Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 2013 Open Literature 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Evaluation and computational characterization of the facilitated transport of Glc carbon C-1 oxime reactivators across a blood brain barrier model 5b. GRANT NUMBER 1.E005.08.WR 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Bhonsle, JB, Causey, R, Oyler, BL, Bartochucci, C, Lamba, D, Pesaresi, A, Bhamare, NK, 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Medical Research Institute of Aberdeen Proving Ground, MD Chemical Defense 21010-5400 USAMRICD-P12-025 ATTN: MCMR-CDR-I 3100 Ricketts Point Road 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Defense Threat Reduction Agency 8725 John J. Kingman Road STOP 6201 Fort Belvoir, VA 22060(cid:486)6201 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Published in Chemico-Biological Interactions 203 (2013) 129–134. This work was supported by Defense Threat Reduction Agency (Grant number 1.E005.08.WR). 14. ABSTRACT See reprint. 15. SUBJECT TERMS Facilitated transport, Sugar-oximes, Sox, Blood brain barrier, Reactivation, Acetylcholinesterase 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Gregory Garcia a. REPORT b. ABSTRACT c. THIS PAGE UNLIMITED 6 19b. TELEPHONE NUMBER (include area UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED code) 410-436-6009 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Chemico-BiologicalInteractions203(2013)129–134 ContentslistsavailableatSciVerseScienceDirect Chemico-Biological Interactions journal homepage: www.elsevier.com/locate/chembioint Evaluation and computational characterization of the facilitated transport of Glc carbon C-1 oxime reactivators across a blood brain barrier model Jayendra B. Bhonslea, Robert Causeyb, Benjamin L. Oylerc, Cecilia Bartoluccid, Doriano Lambae, Alessandro Pesaresie, Nanaji K. Bhamareb, Iswarduth Soojhawonf, Gregory E. Garciab,⇑ aAsthaDrugDiscovery&Research,5284RandolphRoad#262,Rockville,MD20852,USA bResearchDivision,USArmyMedicalResearchInstituteofChemicalDefense,3100Ricketts,PointRoad,AberdeenProvingGround,MD21010-5400,USA cAnalyticalToxicologyDivision,USArmyMedicalResearchInstituteofChemicalDefense,3100RickettsPointRoad,AberdeenProvingGround,MD21010-5400,USA dIstitutodiCristallografia,ConsiglioNazionaledelleRicerche,AreadellaRicercadiRoma,ViaSalariaKm.29.300,I-00015MonterotondoScalo,Roma,Italy eIstitutodiCristallografia,ConsiglioNazionaledelleRicerche,AreaSciencePark,Basovizza,S.S.14,Km.163.5,I-34149Trieste,Italy fDivisionofBiochemistry,WalterReedArmyInstituteofResearch,503RobertGrantRoad,SilverSpring,MD20910-7500,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Weareevaluatingafacilitativetransportstrategytomoveoximesacrossthebloodbrainbarrier(BBB)to Availableonline13October2012 reactivateinhibitedbrainacetylcholinesterase(AChE).Weselectedglucose(Glc)transporters(GLUT)for thispurposeasthesetransportersarehighlyrepresentedintheBBB.Glcconjugateshavesuccessfully Keywords: moveddrugsacrosstheBBBandpreviousworkhasshownthatGlc-oximes(sugar-oximes,SOxs)can Facilitatedtransport reducetheorganophosphonateinducedhypothermiaresponse.Wepreviouslyevaluatedthereactivation Sugar-oximes potentialofGlccarbonC-1SOxs.HerewereportthereactivationparametersforVX-andGB-inhibited SOx human(Hu)AChEofthebestSOx(13c)andourfindingsthatthekineticsaresimilartothoseofthepar- Bloodbrainbarrier entoxime.AlthoughcrystalsofTorpedocalifornicaAChEwereproduced,neithersoakedorco-crystallized Reactivation experimentsweresuccessfulatconcentrationsbelow20mM13c,andhigherconcentrationscrackedthe Acetylcholinesterase crystals.13cwasnon-toxictoneuroblastomaandkidneycelllinesat12–18mM,allowinghighconcen- trationstobeusedinaBBBkidneycellmodel.Thetransferof13cfromthedonorsidewasasymmetric withthegreatestlossof13cfromtheapical-orluminal-treatedside.Therewasnoapparenttransfer from the basolateral side. The 13c P results indicate a ‘low’ transport efficiency; however, mass app accountingrevealedonlya20%recoveryfromtheapicaldoseinwhichhighconcentrationswerefound inthecelllysatefraction.Molecularmodelingof13cthroughtheGLUT-1channeldemonstratedthat transportof13cwasmorerestrictedthanGlc.Selectedsiteswerecomparedandthe13cbindingenergies weregreaterthantwotimesthoseofGlc. PublishedbyElsevierIrelandLtd. 