ebook img

DTIC ADA581068: Application of a Dynamic-Mixture Shock-Wave Model to the Metal-Matrix Composite Materials PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA581068: Application of a Dynamic-Mixture Shock-Wave Model to the Metal-Matrix Composite Materials

REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) New Reprint - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Application of a dynamic-mixture shock-wave model to the W911NF-09-1-0513 metal–matrix composite materials 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 622105 6. AUTHORS 5d. PROJECT NUMBER M. Grujicic, B. Pandurangan, W.C. Bell, C.-F. Yen, B.A. Cheeseman 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT NUMBER Clemson University Office of Sponsored Programs 300 Brackett Hall Clemson, SC 29634 -5702 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) ARO U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 27709-2211 56526-EG.10 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT The so-called “dynamic mixture” model is applied to a prototypical metal matrix composite (MMC) system (consisting of an aluminum matrix and SiC particulates) in order to investigate the propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time-invariant) structured shock waves. Waves of this type are typically generated during blast-wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads are introduced into a structure. Hence, the knowledge of 15. SUBJECT TERMS Structured shocks, Dynamic-mixture model, Metal–matrix composites 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Mica Grujicic UU UU UU UU 19b. TELEPHONE NUMBER 864-656-5639 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 Report Title Application of a dynamic-mixture shock-wave model to the metal–matrix composite materials ABSTRACT The so-called “dynamic mixture” model is applied to a prototypical metal matrix composite (MMC) system (consisting of an aluminum matrix and SiC particulates) in order to investigate the propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time-invariant) structured shock waves. Waves of this type are typically generated during blast-wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads are introduced into a structure. Hence, the knowledge of their propagation behavior is critical for designing structures with superior blast and impact protection capacities. To validate the computational procedure used, the structured shock-wave analysis is first applied to a homogeneous (i.e. single component) metallic system (commercially pure niobium). Next, the analysis is applied to the aforementioned MMC (in the limit of intermediate to strong shocks) when the contribution of the stress deviator to the total stress state can be neglected. Finally, the computational results are compared with their experimental counterparts available in the open literature in order to validate the dynamic-mixture method used. The so-called “dynamic mixture” model is applied to a prototypical metal matrix composite (MMC) system (consisting of an aluminum matrix and SiC particulates) in order to investigate the propagation of planar (i.e. one directional), longitudinal (i.e. uniaxial strain), steady (i.e. time-invariant) structured shock waves. Waves of this type are typically generated during blast-wave loading or ballistic impact and play a major role in the way blast/ballistic impact loads are introduced into a structure. Hence, the knowledge of their propagation behavior is critical for designing structures with superior blast and impact protection capacities. To validate the computational procedure used, the structured shock-wave analysis is first applied to a homogeneous (i.e. single component) metallic system (commercially pure niobium). Next, the analysis is applied to the aforementioned MMC (in the limit of intermediate to strong shocks) when the contribution of the stress deviator to the total stress state can be neglected. Finally, the computational results are compared with their experimental counterparts available in the open literature in order to validate the dynamic-mixture method used. REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number 56526.10-EG Application of a dynamic-mixture shock-wave m ... Block 13: Supplementary Note © 2011 . Published in Materials Science and Engineering: A, Vol. Ed. 0 528, (28) (2011), ( (28). