A Using Amphiphilic Nanostructures To R T Enable Long-Range Ensemble I C Coalescence and Surface Rejuvenation L E in Dropwise Condensation DavidM.Anderson,†ManeeshK.Gupta,‡AndreyA.Voevodin,§ChadN.Hunter,§ShawnA.Putnam,§), VladimirV.Tsukruk,‡andAndreiG.Fedorov†,^,* †G.W.WoodruffSchoolofMechanicalEngineeringand‡SchoolofMaterialsScienceandEngineering,GeorgiaInstituteofTechnology,Atlanta,Georgia30332,UnitedStates, §AirForceResearchLaboratory,ThermalSciencesandMaterialsBranch,Wright-PattersonAFB,Ohio45433,UnitedStates,)UniversalTechnologyCorporation,Dayton,OH 45432,UnitedStates,and^ParkerH.PetitInstituteofBioengineeringandBioscience,GeorgiaInstituteofTechnology,Atlanta,Georgia30332,UnitedStates T houghwettabilityhaslongbeenun- ABSTRACT derstoodtodependonsurfacechem- istry and morphology,1 intriguing opportunitiestocontrolnanostructureand createsurfaceenergygradientswithnovel nanofabrication techniques have recently generated a surge of research interest in this field.2(cid:1)4 Such surfaces elucidate pre- viouslyunknownmodesofdropletdynamics duringcondensationandchallengethecur- Controllingcoalescenceeventsinaheterogeneousensembleofcondensingdropletsonasurfaceis rent understanding of physical mechanisms anoutstandingfundamentalchallengeinsurfaceandinterfacialsciences,withabroadpractical atmultiplelengthscales5thatunderliediffer- importanceinapplicationsrangingfromthermal managementofhigh-performanceelectronic entstagesoftheprocess,especiallyrelevant devices to moisture management in high-humidity environments. Nature-inspired superhydro- tocollectivedropletdynamicsduringgrowth phobicsurfaceshavebeenactivelyexploredtoenhanceheatandmasstransferratesbyachieving andcoalescence.6Thesenewinsightscanbe favorabledynamicsduringdropwisecondensation;however,theeffectivenessofsuchchemically harnessedtodesign“smart”nanostructured interfaceswhichcanintrinsically(i.e.,without homogeneoussurfaceshasbeenlimitedbecausecondensingdropletstendtoformaspinned externalstimuli)controlthedynamicsofdrop- WenzeldropsratherthanmobileCassieones.Here,weintroduceanamphiphilicnanostructured let nucleation, growth, and coalescence surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic events to maximize heat and mass transfer regenerationofnucleationsitesforsmalldroplets,thusrenderingthesurfaceself-rejuvenating.This rates. Such advances are critical for emerg- uniqueamphiphilicnanointerfacegeneratesanarrangementofcondensedWenzeldropletsthat ingmicro/nanotechnologies,includinghigh- arefluidicallylinkedbyawettedsublayer,promotingpreviouslyunobservedcoalescenceevents performance microprocessors, high-energy where numerous droplets simultaneously merge, without direct contact. Such ensemble densitybatteries,andoptoelectronicdevices, coalescencesrapidlycreatefreshnucleationsites,therebyshiftingtheoverallpopulationtoward which are becoming thermally limited and requiremajoradvancesinourabilitytocon- smallerdropletsandenhancingtheratesofmassandheattransferduringcondensation. trolphase-changephenomenaonthenano- KEYWORDS: amphiphilicnanostructures.environmentalscanningelectron scale. microscopy.nanoscalewatercondensation.dropletcoalescencedynamics The manner in which condensed liquid interactswiththeunderlyingsubstratehas adramaticeffectontheachievablerateof heatandmasstransferonasurface.Drop- andgrowthprocess,whichismostefficient *Addresscorrespondenceto wise condensation,inwhich thesurface is formoisture/heatmanagement,10,11incon- [email