1.Introduction theirbreakdownproductsmaybetootoxicforuse[6,7].Otherstrat- egiestodeliveroximesacrosstheBBB(reviewedbyMerceyetal. Currently fielded oxime reactivators 2-pralidoxime (2-PAM), [8])includefacilitativetransportwheresugar-oxime(SOx)conju- obidoxime and potential replacements 1,10-methylenebis[4- gates could be transferred by glucose (Glc) transporters (GLUT) [(hydroxyimino)methyl]-pyridinium] dimethanesulfonate (MMB- [9].GLUTsareabundantintheBBBwithGLUT-1capillarydensity 4) and [(E)-[1-[(4-carbamoylpyridin-1-ium-1-yl)methoxy- of 80–90pmol/mg membranes [10]. Glc-conjugate transport has methyl]pyridin-2-ylidene]methyl]-oxoazaniumdichloride (HI-6), beenreported[11–13].GLUTshavenotyetbeencrystallized,but donotappreciablycrossthebloodbrainbarrier(BBB)anddonot ahomologymodelbaseduponthebacterialglycerol-3-phosphate preventOP-inducedbrainseizureactivity[1–3].TheBBBiscom- transporter (PDB ID 1PW4 [14]) was developed and reported by prised of an endothelial cell layer with tighter intercellular junc- Salas-Burgosetal.(PDBID1SUK[15])andformedthebasisforstud- tions as compared to normal capillaries [4]. BBB-penetrating iestoexploreGlctransportersasafacilitativetransportmechanism oximes such as monoisonitrosoacetone (MINA) and dihydropyri- toimprovereactivatorpenetrationacrosstheBBB. dine 2-pralidoxime (pro-2-PAM) can act centrally and abrogate ExpandingontheworkofHeldmanetal.[16]wecomparedtheir brain OP-induced seizure activity [5,6], but these compounds or best SOx (N-[(3-b-D-glucopyranosyloxy)propyl]-4-pyr- idiniumaldoximechloride(8b))andanovelSOxofourowndesign [9] (Fig. 1). Our SOx, N-[(3-b-D-glucopyranosyloxy)octyl]-2-pyr- ⇑ Correspondingauthor.Tel.:+14104366009;fax:+14104368377. idiniumaldoxime iodide (13c), reactivated 133% and 113% better E-mailaddress:[email protected](G.E.Garcia). than 8b for diisopropylfluorophosphate- and paraoxon-inhibited 0009-2797/$-seefrontmatterPublishedbyElsevierIrelandLtd. http://dx.doi.org/10.1016/j.cbi.2012.09.012 130 J.B.Bhonsleetal./Chemico-BiologicalInteractions203(2013)129–134 wherek isestimatedastheslopeofthebest-fitline.Asecondary obs plotwasmadeofk vs.[SOx].Theequationk =k =SOx/(K +- obs obs r D SOx)andnonlinearregressionwasusedtoestimateK andk.The D r specific reactivity, k , was calculated using equation k =k/K . r2 r2 r D CurvefittingwasdoneusingPrismsoftwareVer.4.0(GraphpadInc.). 2.3.Toxicity NeuroblastomaSHSY-5Ycellsweretreatedwithincreasingcon- Fig. 1. Structures for Glc-1-position ether sugar-oxime series of compounds. centrations(0.1–12mM)of13c.The24hpost-treatmentviability Specificcompounds(n,parentoxime):8b(3,4PAM);8c(3,2-PAM);13c(7,2-PAM). was determined using the AqueousOne Cell Titer kit (Promega Corp.,Madison,WI). 20 2.4.Bloodbrainbarrier(BBB)modeling 15 se S Themultidrugresistance-1Madin-Darbycaninekidney(MDR1- on P MDCK)cellmodelwasused(AbsorptiveSystemsInc.,Exton,PA). sp4C 10 Compoundswerepreparedinwater.2-PAM(poorBBBpenetrant) 3c re x 10 5 w50aslMuseadndat6,51l2M, a,nadnd18thmeMte.sStamcopmlepsouwnedre1c3ocllewcatesduaseftderat2h5., 1 ForthemMoximetestscelllysateswereprepared.Luciferyellow andtransepithelialelectricresistance(TEER)measurementswere 0 usedascultureintegritychecks.TEERvaluesrangedfrom1640to 0 2 4 1942Ohm-cm2.Theapparentpermeabilites,P ,werecalculated app Time (min) according to Wang et al. [19] for the receiver compartments fol- lowing apical