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authroize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation. Approved for public release; distribution is unlimited. MaterialsScienceandEngineeringA528 (2011) 8187–8197 ContentslistsavailableatScienceDirect Materials Science and Engineering A journal homepage: www.elsevier.com/locate/msea Application of a dynamic-mixture shock-wave model to the metal–matrix composite materials M.Grujicica,∗,B.Pandurangana,W.C.Bella,C.-F.Yenb,B.A.Cheesemanb aDepartmentofMechanicalEngineering,ClemsonUniversity,Clemson,SC29634,UnitedStates bArmyResear ch Laboratory, Survivability Materia lsBranch,A berdeen, Pro vingGr ound,M D21005-5069,UnitedStates a r t i c l e i n f o a b s t r a c t Articlehistory: Theso-called“dynamicmixture”modelisappliedtoaprototypicalmetalmatrixcomposite(MMC)system Receiv ed24March2011 (con sistingof analumin ummat rixand S iCpartic ul at es)inordert oinve stigate thepropag ationof planar RAeccceepivteedd i4n Ar euvgiussetd 2 f0o1rm1 8 July 2011 (i.e. one dire ct ion al), longitu dinal (i .e. un iax ial strain), ste ad y (i.e. tim e-invariant ) str uctured shoc k waves. Wavesofthistypearetypicallygeneratedduringblast-waveloadingorballisticimpactandplayamajor Available online 11 August 2011 roleinthewayblast/ballisticimpactloadsareintroducedintoastructure.Hence,theknowledgeof theirpropagationbehavioriscriticalfordesigningstructureswithsuperiorblastandimpactprotection Keywords: capacities. Structuredshocks Tovalidatethecomputationalprocedureused,thestructuredshock-waveanalysisisfirstappliedtoa Dynamic-mixturemodel Metal–matrix com posites hapopmlioegdetnoetohuesa (fio.er.e sminegnleti coonmedpMonMenCt()i mntehteallliimc sityostfeinmt e(rcmomedmiaetrecitaollsyt rpounrges nhioocbkius)mw).h Nenextth, ethceo nantraiblyustiiso ins ofthestressdeviatortothetotalstressstatecanbeneglected.Finally,thecomputationalresultsare comparedwiththeirexperimentalcounterpartsavailableintheopenliteratureinordertovalidatethe dynamic-mixturemethodused. © 2011 Elsevier B.V. All rights reserved. 1. Introduction When analyzing shock-wave generation and propagation within MMCs and the associated microstructure-evolution and Metal–matrix composites (MMCs) are among the most materialdeformation/degradationprocesses,onemustaddressa advancedcommerciallyavailablematerialsnowadays.Thesemate- numberofissuesspecifictothisclassofmaterials,amongwhich rials are seeing increased use in the following applications: thefollowingplayaprominentrole: automotive-engineering(e.g.crash-worthystructures),aerospace industry (e.g. space debris impact shields), and defense industry (a) MMCsareheterogeneous(i.e.atleasttwophase)materialsin (e.g.light-weight,high-performanceblastandballisticprotection whichtheconstituentphases(ametallicmatrixand,typically, systems) [1]. The main reason for the aforementioned increased ceramic reinforcements and potentially voids) generally pos- applicationofthisclassofcompositematerialsistheirabilityto sess very different microstructural, physical, mechanical, and simultaneouslysatisfyavarietyofmanufacturing/processingcon- morphologicalpropertiesandvolumefractions; straints and functional/performance requirements (via material (b) MMCsmaybeelasticallyand/orinelasticallyanisotropic;and propertytailoring).Specifically,asimpliedbytheaforementioned (c) TheeffectivepropertiesoftheMMCsarenotoftendefinedsolely applications,thisclassofcompositestendstoprovidegoodper- byarule-of-mixtureappliedtotheconstituentmaterialprop- formance under high loading-rate conditions. Clearly, a further erties,butmayalsobegreatlyaffectedbythepropertiesofthe increase in the high loading-rate application of these materials matrix/reinforcementinterphaseboundaries. necessitatesenhancedknowledgeofboththephenomenaassoci- atedwithshock-wavegenerationandpropagation(addressedin