protected]. not uniformly wetted, provides heat and trast to filmwise condensation where heat ReceivedforreviewJanuary13,2012 masstransfer coefficientsover anorder of andmasstransferisrestrictedbyagrowing andacceptedMarch28,2012. magnitude higher than its filmwise coun- condensedliquidlayerwithlimitedthermal PublishedonlineMarch28,2012 terpart.7(cid:1)9 Droplets are continually swept conductivity. Droplets typically leave the 10.1021/nn300183d off a surface by gravity or vapor shear to surface by a rolling mechanism; therefore, allow repetition of the droplet nucleation contact line pinning and contact angle C2012AmericanChemicalSociety ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3262 www.acsnano.org Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED MAR 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using Amphiphilic Nanostructures To Enable Long-Range Ensemble 5b. GRANT NUMBER Coalescence and Surface Rejuvenation in Dropwise Condensation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Georgia Institute of Technology,School of Materials Science and REPORT NUMBER Engineering,Atlanta,GA,30332 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 7 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A hysteresis must be minimized to promote easy re- R moval.So-called“Cassie”droplets,restingonahetero- T geneous interface consisting of air and the tips of roughnessfeatures,aresubstantiallymoremobilethan I C “Wenzel” droplets, which penetrate the roughness featurestoformahomogeneoussolid(cid:1)liquidinterface L andthussufferfromcontactlinepinning.12,13Surfaces E which wet with mobile droplets exhibiting minimal contact angle hysteresis are termed superhydropho- bic,andtheextensivebodyofdropwisecondensation researchhas focusedonthis type ofsurface andthe associated rolling mechanism.14(cid:1)20 A widely recog- nized challenge with superhydrophobic surfaces, as observedinnatureonthelotusleaf21andonsynthetic surfaces,22,23isthattheyareoftenrenderedineffective during condensation because the Wenzel state is typically at a lower interfacial free energy than the Cassiestate.24(cid:1)26Asaresult,metastableCassiedrop- lets may initially form on the surface, but eventually dropletscondensedfromthesurroundingvaporphase will revert to the pinned Wenzel state, as opposed to depositeddropletswhichassumetheCassiestateandroll easily off the surface. The only notable exceptions are Figure1. (a)Sideand(b)overheadSEMmicrographsshow- surfaceswhichrequirecomplex,two-tierroughness.15(cid:1)17 ingnanostructuredsurfacemorphology. Here,weintroduceanamphiphilicsurfaceconsist- ingofdenselypackednanowiresmadeofhydrophilic goldatthebase.Thisarrangementofverticalsurface base material with hydrophobic tips which demon- energygradientwithlowenergyattheroughnesstips strate the ability to produce long-range, noncontact withhighenergyatthebaseonacondensingsurfaceis coalescence events within a heterogeneously sized adeparturefrommosteffortstodesignrobustdrop- droplet ensemble to periodically regenerate nucle- wisecondensingsurfaces,whichutilizeuniformhydro- ation sites, without requiring condensed droplets to phobiccoatingmethods.Studiesthathavevariedthe remain stable in the mobile Cassie state! To demon- surfaceenergyhavedonesowitharadialgradient28or strate this intriguing phenomenon, we performed hydrophilictipsonhydrophobicbasefeatures.18 complementaryopticalvisualizationwithvisiblelight