and basolateral treatment. In these cultures, apical Fig. 2. Multiple reactionmonitoring (MRM) chromatogramof 13cincelllysate referstotheluminalorexteriorsideandbasolateralreferstothe sample from 18mM apical side treated MDCK BBB model test. 13c Retention Time=3.20min.Thetransitionmonitoredwas413?251m/z.Theconcentration abluminal or tissuecompartmentside. Thebrain penetration po- determinedfromthistestwas175lMasshowninTable3. tentialof a test compoundis classifiedas low, moderate, or high using the following criteria: a. Low: P A?B<3.0(cid:3)10(cid:2)6cm/s, app b. Low: P A?BP3.0(cid:3)10(cid:2)6cm/s, EffluxP10, c. Moderate: app humanredbloodcell(HuRBC)AChE,andwegeneratedpharmaco- P A?BP3.0(cid:3)10(cid:2)6cm/s, 10>EffluxP3.0, d. High: P app app phore models from quantitative structure–activity relationships, A?BP3.0(cid:3)10(cid:2)6cm/s,Efflux<3.0. and2Dand3Dcomparativemolecularfieldanalysismodels[17]. Thepharmacophorecomputationadjusted(PCA)predictedactivity 2.5.AnalyticalSOxassay for13chadanexcellentcorrelationwiththeobservedactivity.We havecontinuedthisworkandnowreportthereactivationparame- WedevelopedamoresensitiveLC–MS/MSassaythantheCrea- tersoftheseSOxsandtheanalysisofanadditionalnovelSOxN-[(3- seyandGreenassay[20]toanalyzebloodbrainbarrier(BBB)sam- b-D-glucopyranosyloxy)propyl]-2-pyridiniumaldoxime chloride ples. Samples were acidified to pH 2 and then deproteinized by (8c)predictedtobeactive.Togaininsightsofimportantmolecular ultrafiltration.Sampleswerestoredat(cid:2)80(cid:2)Cuntiluse.LCsepara- contactsbetweenSOxandAChEweexploredX-raycrystallographic tion was performed using a 1260 series binary pump equipped studies of 8b and 13c. In addition, we developed computational witha1290seriesautosampler(Agilent,SantaClara,CA)operated modelstopredictthetransportpotentialofGLUT-1fornovelcom- ataflowrateof300lLmin(cid:2)1isocraticconditions(44%SolventA: poundsthatcouldbeextremelyvaluablefordesigningBBB-pene- acetonitrile, 56% Solvent B: 40mM ammonium acetate) at 24(cid:2)C. tratingSOxsandcorrelatethismodelwithexperimentalresults. Separations were over a PolyCAT A column (100mm(cid:3)2.1mm i.d.,3lm)andaJavelin(10mm(cid:3)2.1mm)guardcartridge(PolyLC l Inc.,Columbia,MD)of5 Linjections.Oximesweredetectedwith 2.Materialsandmethods a 4000 QTrap mass spectrometer (AB Sciex, Foster City, CA) equippedwithanelectrosprayionsourceoperatedinpositiveion- 2.1.Sugar-oximesynthesis izationmodeat5kV.Thesourceconditionswerecurtaingasflow of 20psi, temperature of 50(cid:2)C, GS1 (cone gas) at 60psi, GS2 MaterialsandreagentswerepurchasedfromSigma–Aldrich(St. (desolvation gas) at 25psi, and interface heater on. Collision gas Louis,MO).8cwassynthesizedasdescribedearlier[9].Structures (nitrogen) was set on ‘‘high’’. Multiple reaction monitoring were confirmed by NMR utilizing a Varian Unity INOVA at (MRM)modewas used,and theconditionsfor eachMRMtransi- 600MHz using 5mm Penta (H,C,N,P,D) pulse field Z-gradient tionwereoptimizedandareasfollows: (PFG) probe at 25(cid:2)C and liquid chromatography–mass spectros- copy(LC–MS)(datanotshown). Transition Q1 Q3 Dwell DP EP CE CXP name m/z m/z time 2.2.Reactivation (ms) 13cQuantifier 413.3251.2150 193.57.5 35.0915.91 Humanwholebloodwasobtainedfromvolunteersinaccordance 13cQualifier 413.3122.9150 193.57.5 43.076.2 withtheUSAMRICDdonorprogram(USAMRICDM-10088).HuRBCs 2-PAM 137.193.1 150 60.2913.1831.127.58 were treated with OPs to yield 80–95% inhibited AChE [9]. AChE reactivationwasdeterminedatseveralSOxconcentrationsandas- sayed by the discontinuous method [18] to determine the initial DP=declustering potential, EP=entrance potential, CE=collision (v),final(v ),andintermediate(v)AChEactivitylevels.Thedata energy,CXP=collisioncellexitpotential;allpotentialsarereported i 0 t were plotted according to equation ln((v (cid:2)v)/(v (cid:2) v))=(cid:2)k t inV. 