the present work), as well as the micro-structure evolution and These three issues can give rise to a broad range of relations materialdeformation/degradationprocessesaccompanyingshock between propagating shock waves, initial material microstruc- propagation(tobeaddressedinourfuturework). ture and the material structure resulting from the passage of shock waves. The increasing utilization of the MMCs in future, more-demanding engineering designs necessitates an improved ∗ knowledge of the basic phenomena associated with shock wave Correspondingauthorat:241EngineeringInnovationBuilding,Clemson,SC generationandpropagationwithintheMMCsandtheassociated 29634-0921,UnitedStates.Tel.:+18646565639;fax:+18646564435. E-mailad dress:g mica@c lem son .edu (M. Grujic ic). materialm icros tructure/prop ertych ang es.The focu soft hepresent 0921-5093/$–seefrontmatter© 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.msea.2011.08.008 8188 M.Grujicicetal./MaterialsScienceandEngineeringA528 (2011) 8187–8197 work is on the phenomena related to the propagation of shock valuesdependonthecurrentstateofloadingoftheMMCatagiven waveswithintheheterogeneousisotropicsolids(likesomeclasses materialpoint. ofMMCssuchasthosebasedonparticulatereinforcements). Inthepresentwork,anattemptismadetofurtheradvanceand The development of complex composite-material structures providemorephysicalinsightintotheso-called“dynamic-mixture” such as the ones mentioned above typically includes extensive materialmodeloriginallyproposedbyDrumheller[10]andAnder- experimental test programs. Such experimental test programs son et al. [11]. The model was aimed at capturing the effective are critical for ensuring the utility and effectiveness of the response of MMCs when subjected to shock-wave loading. The composite-material structures. However, the use of experimen- model is of a homogenization-type, i.e. each material point is tal test programs is generally expensive, time-consuming and assumed to contain both of the MMC components. Also, while ofteninvolvesdestructivetesting.Whiletheroleofexperimental the mass fractions of the components remain constant at each test programs remains critical, they are increasingly being com- materialpoint,thecorrespondingvolumefractions,asmentioned plementedbythecorrespondingcomputation-basedengineering above, may evolve with dynamic loading. Consequently, one analyses and simulations. The knowledge of composite-material cannotderiveapriorianeffectivematerialmodelbyfixingvolume responseundervariousin-serviceloadingconditions,asdescribed fractionsofthetwoconstituentsandcombiningtheirrespective bythecorrespondingmaterialmodel(s),isoneofthekeycompo- materialmodelsinaccordancewithsomerule-of-mixture.Instead, nents in such analyses greatly affecting their utility and fidelity. the effective (loading-path dependent) volume fractions of the The main objective of the present paper is to help advance the constituents at each material point have to be computed while useofthesecomputationalengineeringanalysesandsimulations solving the governing (mass, linear momentum and energy) intheareasofdesignandapplicationoftheMMCstructuresbyfur- conservation/balanceequations. therdevelopingtheanalysisandtheknowledgeofthephenomena Whendealingwiththemechanical-responseofmaterialssub- associatedwithshockpropagationintheMMCs. jectedtoshockloading,amongseveralothers,thefollowingtwo Anoverviewofthepublic-domainliteraturecarriedoutaspart phenomenashouldbeconsidered: of the present work revealed a number of material models for the MMCs. There are different ways in which these models can (a) shockwavesaredominatedbytheirlongitudinalcomponent, be classified. For example, MMC-material models can be classi- thecomponentwithinwhichthematerial-particlepropagation fied according to the microstructure length scale which is being direction(asdefinedbythepolarizationvector)iscollinearwith emphasized in the model. In accordance with this classification