The array is closely packed with less than 25 nm and environmental scanning electron microscopy separating adjacent wires and an estimated packing (ESEM) imaging of droplet condensation on a sub- fraction of 85%. The wires are also not uniform in cooledamphiphilicnanostructureandreportamode height, creating a secondary roughness scale which of coalescence involving numerous droplets simulta- allowsdropletsthatdorestonitsroughnessfeaturesto neously merging with no direct contact above the only contact the tallest asperities and display a high surface.Weproposeanewmechanismofcoalescence, contact angle by minimizing the amount of solid(cid:1) involving Laplace pressure imbalance between adja- liquid contact area. This secondary roughness scale is centfluidicallylinkeddroplets,fortheseeventswhich criticaltothesurface'scondensationperformance,aswill rapidlyopenupfreshnucleationsitesthusrejuvenat- be discussed later. The depth of penetration of the ingthesurfaceandgeneratingafavorabledistribution hydrophobic fluoropolymer coating is roughly 10% of ofsmallerdropletsattractivetoheat/masstransfer. thetotalwirelength,asdeterminedbyESEMvisualization ofthewettingofthehydrophilicbaseofthewireswhen RESULTSANDDISCUSSION the surface is cooled below the vapor saturation tem- Amphiphilic Nanostructured Surface. The nanowire ar- peraturebyaPeltiercooler(webenhancedobjectS1). ray, shown in Figure 1, consists of 200 nm diameter Droplet Size Distribution during Condensation. The tem- hydrophilic gold wires that are coated from the top poralevolutionofthecondenseddropletsizedistribution with a hydrophobic fluoropolymer using plasma- on a subcooled amphiphilic nanostructured surface is enhanced chemical vapor deposition (PECVD).27 Be- comparedtothatofasmoothsiliconsurfacewithhydro- cause PECVD is a directional process, the fluoropoly- phobiccoating.Opticalvisualizationisused,ratherthan mer only coats the tips of the nanowires, creating a ESEM,forthiscomparisontoobtainalargerfieldofview. surface energy gradient of low-energy hydrophobic Ambienttemperatureisheldwithin(0.5(cid:2)Candrela- coating on the nanowire tips and native hydrophilic tive humidity within (2.5%, and to ensure consistent ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3263 www.acsnano.org A R T I C L E Figure2. Temporalevolutionofdropletsizedistributionduringcondensationon(a)amphiphilicnanostructuredand(b) smoothhydrophobicsurface. subcoolingbetweentests,DCpowertoaPeltierstage remains relatively high. Lastly, long-range multidroplet beneaththesampleiscontrolledmanuallytocoolthe collectivecoalescenceeventstakeplaceduringthethird surface 4 (cid:2)C below saturation temperature for the stage,causingthedropletdistributionsat10and13min correspondingambientconditions. toflattenoutwithsignificantreductioninthesmalldrop- Representative images at various times past the letcount,thuscreatingfreshnucleationsites.Thesurface onsetofcondensationareshowninFigure2.During isableto“self-rejuvenate”inthismanner,andbecause the initial transient growth, condensation appears priorstudieshaveshownthatdropletswithdiametersless similar on both the smooth hydrophobic and the than10μmcontributethemosttoheattransferduring amphiphilic nanostructured surfaces. After the third dropwisecondensation,10thisbehaviorisexpectedtoen- minuteofcondensation,differentsizedropletsbegin hanceheattransferbycontinuallynucleatingnewmicro- toformontheamphiphilicsurfaceandcoalescences