0 t 0 i obs J.B.Bhonsleetal./Chemico-BiologicalInteractions203(2013)129–134 131 Fig.3. ReactivationofVX-inhibitedhuRBCAChEby2-PAMand13c,8contheleft,and8bontheright. DatawereprocessedusingAnalystversion1.5.2(ABSciex,Fos- Table2 terCity,CA).Thelowerlimitofquantitation(LLOQ)for13cand2- SOx13ctransportinMD-MDCK. PAMwas(cid:4)20ng/mLandtherewasnegligibleion-suppression.A Sample SOxConcentration LC-MS/MSrepresentativechromatogramfromacelllysateanalysis TreatmentSOx(mM) MeasuredSOx(lM) isshowninFig.2.Matrix-matchedstandardswereusedforstan- mM Mean SD dardcurvegeneration. Apical Receiver 6 2.65 0.09 12 3.56 0.51 2.6.Molecularmodeling 18 7.08 0.22 Cell 6 37.8 6.51 ThetranslocationofGlcand13cthroughtheGLUT-1receptor 12 66.1 4.79 was studied using two computational techniques, viz, molecular 18 175.4 4.28 Donor 6 1169 53.0 dynamics (MD) simulation and Glc–GLUT-1 docking studies. The 12 2153 283.5 MD simulations were performed using Discovery Studio version 18 3722 234.2 3.1(DS3.1)molecularmodelingsoftware,andthedockingstudies Basolateral wereperformedwithSybyl-Xversion1.3molecularmodelingsoft- Receiver 6 0.82 0.02 ware. All MD simulations with DS3.1 used CHARMm forcefield, 12 1.46 0.29 Momany–Ronechargesandimplicitwatersolvation(Generalized 18 1.71 0.17 Bornapproach).AlldockingstudiesusedAmber7FF02forcefield Cell 6 0.77 0.1 12 1.93 1.04 with Amber charges. PDB ID 1SUK (homology modeling derived 18 3.15 0.62 structure)was cleaned,solvated in water,and equilibratedwhile Donor 6 6041 247 constrainingthebackboneatomstopreservethebioactiveconfor- 12 11883 135 mationandoptimalside-chainlocations.TheFlexiDockalgorithm 18 19554 135 based on Genetic algorithm was used for docking. Compounds werepositionedmanuallyatthevariouslocationsintheGlcchan- nel. Flexidock experiments were performed with the specified numberofgenerationsasshowninTable6.For13cdockingexper- Table1 iments 13c was aligned with Glc from the Glc–GLUT1 docked Reactivationparametersofsugar-oximes. poses.ForallMDexperimentsthestandarddynamicscascadepro- Agent Oxime kr(min) KD(lM) kr2(min(cid:2)1mM(cid:2)1) kr2ratio2-PAM tocol as devised in DS3.1 was used. The GLUT-1 backbone atoms wereconstrainedbyemployingtheFixedAtomconstraintsmeth- VX 2-PAM 0.116 28.67 4.060 1.000 od.Inthestandarddynamicscascadeprotocol,theNVTapproach 8b 0.089 629 0.141 0.035 8c 0.085 138.5 0.616 0.152 was employed with the following settings in the minimization 13c 0.101 15.08 6.680 1.645 (steepest descent 500 steps followed by conjugate descent 500 GB 2-PAM 0.131 23.59 5.556 1.000 steps),heatingandequilibration(5000stepseach)andproduction 8b 0.447 2669 0.168 0.030 (10,000steps)steps.Thetargettemperaturewassetto310Ktore- 8c 0.063 156.60 0.401 0.072 flectthephysiologicaltemperatureratherthanthestandardroom 13c 0.056 15.45 3.637 0.654 temperature. 132 J.B.Bhonsleetal./Chemico-BiologicalInteractions203(2013)129–134 Table3 welltoleratedbyMDR1-MDCKcellstreatedfor2hinlowGlcmed- ListofaminoacidsinvolvedinthePDBstructure1SUK-definedhelicesofGLUT-1. ia(5mM)with13cconcentrationsashighas18mM(thehighest 1SUKPDBhelices#/aminoacidresidue# concentrationtested-datanotshown).Theseresultsindicatethat toxicityof13cappearssimilartothatof8b[17]. PDB-H# Residue# PDB-H# Residue# PDB-H# Residue# H1 S5-G31 H8 L169-N182 H15 N360-F375 H2 I33-I40 H9 L185-P187 H16 V376-F379 3.3.Bloodbrainbarriermodel H3 T47-R51 H10 L188-C207 H17 G384-A392 H4 T60-F90 H11 R253-E261 H18 L394-N397 The MDR1-MDCK cell line is a well documented BBB model H5 G91-S113 H12 R264-Y292 H19 G398-F422 [20]. This cell line expresses several GLUTs (GLUT-1, 2, 3 and 5) H6 M121-S148 H13 N304-R330 H20 G430-G471 l H7 A151-L169 H14 T335-L357 H21 H484-S490 withasymmetricdistribution[21].ThePappwaslowfor5–50 M concentrationsof2-PAMand13c(datanotshown).Astheseexper- imentswereperformedinGlcconcentrationsof15–20mM(typi- cal