thewavepropagationdirection(asdefinedbythewavevector). continuum[e.g.2],grain-size[e.g.3]andatomic-scale[e.g.4]MMC- Inotherwords,undershock-loadingconditions,thestressstate material models can be identified. Alternatively, MMC material ofthematerialisof(ornearlyof)auniaxial-strain(i.e.tri-axial modelscanbeclassifiedaccordingtothemorphology(andsize)of stress)character.Furthermore,inthepresenceofshear-based thereinforcementsaswhiskers-reinforcedMMCs[5],particulate- inelastic/plasticdeformationprocesses,andundersufficiently reinforcedMMCs[6],dispersion-reinforcedMMCs[7],etc. strongshockloadingconditions,thestressstateofthematerial TheMMC-materialmodelclassificationadoptedinthepresent is dominated by its hydrodynamic part, i.e. pressure. Conse- workisbasedontheapplicabilityofthemodelswithrespecttothe quently,itisoftenadvantageoustotreatthematerialsunder differentloading-rate/deformation-rateranges.Inotherwords,the investigation subjected to shock loading as being fluid-like modelsidentifiedintheopenliteraturearedividedinto:(a)those (sincestressstateinfluidsispressuredominated);and suitableforquasi-staticand/orsub-sonicdynamicdeformationrate (b) under super-sonic strain rates associated with shock loading conditions[8];and(b)thosesuitableforsuper-sonic(i.e.shock- and due to the compliant/deformable nature of the metallic wave)loadingconditions[9].Whiletherearematerialmodelsin matrix,shockloadingcanbeingeneral,associatedwithmajor the literature which retain the discrete nature of the two MMC- internal thermal-energy/temperature increases. While long- materialcomponents(i.e.ofthemetallicmatrixandthediscrete rangethermal-conductioneffectsarenormallyneglected(due reinforcements),theonesconsideredinthepresentworktreatthe toshort-durationoftheshockloading),onestillhastoaddress MMCasahomogenized/smearedoutmixtureofthetwocompo- the problem of internal thermal-energy exchange/transfer nents.Themainreasonforthisisthattheinterestofthepresent between the MMC components residing at the same mate- workwasintoMMC-materialmodelswhicharesuitableforlarge- rial point. This problem is typically handled by investigating scalecomputationalinvestigations.Intheseinvestigations,dueto MMCresponseundertheadiabatic(nointernalthermal-energy aprohibitivelyhighcomputationalcost,onecannotaffordtotreat exchange,consideredinthepresentwork)andtheisothermal the MMC material as a heterogeneous two-component medium, (completetemperatureequilibration)limits.Itshouldberec- butisforcedtoconsiderthesameasahomogenized/smeared-out ognized,however,thatundernormalshock-loadingconditions, “single-component”material. each material-point may experience different extents of the Various MMC-material models from the two aforementioned internalthermal-energyexchangebetweenitscomponents. classes differ generally in the way the two components are mixed/homogenized. That is different assumptions are involved regarding partitioning of stresses and strains between the rein- In the present work, a critical examination of the “dynamic- forcementsandthematrix.Inthemajorityofthematerialmodels, mixture” material model [10,11] is first carried out. Next, the reviewedaspartofthepresentwork,thevolumefractionofthe modelisappliedtoaluminum-matrixMMCsreinforcedwithsil- MMC-materialcomponentsisassumedtoremainunchangeddur- iconcarbideparticulates.However,beforeapplyingthenumerical ingloading/deformation.Whilethisassumptioncanbegenerally proceduretotheMMCmaterial,theprocedurewastestedusinga justifiedinthecaseofquasi-staticandsub-sonicdynamicloading homogeneousisotropicmaterial(commerciallypureniobium). conditions (which are associated with relatively small volumet- Theorganizationofthepaperisasfollows:thecaseofshock ric strains), its validity becomes questionable, as will be shown wavepropagationwithinhomogeneousisotropicsolidsincluding later,inthecaseofshock-waveloading(atypeofloadingwhich thedefinitionofthegoverningequationsandthematerialmodel is dominated by the spherical/hydrodynamic component of the as well as the presentation of the results of a structured shock- stresstensorandmayresultinlargevolumetricstrains).Inother wave analysis is provided