meter-sizeddroplets. simultaneouslyinvolvingmanydropletswhicharenot Proposed Mechanism of Droplet Growth and Coalescence. indirectcontactabovethesurfaceareobserved.These ESEMimagingisemployedtocomplementtheoptical uniquecoalescenceeventsaremostvividlyobserved visualization results and investigate the long-range inwebenhancedobjectS2.Asnewdropletsnucleate ensemblecoalescenceeventsreportedabove,taking in the space cleared behind coalesced droplets, the advantageoftheenhanceddepthofviewandspatial processrepeatsitselfinaperiodicmanner.Incontrast, resolutionofferedbythistechnique.30,31Thesequence thedropletsonthesmoothhydrophobicsurfacemostly ofimagesinFigure4showsthat,uponinitialcooling grow through further condensation, with coalescences below saturation temperature, a layer of condensate onlyoccurringinatraditionalmannerbyadjacentdrop- forms at the base of the wires (Figure 4a,b) due to lets physically growing into one another.29 As a result, preferentialnucleationandcapillarycondensationon during15minofcondensation,themeandropletsizeon thehigh-energyhydrophilicsurface.Wealsoconducted the amphiphilic surface only reaches approximately anESEMinvestigationintocondensationonanuncoated 20 μm, while for the smooth hydrophobic surface, it goldnanowirearraywithuniformhighsurfaceenergy.In continuestogrowupabove100μm. thiscase,theliquidsublayercontinuestogrowuntilthe The histograms in Figure 3 provide statistical in- nanowiresarecompletelycoatedwithnodropletsform- formationontheperiodicnatureofcondensationon ingonthesurface.Avideooftheprocessisavailablein theamphiphilicsurfacebylookingatevolutionofthe theSupportingInformation. dropletdistributionfortwoconsecutivecyclesinthe Oncethehydrophilicportionisfullywetted,drop- periodicrejuvenationregime(seealsowebenhanced lets nucleate on the hydrophobic wire tips. These objectS3).Thefirststageofthisperiodicbehavior,a droplets are initially in the Cassie state, as indicated by large spike in small droplets, occurs immediately fol- thefactthattheyarehighlyspherical,exhibitveryhigh lowingamajorcoalescenceeventasnewdropletsnucle- (>150(cid:2)) contact angles and grow in a constant contact ateinthespaceleftopenbehindthesmallerdroplets.This angle mode (Figure 4c,d). The intrinsic contact angle, initialstagecanbeseeninthedropletdistributionat8and θ ,isroughly108(cid:2)forafluoropolymeronasmooth young 11minpasttheonsetofcondensation.Inthenextstage, surface,32meaningthatinordertohaveaCassie(cid:1)Baxter visiblerespectivelyat9and12min,thetallpeakofsmaller contact angle of over 150(cid:2) the area underneath the dropletsinthedistributionbeginstoflattenoutandshift dropletbasethatcontactssolidmustbelessthan20% totheright(i.e.,towardfewbutlargerdroplets),asthe ofthetotaldropletbasearea.Thiscanbedeterminedby smallerdropletscoalescewiththeirnearestneighbors.In solvingtheCassie(cid:1)Baxterequation,33cosθ =f(cid:3)cos CB thissecondstageonly2(cid:1)3dropletscoalesceatoncein θ þ(f(cid:1)1),wherefisthefractionalsolidcontactarea young the traditional direct-contact induced manner, as indi- underneath the droplet.This observationhighlights the cated by the fact that the overall droplet count still importance of the secondary roughness caused by the ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3264 www.acsnano.org A R T I C L E Figure 3. (a) Droplet size distributions in the 0(cid:1)60 μm rangeat8,9,and10minpasttheonsetofcondensation ontheamphiphilicnanostructuredsurface.