culture media) the experiments were repeated at the Table4 ListofaminoacidsinvolvedintheMuecklerdefinedhelicesofGLUT-1. physiologicallyrelevantGlcconcentrationof5mM.13cconcentra- tionsupto18mMrevealedadose-dependentasymmetrictrans- Mueckler2008helices#/aminoacidresidue# ference with the apical treatment yielding higher levels in the M-H# Residue# M-H# Residue# M-H# Residue# receiverwellandcelllysates.The13cP waslowforallconcen- app MH1 S5-I40 MH5 A151-N182 MH9 T335-L357 trationstestedwiththe apicaltreatmentyielding>4(cid:3)therecei- MH2 T60-F90 MH6 L185-C207 MH10 N360-A392 ver side concentration than the basolateral side as shown in MH3 G91-S113 MH7 R264-Y292 MH11 L394-F422 Table 2. The summation of compartment concentrations reveals MH4 M121-S148 MH8 N304-R330 MH12 G430-G471 that18mMapicaldosingis20%ofthatfromthebasolateralside ((3904.48lM/19558.86lM)(cid:5)100). Table5 3.4.Modeling ListofaminoacidsinvolvedintheGLUT-1GlucosechannelalongwiththeMueckler andPDBdefinedhelicesnumbers. The homology model structure of GLUT-1 (PDB ID 1SUK) was Muecklerhelices/PDBhelices/aminoacidresidue# defined to comprise 21 alpha-helices by Salas-Burgos et al. [15], M-H# PDB-H# Residue# M(cid:2)H# PDB-H# Residue# andtheaminoacidscomprisingthehelicesareshowninTable3. Theaminoacidscomprisingthe12alpha-helicesdefinedbyMeuc- MH1 H2 S23-I40 MH7 H12 R264-Y292 MH2 H4 T60-F90 MH8 H13 N304-R330 kleretal.[22]areshowninTable4,whichalsoshowsthattheGlc MH4 H6 M121-S148 MH10 H15-H18 N360-N397 channelisflankedbyhelices1,2,4,5,7,8,10and11.InthePDB MH5 H7-H8 A151-N182 MH11 H19-H20 G398-G471 1SUKstructurethesameGlcchanneltranslatestohelicesnumber- ing2,4,6,7,8,12,13,15,16,17,18,19and20.Theexactamino acids defining the Glc channel of the Meuckler et al. helices and 3.Results PDB1SUKhelicesareshowninTable5.Theexactaminoacidsfrom theGlctranslocationchannelhavebeenidentifiedasGlu-254and 3.1.Reactivation Lys-256[23],Trp-388[15],andTrp-412[24].Sevendockingloca- tions in the Glc channelwere identifiedand are listed in Table 6 The reactivation of VX-inhibited Hu RBC AChE by 2-PAM and andnamedaccordingtotheirpositionsinthechannel.Theouter- SOxs is shown in Fig. 3 (GB data not shown). The reactivation most docking location is termed extra cellular mouth-1 (ECM-1). parameters are shown in Table 1. The k ratio of 13c to 2-PAM The next location, deeper into the mouth, is ECM-2, while the r2 was1.67,while8cyielded0.152and8b0.035.Thisindicatesthat deepest location is ECM-3. The docking location closest to Trp- 13cisthebestSOxreactivatortodateandthata2-PAMderivative 412 in the central region is termed central Glc channel-1 (CGC- isbetterforVXandGBthanthe4-PAMderivative.Wehaveprevi- 1), and the next location deeper toward the cytoplasm is CGC-2, ously reported that 13c is a better reactivator than 13a (3-PAM whilethedeepestisCGC-3.Thedockinglocationattheintracellu- derivative)and13b(4-PAMderivative)[9],soitappearsthepre- lar mouth is termed ICM. A GLUT-1 ribbon model is shown in ferredparentoximeis2-PAM. Fig.4A,andthemovementofGlcisshownfortheindividualsites inFig.4B.ThedockingparametersandresultsareshowninTable6. 3.2.Toxicity The binding energies of Glc and 13c varied from (cid:2)477 to (cid:2)166Kcals/mol, and (cid:2)868 to (cid:2)269Kcals/mol, respectively. For 13cwasfoundtobenontoxicupto12mM(highestconcentra- boththerewasamaximumaffinityatECM-2.MDsimulationswith tiontested)fortheneuroblastomacelllineSHSY-5Y.13cwasalso Glcand13cplacedatthevariouspositionsfortimeperiodsof2ps Table6 DockingexperimentsparametersandresultsforGlcand13c. Glc ReportedGlc Bindingsite# FlexiDock# Obsdbinding GLUT-1overlay Bindingsite# FlexiDock# Obsdbindingenergy location bindingAA bondsforGlc generationsfor energyKcals/mol 1SUKRMSDfor bondsfor13c generationsfor Kcals/molfor13c Glc forGlc Glc 13c ECM-1 – 91 110500 (cid:2)241.7 0.25 339 181000 (cid:2)581.9 ECM-2 – 232 122000 (cid:2)476.7 0.28 444 240000 (cid:2)867.5 ECM-3 W412 199 105500 (cid:2)382.8 0.27 487 240000 (cid:2)750.9 CGC-1 W412 187 122000 (cid:2)334.7 0.34 453 238000 (cid:2)743.2 CGC-2 – 112 122000 (cid:2)166.0 0.27 220 240000 (cid:2)288.9 CGC-3 W388 107 122000 (cid:2)168.4 0.27 254 240000 (cid:2)395.9 ICM E254/K256 137 122000 (cid:2)288.6 0.23 137 80000 (cid:2)268.5 J.B.Bhonsleetal./Chemico-BiologicalInteractions203(2013)129–134 133 ime derivatives [9,16,17,25], and 13c is the most effective SOx reactivatortodate(Table1).Wedevelopedandvalidatedmolecu- lar models with reactivation improvement (8c vs. 8b, Table 1). SOxs also appear to be relatively non-toxic with guinea pig LD 50 of1590mgkg(cid:2)1[9].Assumingaonecompartmentmodel,theesti- matedbloodlevelofSOxattheLD wouldbe42mM.TheLD is 50 12.5 10.5mMandgreaterthantwotimesthenormalGlcbloodlevelof 5mM.8bpharmacokineticsshowsthatSOxcanattainT quickly max (10min, similar to 2-PAM) from an IM administration but has longer mean residence time (2h vs. less than 80min for 2-PAM) [17].Thesearealldesirablecharacteristicsofareactivator,butit was the finding of the amelioration of the body temperature depressionresponsetopesticidesthatmadethesecompounds of interest to cross the BBB [16]. The first experiments to test the transport of 13c in a BBB model were done with 0.005 and 0.05mMSOx.Nomeasurable13cwasfoundinthereceiverwells (Table2).Theseexperiments,however,wereconductedatthetyp- icalcellularmaintenanceGlcconcentrationof15–20mM,soitis possible that at low concentrations 13c would not compete well forthetransporter.Wethentested13cupto18mMatthephysi- ologically relevant 5mM Glc concentration and found that 13c transport appears to be asymmetric with greater efficiency from theapical(luminal)side. The18mM13ctreatmentyieldedafter 2h(cid:4)7and1.7lM13conthereceiversideofapical-andbasolat- eral-treatedsides.Thissidednesswasalsoapparentforcelllysates l with175vs.3.15 M13cfoundfromapicalandbasolateraldosing respectively.Theseresultsindicatethatthereappearstobesignif- icantremovalof13cfromtheapicalsideandnearlynonefromthe basolateral side. We hypothesize that GLUT transporters on the apicalsidearemoreefficientthanthoseonthebasolatereralside for13csuchthat13cbecomestrappedinsidethecell.Inaddition, since not all the 13c mass could be accounted for ((cid:4)80% unac- counted)whichsuggeststhatonceinsidethecell13cismetabo- lized or catabolized and that the products not are detectable as 13c(413m/z).Furtheranalysisisneededtodeterminewhatthese might be and whether a functional oxime moiety is transferred across the BBB, though no longer as parent SOx, and explain the apparentCNSeffectsofSOx;or,thereissomeotherasyetuniden- tifiedmechanismforSOxBBBpenetrationthatmaynotprimarily involveGLUTs.Regardlessofmechanism,efficacystudiesareinor- dertoevaluatetheutilityoftheSOxs. Attempts at soaking of Torpedo californica (TcAChE) crystals with8bor13cwereunsuccessful(datanotshown),TcAChEcrys- talsweresoakedwithvariousconcentrations(5–80mM)ofeither 8bor13cSOx.TheseresultsdemonstratethatSOxshaveanappar- ent low affinity for the apo active TcAChE. The weak molecular interactionsarelikelytheoutcomeofentropy–enthalpycompen- sation [26]. A stronger protein–ligand interaction will also result in a reduction of the configurational freedom of the system and thusareductionoftheentropy.Correspondingly,bytakingintoac- Fig.4. GLUT-1structureandGlcmovementthroughchannel.