in Section 2. A critical review of the words,aswillbeshowninnextsection,thevolumefractionsof dynamic-mixturemodelandtheapplicationofthismodeltothe theMMCcomponentstendtobehaveasdynamicvariableswhose aluminummatrix+siliconcarbidereinforcedMMCisprovidedin M.Grujicicetal./MaterialsScienceandEngineeringA528 (2011) 8187–8197 8189 Section3.Thekeyconclusionsresultingfromthepresentstudyare separate dependent variable since ε˙˛ˇ=∂v˛/∂xˇ. The indepen- summarizedinSection4. dentvariablesintheproblemathandarethespatialcoordinates x˛(˛ =1,2,3) an dtim e,t. 2. Structuredshocksinisotropichomogeneoussolids Toremovetheunder-determinacyoftheabovesystemofequa- tionss evenad diti onalrelationsneed to bed efined .These inc lude: 2.1. Analysis (a) Oneequationofstate(EOS),P=func((cid:2),E); Beforeanalyzingthemechanicalresponseofcompositemate- (b) Five strengt h- mode l equ a ti ons, S ˛ˇ=func(ε(cid:5)ı), where rialstosu per-sonic dyn amic(i.e.sh ockwave- ba sed)loadin g,one ˛,ˇ, (cid:5),ı=1,2,3;and shou ld brieflyoverv iewthec orre spondingproblemi nthesin gle- (c) On ec on s tit uti ve re lationforthedissipative-pressure/artificial- compo nent m aterial ca se. F irst, it should be recog niz ed that in visco sityQ =fun c((cid:2),(cid:2)˙,E ); single-componentmaterials,shockwavespropagatenotasdiscon- tinuitiesinthema terialstate varia bles(e .g.stress,s train ,d ensity, Itshouldbenotedthat,whiletheEOSandthestrength-model tempera tur e, e tc.), but rather as (smoo th) structu red wa ves (i.e. are e xpected to accou nt fo r the esse ntia l phy sics of high-strain- thematerials tatev aria blesva ry smoothly acrossthes hock-w ave rate deformat ion ofthem ater ialin question ,the(art ific ial-viscosity fron t,althou ghthe wave-fro ntth icknessm aybeq uite small).The base d)Qtermiso ft enn on-phys ica landism ainl yusedtohelpdeal thickn essofthe sho ck-wavefro ntiscontr olled by thec ompeti tion with th e num er ical/c omputational dif fic ulties ( i.e. to o verc ome betweent wo asp ectsofthem ateri al mechanica lre spo nse:(a)non- thep robl emsassociatedwithnume ricaloscilla tions at theshock- linearma teria lconsti tut ive response whichgives risetoan incr ease wav efront).T heuseofth ister mwithina finitediffer enc e/e lement inthe material stiffnesswi thanincr easein the defo rm at ion.This comp utation alfr ame w ork hasb eensho w nto helpsmearoutthe ph eno menonle adstoste epen ing ofthewa ve fron t(i.e.toaredu ced shock-wavefro ntoverseve ral comp utation alc ells/e lemen ts.C on- shock wave f ront t hi ckness) as th e tr ailing high -stre ss /p ressure sequently,th eQ = fun c((cid:2),(cid:2)˙, E)relationisco nstructedinsu cha portio nsoft hewa vetendtop rop aga teatahi gherspeedthantheir waythatQ take s on significa nt (n on-zero) va luesonlyint he shock - leadingl ow -str ess/p ressu re counterpa rts ; and(b) rate-d epen dent wave fron t region an dQ→0as (cid:2)˙ →0(inth eregio nsa wa yfr omthe materia lconstitutiverespon sewhichgives rise toa nincreaseinthe shock -wav efront) .Its h oul d be a lso n ote dth atinthe case sofra te- energyd issipationwi thanincr easein thelo adin g rat e.This,in tu rn, dependentm ateria ls, theuse of thea rtificia l-vis co sity based Q term causes adecelerati onin th efast-pr op aga tinghig h-str ess/p res sure isoftennot necessary sinc eth em at erial,byitself,dissi pates en ergy portion s ofthewave an dpr oducesawave-d ispersioneffect.The an dass ists intheform ation of oscillation -f reestr ucturedsh ocks. finalprofi le acq uired byth eshockw av eistheresultoft hebala nce T he set o f eq uations gi ve n above (plus the missin g mate- betw eenth enonline ar- con stitutiv eres po nse induc ed ste epening rialspe cific eq uations)de finesa genera lthre e-dim ensiona lwave effectsan dth erate-dependencyind uceddisp ersioneff ects. pro pagation problem. Howeve r, in this section, only the prob- Sho ck-w ave propagation-ind uced de formation processes are lem of prop agation o f steady (i.e . tim e invari ant), plan e (i.e. controlledbyth emass,momentuman denergycon servationl aws one- dim ensional),lo ngi