(b)Sizedistri- bution11,12,and13minpastcondensationonset.(c)Time historyofmeandropletdiameterontheamphiphilicsur- face;timeregionsfromthe histograms in(a)and(b) are labeled to highlight periodic behavior. Inset in top right Figure4. bW ESEMimagesofcondensationwettingstageson includesmeandropletdiameterdataonthesmoothhydro- amphiphilicsurface.(a)Dryamphiphilicsurfacepriortosub- phobicsurfacefordirectcomparison. cooling. (b) Subcooling the surface leads to nucleation at hydrophilicbaseofnanowiresandformationofwettedsub- difference inwire heightsbecause,withawire packing layer.(c)Formationand(d)constantcontactanglegrowthof Cassiedropletsonhydrophobicnanowiretips.(e)Coalescence fractionofapproximately85%,theinitialCassiedroplets ofadjacentCassiedropletsthroughdirectcontact.(e)Result- mustonlycontactafractionofthe(tallest)wiresbeneathit ingcoalesceddropisinWenzelstate,connectedtowetted sublayer,asindicatedbyconstantbaseareagrowth.Seeweb toachievea20%areafraction.Further,roughnessfeatures enhancedobjectS4foravideooftheentireprocess. musttrulybenanosizedtosupportdropletsontheorder of 10 μm because a high number of wires at different at least one coalescence, droplets transition to a heightsmustbepresentbeneaththissmalldropletforthe Wenzelstateandarethusfluidicallylinkedviathewetted above-describedbehaviortooccur. sublayerbetweenthehydrophilicportionsofthenano- Eventually, adjacent Cassie droplets coalesce by wires.Intherejuvenationregime,thereisanassortment growingintooneanother,andindoingsotransition ofWenzelstatedropletsofvaryingdiameterwithinclose totheWenzelstatewhereintheyareconnectedtothe proximityofoneanother.Thermodynamically,droplets underlyingfluidlayer.Thistransitioncanbeseenbya onasurfacewillalwaysprefertocoalesceintoonelarger post-coalescence reduction in contact angle and by droplettominimizethetotalsurfacefreeenergy;how- thefactthatacoalesceddropletgrowsinaconstant ever,onatypicalsurface,thereisnopathtothislower base area mode with a high degree of contact line energystate.Incontrast,ontheamphiphilicsurface,the pinning(Figure4e,f). Laplace pressure difference between adjacent droplets TheinsightgainedfromESEMvisualizationofthe with different radii of curvature supplies the driving wetted sublayer development and initial droplet dy- force for coalescence and the fluidic linkage provides namicsoffersamorecompleteunderstandingofthe the pathway. A representative coalescence sequence phenomenon occurring in the periodic rejuvenation withanillustratedschematicishighlightedinFigure5. regimedepictedinFigures2and3.Afterundergoing It is clear that the droplets do coalesce into one, ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3265 www.acsnano.org A R T I C L E Figure5. (a)Pre-andpost-coalescenceopticalimagesofaLaplacepressure-drivenmultidropletlong-rangecoalescence event.EncircleddropletsareintheCassiestateandthereforedonotinteractwiththesurroundingcoalescingdroplets.