(A)Cartoonrepre- counteffectssuchasthedesolvationenthalpyandentropyandthe sentationoftheGLUT-1theoreticalmodel(PDBID1SUK)[15]createdusingPyMOL conformational restriction that accompanies binding, weaker [27];(B)PictureofbindinglocationsalongtheGlcchannelinGLUT-1shownwith molecularinteractionswillproducealoosermolecularassociation Glc: (1) extra cellular mouth-1 (ECM-1); deeper into the mouth, is (2) ECM-2; andanincreaseinentropy.Studiesareinprogresstoelucidatethe deepestlocationis(3)ECM-3;thedockinglocationclosesttoTrp-412inthecentral region is (4) central Glc channel-1 (CGC-1); next location deeper toward the structures of VX and GB nonaged and aged conjugated forms of cytoplasmis(5)CGC-2;thedeepestlocationis(6)CGC-3.Thedockinglocationat TcAChEwith8bor13c. theintracellularmouth(ICM)is(7). The modeling results lay the ground work to examine the molecular dynamics of GLUT-1 transport of SOxs. The docked GLUT-1 molecule and the original PDB molecule 1SUK had an showedthemtravelingin the intracellular mouthdirection(data excellent overlay with RMSD values varying from 0.2 to 0.3Å as notshown). showninTable6.Table6showsthat13chadlowerbindingenergy valuesateachlocationexaminedthanGlcindicatingthatGLUT-1 4.Discussion would be a relatively poor transporter for 13c. The ECM2 site hadthelowestvaluesforGlcand13candwethereforepostulate SOxs have now been shown by us and others to be relatively thattheGlcchannelhasabottleneck,wherethetransportedmol- good reactivators compared to monoamine quaternary pralidox- eculeiscapturedwithmoderatebindingaffinityof(cid:2)242Kcals/mol 134 J.B.Bhonsleetal./Chemico-BiologicalInteractions203(2013)129–134 forGlcand(cid:2)582Kcals/molfor13cattheECM-1;thenthemole- centralandperipheralcholinesterases,Chemico-Biol.Inter.187(2010)191– culetranslocatestotheECM-2positionandisboundmosttightly 198. [7] B.M.Askew,Oximesandhydroxamicacidsasantidotesinanticholinesterase withbindingenergyof(cid:2)477Kcals/molforGlcand(cid:2)868Kcals/mol poisoning,Br.J.Pharmacol.11(1956)417–423. for13c.Afterthis,thesubsequentenergiesdiminishshowingthat [8] G.Mercey,T.Verdelet,J.Renou,M.Kliachyna,R.Baati,F.Nachon,L.Jean,P.-Y. Glc and other Glc-like molecules could traverse through the Glc- Renard, Reactivatorsofacetylcholinesteraseinhibitedbyorganophosphorus nerveagents,Acc.Chem.Res.45(2012)756–766. channel. The basolateral treatment data supports this finding as [9] G.E. Garcia, A.J. Campbell, J. Olson, D. Moorad-Doctor, V.I. Morthole, Novel there was no apparent facilitated transport from this compart- oximes as blood–brain barrier penetrating cholinesterase reactivators, ment.Incontrast,thedifferentresultsfromtheapicaltreatedside Chemico-Biol.Inter.187(2010)199–206. [10] F.Maher,S.J.Vannucci,I.A.Simpson,Glucosetransporterproteinsinbrain, suggestthatthesetransportershavesometransportpotentialfor FASEBJ.8(1994)1003–1011. theGlcC-1conjugateasoveralltransferis2(cid:3)thatofthebasoloat- [11] C. Fernandez, O. Nieto, J.A. Fontenla, M.L. Rivas de Ceballos, A. Fernandez- eralsidewitha55(cid:3)greateramountassociatedwiththecellfrac- Mayoralas, Synthesis of glycosyl derivatives as dopamine prodrugs: interactionwithglucosecarrierGLUT-1,Org.Biomol.Chem.1(2003)767–771. tion. These results suggest that conjugation through the Glc C-1 [12] T. Halmos, M. Santarromana, K. Antonakis, D. Scherman, Synthesis of Glc- sitemaynotbebestforfacilitatedtransportbyGLUTs.Basedonlit- chlorambucil derivatives and their recognition by the human GLUT-1 Glc eraturereportsofdrugdeliveryandtherecentGLUT-1modelsGlc transporter,Eur.J.Pharmacol.318(1996)477–484. linkedthroughtheC-6positionmayproducebettercompoundsfor [13] G. Masand, K. Hanif, S. Sen, A. Ahsan, S. Maiti, S. Pasha, Synthesis, conformational and pharmacological studies of glycosylated chimeric transport.Themodelswehavedevisedcouldbeappliedtothese peptidesofMet-enkephalinandFMRFa,BrainRes.Bull.68(2006)329–334. compoundsforvirtualscreeningofcandidateSOxs. [14] Y.Huang,M.J.Lemieux,J.Song,M.Auer,D.N.Wang,Structureandmechanism of the glycerol-3-phosphate transporter from Escherichia coli, Science 301 (2003)616–620. Conflictofintereststatement [15] A. Salas-Burgos,P. Iserovich,F. Zuniga,J.C.Vera,J.Fishbarg, Predictingthe three-dimensional