tudinal( i.e.u niaxia lmotion)sh ock-w aves whichcan be defi nedw ithinathree- dim ensiona lEulerian(spa tial) within isotropic h omogeneous ma terials i s consid ered. In this framew ork as : case, a single sta tionary shock-w ave appr oac h (i.e. attach ing the Conserva tion of mass: (provides a relationship between the refer en ce fram e to the moving shoc k-wave fr ont) will be u sed. motionofthem ate rialpa rticlesand th emassdensit y) Conseque ntly, it w ill be more c onvenient to deal with the one- dimensionalm as s,mo me ntum andenergy con serva tione qua tions (cid:2)˙ + (cid:2)∂∂xx˙˛˛ = 0 (1) dweivthiainto ar d(mepa etnerdieanl) t Ltaegrmranwgiilalnb efrcaomm ebwinoerkd. wIni tahdpdrietisosnu,r te hteo sotbretasisn- the axial stress, t , and the Q-dependent terms will be omitted Conservation of momentum: (provides a relationship between 11 (since the material constitutive equation will include a viscous themotionofthematerialparticlesandtheequilibriumandthe term, also, the body force term in Eq. (2) and the external heat dissipativestresses/pressures) supplyterminEq.(3)willnotbeconsidered). (cid:2)x¨˛= −∂∂x˛(P + Q) + (cid:2)f˛+∂∂Sx˛ˇˇ (2) 2.2. Nu meric al exa mpl e Conservation of energy: (provides a relationship between the AsestablishedbyDavison[12],thespeedofpropagationofa mechanicalwor kd oneand thestored st rainandther malenerg ies) struct ured shock, C, is the sa me a s the Lagra ng ian shock sp ee d, (cid:2)E˙ = (P + Q)(cid:2)(cid:2)˙ + S˛ˇε˙˛ˇ+ (cid:2)r (3) Usasm, feo rc haa dnigsec oinn tthineu mouast esrhiaolc skt aotfe st hfreo msa mtheo saem inp lfirtoundte o (fi t.eh.e f sohr otchke, referredtoas“minus”statevariables,tothosebehindtheshock, where(cid:2) isthematerialmass-density,fisthemass-basedbody- referred to ast he“plus” state variables) .In additi on,thes hoc kjump force, x˛ th e ˛ -th spatia l coordinate, x˙˛ ˛ -th component of the conditio ns for the state variab lesmustb es atisfiedbe tw eenall pairs particlevelocity(definedasatimederivativeoftheparticlespa- ofpointsinastructuredshock. tialcoor dinates), S˛ˇaret he co mpon entsofthe st ress deviator ,ε˙˛ˇ Bycom b in ingtheLag rangianformsofthemassandmomentum arethecorrespondingstrain-ratecomponentsandristheexternal jumpconditions: heatsupply.Thesummationconventionisimpliedbytherepeated subs cripts˛ ,ˇ= 1,2,3.The raiseddotd e notesam a teria lderiva- (cid:2)R Us(cid:4)−v(cid:5) = (cid:4)x˙(cid:5) (4) tive(=∂/∂ t+ ∂ /∂ x˛ x˙˛ ).P ist he(equ ilib rium/ph ys ical)pres sure,Q (cid:2)R Us(cid:4)x˙(cid:5)=(cid:4)−t11(cid:5) (5) is the dissipative-pressure, and E is the mass-based internal-energy where(cid:4)(cid:5)denotejumpsinthequantitiesacrosstheshock,thefol- density. lowing relation is derived between the jumps in the stress and Inathree-dimensionalcaseasdefinedabove,Eqs.(1)–(3)con- stitut e a set of five equati ons wit h twelv e unkn own s: (cid:2),v˛ (˛= specific volume fo(cid:2)r a struct(cid:3)ured shock: s1h, o2u, l3d) , b Ee, Pn ,o Qte datnh dat ε˙S˛˛ˇˇ((˛˛,, ˇ ˇ == 11 ,,2 2,,3 3)),i s S˛nˇo=t Scˇo˛n,s iSd ˛e˛re =d 0a. s Iat −t11(Z) + (cid:2)R US2 vv(ZR)− 1 = 0 (6) 8190 M.Grujicicetal./MaterialsScienceandEngineeringA528 (2011) 8187–8197 where the spatial coordinate Z, is defined as Z=X−Us·t and, for simplicity,theattentionisrestrictedtothefollowingminusstates case: t1−1= 0 an d v−= vR . Thematerialsanalyzedinthissectionareassumedtobenon- linearelastic(specificallydescribedthroughtheuseofthirdorder elasticconstants)andlinearlyviscous.Thestressrelationforthis materialcanbewrittenas: t =tE +tV (7) 11 11 11 where (cid:4)(cid:5) (cid:6) (cid:7)(cid:8) (cid:5) (cid:6) (cid:9) tE = 1 v v 2−1 (cid:6)+2(cid:7)+1((cid:8) +6(cid:8) +8(cid:8) )[ v 2−1] 11 2vR vR 4 1 2 3 vR (8) representstheelasticresponsewith(cid:6)and(cid:7)beingthelinear (second order) Lamé elastic constants and v , v and v are the 1 2 3 non-linear(third-order)elasticconstants[12].Itshouldbenoted that((1/2) (v/vR))[(v/vR)2 −1]re presentst he11 -c ompon ent ofthe large-deformationstrainwhichisdefinedasaproductofthe11- componentofthedeformationgradientandthe11-componentof theGreenLagrangianstrain. Thelinearviscouscontributiontothestressisgivenby tV =ωd =ωv˙ (9) 11 11 v whereω>0isaviscositycoefficient. Inastructuredsteadyshock,thefollowingrelationholds: dvdZ dv v˙ = dZ dt = dZ(−US) (10) Then,substitutionofEq.