(b) Sketchedschematicofthecoalescenceprocess. rather than moving radially outward from the field of condensed droplets to remain stable in the Cassie view,becausearegionofdropletsfullysurroundingeach state such that they can roll off the surface. High- coalescencezoneremainsunaffectedduringtheevent. speed visualization could provide further insight into Furthermore,thefactthattwosmalldroplets,presumably thisnewphenomenon,potentiallycapturingtherapid intheCassiestateduetotheirsmallsize,areunaffected transient interaction between droplets and the sub- bythecoalescenceofthesurroundingdropletsprovides strate.Thistypeofamphiphilicsurfacehasfabrication strongevidencesupportingtheproposedmechanismof advantageous in that the roughness is generated in a nondirect coalescence through the wetted sublayer. If singlestep,ratherthanrequiringfabricationofmicroscale thelargerWenzeldropletswereinsteadcoalescedabove roughnessfollowedbysubsequentgrowthofnanostruc- thesurfacebyacascadeofadjacentcontactingdroplets, turesasutilizedinotherstudies.15(cid:1)17 theseCassiedropletswouldundoubtedlybesweptupin Theissueofremovingthefewlarge“sticky”Wenzel theprocess.Itisimportanttonote,however,thatboth dropletsremainsandisimportantforpracticalapplica- contact-basedandLaplacepressure-drivencoalescences tionsofdesigningheattransferequipment.However, canoccursimultaneously,asindicatedinFigure5,bythe thefactthatthewettedsublayerprovidesapathfor othersmallCassiedropletswhicharewithinthefootprint dropletcoalescencefromlongerrangemeansthatthe ofthefinalcoalesceddropandthereforedoparticipatein largestdropletscanmorerapidlycollectvolumeand thecoalescence. growtoasizewhereremovalbecomespractical.For example, on a vertically oriented surface, eventually, CONCLUSION gravitationalforceswillbecomesignificantrelativeto In summary, we have reported a novel nanostruc- surfaceforcesatwhichpointthelargestdropletscan tured amphiphilic surface with a vertical surface en- slide off the surface. Alternatively, other techniques ergy gradient which enables long-range collective such as vibration-induced dewetting34 may be em- coalescence events resulting in periodic generation ployed to remove the largest droplets at a greater of fresh nucleation sites for small droplets during frequency.Regardlessofremovalmechanism,during dropwise condensation. ESEM visualization indicates thetimeinwhichthelargestdropletsgrowtoasize that this regenerative behavior is achieved by practicalforremoval,aheattransferenhancementis Laplacepressure-drivencoalescenceofWenzeldroplets expected in the area of the surface immediately through the wetted sublayer, rather than requiring surrounding these droplets as moderately sized ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3266 www.acsnano.org A Wenzel droplets are drawn in by the Laplace pres- condensationtothatoftraditionalsuperhydropho- R sure imbalance and fresh nucleation sites are cre- bicsurfaces,thusopeningnewavenuesforabroad T ated in their wake. With further exploration and rangeofcriticalmoistureandthermalmanagement optimization, this type of amphiphilic surface applications in emerging thermally limited nano- I C could provide an alternative mode of dropwise technologies. L E METHODS Engineering. Curr. Opin. Colloid Interface Sci. 2009, 14, 270–280. NanowireFabrication. Topreparetheamphiphilicnanostruc- 4. Crick,C.R.;Parkin,I.P.PreparationandCharacterisationof ture,firstgoldnanowirearrayswerefabricatedbyelectrode- positioninto200nmporediameterporousaluminatemplates Super-Hydrophobic Surfaces. Chem.;Eur. J. 2010, 16, (Whatman,Anodisc).Athingoldworkingelectrode(50nm)was 3568–3588. sputteredonthebranchedsideofthealuminatemplate.Next, 5. Nosonovsky,M.;Bhushan,B.BiomimeticSuperhydropho- goldwasdepositedintothetemplateusingOrotemp24plating bic Surfaces: Multiscale Approach. Nano Lett. 2007, 7, solution(TechnicInc.)atapotentialof(cid:1)0.9Vversusreference 2633–2637. electrodeinathree-electrodecell(aplatinumfoilcounterelec- 