structure of the human facilitative glucose transporter GLUT-1byanovelevolutionaryhomologystrategy:insightsonthemolecular Nonedeclare. mechanismofsubstratemigration,andbindingsitesforglucoseandinhibitory molecules,Biophys.J.87(2004)2990–2999. Acknowledgements [16] E.Heldman,Y.Ashani,L.Raveh,E.S.Rachaman,Sugarconjugatesofpyridinium aldoximesasantidotesagainstorganophosphonatepoisoning,Carbohyd.Res. 151(1986)337–347. ExcellenttechnicalassistancewasprovidedbyMs.JanineLad- [17] J.B.Bhonsle,A.J.Campbell,D.Moorad-Doctor,J.Olson,D.Ghimire,G.E.Garcia. zinski for cell culture toxicological testing. This work was sup- Sugar-oximesascholinesterasereactivatorsinthebrain,in:Proceedings27th ported by Defense Threat Reduction Agency (Grant number ArmyScienceConference,2010,Orlando,FL. [18] F. Worek, H.Thiermann, L.Szinicz, P. Eyer, Kinetic analysis of interactions 1.E005.08.WR). The views expressed herein are those of the betweenhumanacetylcholinesterase,structurallydifferentorganophosphorus author(s) and do not reflect the official policy of the Department compoundsandoximes,Biochem.Pharmacol.68(2004)2237–2248. ofArmy,DepartmentofDefense,ortheU.S.Government. [19] Q.Wang,J.D.Rager,K.Weinstein,P.S.Kardos,G.L.Dobson,J.Li,I.J.Hidalgo, EvaluationoftheMDR-MDCKcelllineasapermeabilityscreenfortheblood– brainbarrier,Int.J.Pharm.288(2005)349–359. References [20] N.H. Creasey, A.L. Green, 2-Hydroxyiminomethyl-N-methylpyridinium methanesulphonate (PS2), an antidote to organophosphorus poisoning. Its [1] E. Shek, T. Higuchi, N. Bodor, Improved delivery through biological preparation,estimationandstability,J.Pharm.Pharmacol.11(1959)485–490. membranes. 3. Delivery of N-methylpyridinium-2-carbaldoxime chloride [21] K.Inukai,A.M.Shewan,W.S.Pascoe,S.Katayama,D.E.James,Y.Oka,Carboxy through the blood–brain barrier in its dihydropyridine pro-drug form, J. terminus of glucose transporter 3 contains an apical membrane targeting Med.Chem.19(1976)113–117. domain,Mol.Endocrin.18(2004)339–349. [2] B.P. Melchers, I.H. Philippens, O.L. Wolthuis, Efficacy of HI-6 and HLo-7 in [22] M.Mueckler,C.Makepeace,Transmembranesegment6oftheGLUT-1glucose preventing incapacitation following nerve agent poisoning, Pharmacol. transporterisanouterhelixandcontainsaminoacidsidechainsessentialfor Biochem.Behav.49(1994)781–788. transportactivity,J.Biol.Chem.283(2008)11550–11555. [3] G. Cassel, L. Karlsson, L. Waara, K.W. Ang, A. Goransson-Nyberg, [23] P. Cunningham, I. Afzal-Ahmed,R.J. Naftalin,Dockingstudies show that D- Pharmacokinetics and effects of HI 6 in blood and brain of soman- glucoseandquercetinslidethroughthetransporterGLUT-1,J.Biol.Chem.281 intoxicatedrats:amicrodialysisstudy,Eur.J.Pharm.332(1997)43–52. (2006)5797–5803. [4] N.J.Abbott,L.Ronnback,E.Hansson,Astrocyte-endothelialinteractionsatthe [24] J.Holyoake,V.Caulfield,S.A.Baldwin,M.S.P.Sansom,Modeling,docking,and blood–brainbarrier,Nat.Rev.Neurosci.7(2006)41–53. simulationofthemajorfacilitatorsuperfamily,Biophys.J.91(2006)L84–L86. [5] J.W.Skovira,J.C.O’Donnell,I.Koplovitz,R.K.Kan,J.H.McDonough,T.-M.Shih, [25] E.S. Rachman, Y. Ashani, H. Leader, I. Granoth, H. Edery, G. Porath, Sugar- Reactivationofbrainacetylcholinesterasebymonoisonitrosoacetoneincreases oximes, new potential antidotes against organophosphorus poisoning, the therapeutic efficacy against nerve agents in guinea pigs, Chemico-Biol ArzneimForsch.DrugRes.29(1979)875–876. Inter.187(2010)318–324. [26] K. Sharp, Entropy–enthalpy compensation: fact or artifact?, Protein Sci 10 [6] J.C.Demar,E.D.Clarkson,R.H.Ratcliffe,A.J.Campbell,S.G.Thangavelu,C.A. (2001)661–667. Herdman,H.Leader,S.M.Schulz,E.Marek,M.A.Medynets,T.C.Ku,S.A.Evans, [27] W.L.DeLano.ThePyMOLMolecularGraphicsSystem,DeLanoScientificLLC, F.A. Khan, R.R. Owens, M.P. Nambiar, R.K. Gordon, Pro-2-PAM therapy for SanCarlos,CA,USA,2002<http://www.pymol.org>.