the fundamental CRSF energy higher resolution than the RXTE-HEXTE or the Suzaku-HXD and other fit parameters. The columns show the results for epochs 2, 6, and 14, respectively. Contour lines correspond to the 68.3%, 90%, isnowavailable.Withitshigherresolutionandthemuchhigher and99%confidencelevel.ColorindicatesΔχ2 withrespecttothebest expected signal to noise ratio in the spectra, we will be able, fit value, withthe color scalerunning from orange (low Δχ2) to dark for the first time, to resolve cyclotron lines and study their blue(largeΔχ2). luminosity-dependentbehaviorwithoutthedangerofasystem- aticinfluenceofthechoiceofacontinuum. remarkablystablethroughoutthebrightestphaseoftheoutburst. Acknowledgements. We thank the referee for his/her insightful comments. Herewe showthatsuchstability ispresent,albeitatlowersig- We also thank the schedulers of RXTE and INTEGRAL for their role in nificance,alsoduringtheearlyandlatephases.Inthismodel,the making this campaign possible, and the International Space Science Institute in Bern, Switzerland, for their hospitality. We acknowledge funding by the continuumvariationsareexplainedbyaslightanticorrelationof Bundesministerium fürWirtschaft undTechnologie under Deutsches Zentrum thecentroidenergyoftheGaussianfeaturewithluminosityand fürLuft-undRaumfahrtgrants50OR0808,50OR0905,and50OR1113,andby asignificantvariationofΓ. theDeutscherAkademischerAustauschdienst. M.T.W.issupportedbytheUS The strong systematic influence of the chosen continuum OfficeofNavalResearch.ICacknowledges financialsupportfromtheFrench SpaceAgencyCNESthroughCNRS.S.M.N.andJ.M.T.acknowledgesupport on the cyclotron line behavior illustrates a problem that is from the Spanish Ministerio de Ciencia, Tecnología e Innovación (MCINN) potentiallyinherenttoallcyclotronlinemeasurements.Weem- throughgrantAYA2010-15431andtheuseofthecomputerfacilitiesmadeavail- phasize, however,that this does not mean that the general pic- able through the grant AIB2010DE-00057. This research is in part based on ture of the different regimes of magnetized neutron star accre- observations with INTEGRAL, an ESA project with instruments and science datacentrefundedbyESAmemberstates(especiallythePIcountries:Denmark, tion and general luminosity dependence of the cyclotron line France,Germany,Italy,Switzerland, Spain),CzechRepublic,andPoland,and as outlined by Becker et al. (2012, and references therein) is withtheparticipationofRussiaandUSA.WethankJohnE.Davisforthede- incorrect. In the sample of sources discussed by Becker et al. velopment oftheSLxfigmodule,whichwasusedtocreate allfiguresinthe (2012),4U0115+634wasanoutlier.Thechangeoflineenergy paper. A6,page9of10