6. Rykaczewski,K.;Scott,J.H.J.MethodologyforImaging trodeandsaturatedcalomelreferenceelectrodewereused).The Nano-to-Microscale Water Condensation Dynamics on lengthofthewireswascontrolledbythedepositiontime,typically ComplexNanostructures.ACSNano2011,5,5962–5968. a1hdepositionyields350nmlongwires.Afterdeposition,the 7. Schmidt,E.;Schurig,W.;Sellschopp,W.Condensationof alumina template surrounding the wires was removed in 3 M WaterVapourinFilm-andDropForm.Tech.Mech.Ther- NaOH solution and extensively rinsed with Nanopure (18.2 modyn.1930,1,53–63. MΩ3cmresistivity)water.Topreventaggregationduetocapillary 8. Rose, J. W. Dropwise Condensation Theory and Experi- forcesduringevaporation,thewirearrayswerenotallowedto“air ment:AReview.Proc.Inst.Mech.Eng.,PartA2002,216, dry”;instead,afreeze-dryingprocesswasused. 115–128. PECVD Hydrophobic Coating. A flowing capacitively coupled 9. Carey, V. P. Liquid-Vapor Phase-Change Phenomena: An plasma-enhancedCVDsystemwasutilizedtocoatthetipsof Introduction to the Thermophysics of Vaporization and thewireswithahydrophobicfluoropolymer.ThePECVDsystem CondensationProcessesinHeatTransferEquipment;Hemi- operatedataradiofrequencyof13.56MHzandpowerof30W. spherePub.Corp.:Washington,DC,1992. Themonomeroctafluorocyclobutane(C4F8)wassuppliedtothe 10. Graham,C.;Griffith,P.DropSizeDistributionsandHeat- depositionchamberatarateof3sccm,alongwith50sccmof Transfer in Dropwise Condensation. Int. J. Heat Mass argon gas. The chamber was held at 80 mTorr and room Transfer1973,16,337–346. temperatureduringdeposition,withthemonomerinletinthe 11. Rose, J. W.; Glicksman, L. R. Dropwise Condensation - downstreamposition3in.abovethesubstrate.Depositiontime Distribution of Drop Sizes. Int. J. Heat Mass Transfer was60s,leadingtoacoatingofapproximately10nmonthe 1973,16,411–425. tipsofthenanowires.Incomparison,thesmoothhydrophobic 12. Dorrer,C.;Ruhe,J.SomeThoughtsonSuperhydrophobic surfacewascoatedwithacommerciallyavailablehydrophobic Wetting.SoftMatter2009,5,51–61. coating(Rain-X). 13. Quere,D.Non-stickingDrops.Rep.Prog.Phys.2005,68, ScanningElectronMicroscopeImaging. Condensationimagesare 2495–2532. capturedusinganFEIQuanta200ESEMwithpurewatervaporat 14. Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; 5.8Torrinthechamber.Subcoolingofthesurfaceisaccomplished Amaratunga,G.A.J.;Milne,W.I.;McKinley,G.H.;Gleason, withasolid-statePeltiercoolingdevice.TheSEMmicrographsin K.K.SuperhydrophobicCarbonNanotubeForests.Nano Figure1aretakenwithaZeissUltra60FE-SEM. Lett.2003,3,1701–1705. OpticalImagingwithVisibleLight. Videoimagesofvaporcon- 15. Chen,C.H.;Cai,Q.J.;Tsai,C.L.;Chen,C.L.;Xiong,G.Y.;Yu, densationaretakennormaltothetestsurfacesusingaPhantom Y.;Ren,Z.F.DropwiseCondensationonSuperhydropho- v12 camera with a 50(cid:3) optical lens, capturing 24 frames bic Surfaces with Two-Tier Roughness. Appl. Phys. Lett. persecondanda341.5(cid:3)341.5μmfieldofview.Thesurface 2007,90,173108-1–173108-3. issubcooledwithasolid-statePeltierdevice;however,inthis 16. Boreyko,J.B.;Chen,C.H.Self-PropelledDropwiseCon- case,watervaporinambientairat∼40%relativehumidityis densate on Superhydrophobic Surfaces. Phys. Rev. Lett. usedforcondensationratherthanpurevaporintheESEM. 2009,103,184501-1–184501-4. Conflict of Interest: The authors declare no competing 17. Chen,X.;Wu,J.;Ma,R.;Hua,M.;Koratkar,N.;Yao,S.;Wang, financialinterest. Z.NanograssedMicropyramidalArchitecturesforContin- uousDropwiseCondensation.Adv.Funct.Mater.2011,21, Acknowledgment. AFOSRBIONICCenter(AwardNo.FA9550- 4617–4623. 