(10)intoEq.(9)yields: tV =−ωUS dv (11) 11 v dZ SubstitutionofEqs.(11)and(8)intoEq.(7)andthatresultinto Eq.(6)yields: (cid:2) (cid:5) (cid:6)(cid:3) d(vd/ZvR) = vω/UvRS t1E1− (cid:2)RUS2 vvR − 1 (12) IntegrationofEq.(12),givesthestructuredshockwaveformfor thespecificvol um e, v(Z). The corresponding stress waveform (t (Z)) can then be 11 obtainedfromEq.(6).TheLagrangianshockspeed,Us,appearingin thisequationisobtainedasfollows:theshockstrength/amplitude isfir stdefined b yspecifyi ng themagn itud eofv+ .ThenEq.(8)isused to com putetE w hiletV is set tozerosinc ev ˙ is essen tia lly ze roat 11 11 distancesfar-awayfromtheshockfront.Then,bycombiningEqs. (6)–(8),onecandetermineUs. The corre spo ndingpart iclevelocitywaveform(x˙ (Z))cannext beobtainedfromEq.(1).Finally,theinternalenergystructured- shockwaveformcanbeobtainedfromtheLagrangianformofthe energybalanceequationdefinedas: 1 E(Z)= x˙(Z)2 (13) 2 Thespecificexampleanalyzedinthepresentsectioninvolves commercially pure niobium. The general and mechanical prop- erties of this material are defined as: reference density, (cid:2) =8 700 kg/m3 ; Young’s mod ulus, E*= 110G Pa; Poisso n’s Ratio, R (cid:8)=0 .4;La me’con stants:(cid:6) =(E∗(cid:8))/( 1+ (cid:8) )(1− 2(cid:8)) =157 GP aand (cid:7) = E∗/ 2(1+ (cid:8))=39 GP a [1 2];thet hi rdor d ere las ticc onsta nts, v = −301G Pa ; v =− 131G Pa an d v =−1 04GP a [13]; the yield 1 2 3 stre ss (cid:10)y =350 MPa (as cold -wor ked cond ition ) and vis cosity Fig.1. Negativeaxialstressvs.negativeaxialstrainforcommerciallypureniobium ω=1.0 Pas[ 14]. TheH ugo niotElasticLim it(HEL)i.e. thea xialstress atst ra inratesof (a)1 05s−1; (b) 106s−1; and( c)107 s−1 . at th eo ns et ofpl astic yieldingt HEL=( ((cid:6)+2 (cid:7))/2 (cid:7))(cid:10) y= 1.09 GPa. 11 Examplesoftheresultsobtainedinthisportionoftheworkare giveninFigs.1–3. M.Grujicicetal./MaterialsScienceandEngineeringA528 (2011) 8187–8197 8191 Fig.2. Spatialstructured-shockwaveformsfor(a)specific-volumenormalizedbyreferencespecificvolume;(b)particlevelocity;(c)negativeaxialstress;and(d)mass-based internalenergydensityforcommerciallypureniobiumshockloadedtonearitsHugoniotElasticLimit(HEL). InFig.1(a)–(c),theeffectofconstantstrain-rateonthe−t vs. propagatingshock).Toobtainthecorrespondingtemporalshock 11 −E curv eisdepic ted. Itiscle ar thatasth erateofloa din gin creases, wave-forms (theone wh ichwo uld berecordedby asensorlo cated 11 the extent of energy dissipation (as quantified by the area sur- atafixedmaterialpoint),thehorizontalaxisinFig.2(a)–(d)should rou ndedby th eloadin gandtheun load ingpartso fth e−t1 1vs. −E11 be d ivide dby−Us . curve)increases.Itshouldbealsonotedthattheshockstrengthwas Fig.3(a)–(b)showrespectivelythevariationsofthe(negative) keptrelativelysmallinordertoavoidtheonsetofplasticdeforma- axialstressandtheparticlevelocitywiththematerialspecificvol- tion.Plasticdeformationgivesrisetoasecond(trailing)shockwave ume.Itisseenthatthevariationsareofalinear-typeconfirming andtheassociatedtwo-shockanalysisisbeyondthescopeofthe thatthematerialevolutionaccompanyingthepassageofastruc- presentwork. turedshocktakesplacealongtherespective“Rayleigh”line.This Fig.2(a)–(d)showrespectivelythespecificvolume,(negative) typeofmaterialevolutionisthereasonthat,asmentionedearlier, axialstress,particlevelocityandinternalenergydensitystructured theshock-jumprelationsmustholdbetweenanytwopointsofthe shockwavefronts,respectively.Itshouldbenotedthat:(a)noarti- shockwave-form. ficial viscosity was used in these calculations since the material, Itshouldbenotedthat,withinthepresentformulationcommer- throughitsownrate-dependentviscousbehaviorgivesrisetothe ciallypureniobiumistreatedasahomogeneousisotropicmaterial. formationofastructuredshock;and(b)thepresenceofaviscous Thisisanapproximationsincethismaterialisofapolycrystalline