09-1-0162)providedfinancialsupportforthiswork.Theauthors 18. Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W. S.; Deng, T. thankA.WaiteatAirForceResearchLaboratoryforassistancewith SpatialControlintheHeterogeneousNucleationofWater. thefluoropolymerPECVDcoatingprocess.Theyalsoacknowledge Appl.Phys.Lett.2009,95,094101-1–094101-3. S. Naik at Georgia Institute of Technology for preparing the 19. Dietz,C.;Rykaczewski,K.;Fedorov,A.G.;Joshi,Y.Visualiza- electrodepositedgoldnanowiresamples. tionofDropletDepartureonaSuperhydrophobicSurface and Implications to Heat Transfer Enhancement during Supporting Information Available: Additional video. This Dropwise Condensation. Appl. Phys. Lett. 2010, 97, materialisavailablefreeofchargeviatheInternetathttp:// 033104-1–033104-3. pubs.acs.org. 20. Patankar, N. A. Supernucleating Surfaces for Nucleate Boiling and Dropwise Condensation Heat Transfer. Soft Matter2010,6,1613–1620. REFERENCESANDNOTES 21. Cheng,Y.T.;Rodak,D.E.IstheLotusLeafSuperhydro- 1. Degennes,P.G.Wetting-StaticsandDynamics.Rev.Mod. phobic?Appl.Phys.Lett.2005,86,144101-1–144101-4. Phys.1985,57,827–863. 22. Narhe,R.D.;Beysens,D.A.NucleationandGrowthona 2. Kim, S. H. Fabrication of Superhydrophobic Surfaces. SuperhydrophobicGroovedSurface.Phys.Rev.Lett.2004, J.Adhes.Sci.Technol.2008,22,235–250. 93,076103-1–076103-4. 3. Nosonovsky,M.;Bhushan,B.SuperhydrophobicSurfaces 23. Wier,K.A.;McCarthy,T.J.CondensationonUltrahydro- andEmergingApplications:Non-adhesion,Energy,Green phobic Surfaces and Its Effect on Droplet Mobility: ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3267 www.acsnano.org A UltrahydrophobicSurfacesAreNotAlwaysWaterRepel- R lant.Langmuir2006,22,2433–2436. 24. Lafuma,A.;Quere,D.SuperhydrophobicStates.Nat.Mater. T 2003,2,457–460. 25. Patankar, N. A. Transition between Superhydrophobic I StatesonRoughSurfaces.Langmuir2004,20,7097–7102. C 26. Marmur,A.WettingonHydrophobicRoughSurfaces:To Be Heterogeneous or Not To Be? Langmuir 2003, 19, L 8343–8348. E 27. Anderson,K.D.;Slocik,J.M.;McConney,M.E.;Enlow,J.O.; Jakubiak,R.;Bunning,T.J.;Naik,R.R.;Tsukruk,V.V.Facile Plasma-Enhanced Deposition of Ultrathin Crosslinked Amino Acid Films forConformal Biometallization. Small 2009,5,741–749. 28. Daniel,S.;Chaudhury,M.K.;Chen,J.C.FastDropMove- mentsResulting from thePhaseChange onaGradient Surface.Science2001,291,633–636. 29. Ristenpart, W.D.; McCalla, P.M.; Roy,R.V.;Stone,H.A. Coalescence of Spreading Droplets on aWettable Sub- strate.Phys.Rev.Lett.2006,97,064501-1–064501-4. 30. Jung,Y.C.;Bhushan,B.WettingBehaviourduringEvapora- tionandCondensationofWaterMicrodropletsonSuper- hydrophobic Patterned Surfaces. J. Microsc. 2008, 229, 127–140. 31. Rykaczewski,K.;Scott,J.H.J.;Fedorov,A.G.ElectronBeam HeatingEffectsduringEnvironmentalScanningElectron Microscopy Imaging of Water Condensation on Super- hydrophobicSurfaces.Appl.Phys.Lett.2011,98,093106- 1–093106-3. 32. Fox,H.W.;Zisman,W.A.TheSpreadingofLiquidsonLow EnergySurfaces.I.Polytetrafluoroethylene.J.ColloidSci. 1950,5,514–531. 33. Cassie,A.B.D.;Baxter,S.WettabilityofPorousSurfaces. Trans.FaradaySoc.1944,40,0546–0550. 34. Boreyko,J.B.;Chen,C.H.RestoringSuperhydrophobicity ofLotusLeaveswithVibration-InducedDewetting.Phys. Rev.Lett.2009,103,174502-1–174502-4. ANDERSONETAL. VOL.6 ’ NO.4 ’ 3262–3268 ’ 2012 3268 www.acsnano.org