termaffectstheshapeoftheshockfrontconvertingitfromadiscon- nature,i.e.itiscomposedofalargenumberofgrains/crystallites tinuitytoasmoothtransition,butdoesnotaffectthemagnitudeof (and also contains a variety of surface, line and point defects). theplus-statevariables.Itshouldbefurthernotedthattheresults Hence, the present formulation is more appropriate in the displayedinFig.2(a)–(d)pertaintothespatialshock-waveprofiles weak-shock limit in which the shock wave front thickness is (theoneswhichwouldberecordedbyacameraattachedtothe relatively large in comparison to the average grain size of the 8192 M.Grujicicetal./MaterialsScienceandEngineeringA528 (2011) 8187–8197 3. Structuredshocksinisotropicheterogeneoussolids 3.1. Analysis In this section, a brief critical overview is provided of the dynamic-mixturecomposite-materialmodeloriginallydeveloped by Drumheller [10] and Anderson et al. [11]. As mentioned ear- lier, this is an example of a homogenization composite-material model, within which each material point is assumed to contain alltheconstituentphases(components)ofthematerial.However, componentmixingiscarriedoutdynamically(i.e.thecomponent volumefractionsarenotconsideredasconstantbutrathertreated asdynamic,solution-dependentvariables).Itshouldbealsonoted thattheanalysispresentedbelowislimitedtoshocksofatleast intermediatestrengthsothatthecontributionofthestressdeviator tothetotalstresscanbeneglectedand,hence,thestress-statecan beassumedtobeofaspherical(hydrodynamic)character.Further- more,theanalysisisrestrictedtotwocomponentheterogeneous solids (although it can be readily extended to multi-component systems). To explain the foundation of the dynamic mixture theory [10], separate consideration will be given to the three conserva- tion/balanceequations,Eqs.(1)–(3). Mass conservation equation: The first key assumption in the dynamic-mixture model is based on the recognition that within theextremelyshorttimeassociatedwithshock-waveloading,rel- ative motions between the components within a single material pointcanbeneglected(i.e.particlevelocitiesforthecomponents associatedwiththesamematerialpointareassumedtobeequal). Consequently,Eq.(1)canbeappliedtothehomogenized/smeared- out material. However, as will be explained below one must at thispointrecognizethetwo-componentcharacterofthecomposite materialandintroduceadditionalstatevariablessuchas (a) intrinsicmassdensityofeachcomponent,(cid:2)¯ε, ε=1,2; (b) volumef ractio nofeac hc omp onent,(cid:11)ε, ε= 1,2 ; (c) partiald ensityo fe achc omponent,(cid:2) ε, ε= 1 ,2 ;and (d) (consta nt)mas sf ractio nofeachco mpo nen t, M ε, ε=1,2. These state variables are not all independent but rather are relatedthroughthefollowingsetofequations: (cid:10) (cid:11)ε=1 (14) ε pFiagr.t i3cl. eInvteelro-crietylatainondsshpipesc ifibectwvoeleunm (ea)a carxoisasl sthtreessst rauncdtu srepde-csifihco cvkolwumavee; farnodn t(bin) (cid:2)ε=(cid:10) (cid:11)ε(cid:2)¯ε (15) commerciallypureniobiumimpulsivelyloadedtonearitsHELstate. (cid:2)= (cid:2)ε (16) ε material.Thisisthelimitexaminedinthepresentsection.Ascor- rectly po inted o ut b y on e of the re vie we rs of the presen t w ork, Mε= (cid:2)(cid:2)ε (17) within a more rigorous framework, commercially pure niobium wouldhavetobetreatedasaheterogeneousmaterialsothatthe CombiningEqs.(15)and(17)yields: interac tion of the shock- wa v e with individu al grains an d gr ain boundaries isa ccou ntedfor.Thi stype ofshock-p hysicsf rame work (cid:2)¯ = M1(cid:2) (18) 1 (cid:11) hasbeendevelopedoverthelastseveralyearse.g.[18,19].Within 1 these newer formulations, the effect of material microstructure M (cid:2) (cid:2)¯ = 2 (19) is brought in using the theory of crystal plasticity which recog- 2 (cid:11) 2 nizesuniqueorientationofthelocalcrystallite.Applicationofthese Momentumconservationequation:Thesecondkeyassumption new formulations to planar shocks revealed that the as-shocked in the dynamic-mixture model is the equality of total pressure material-state fields are greatly affected by the thickness of the (P+Q) between the two constituents within each material- shock-wavefront,i.e.bytheshockstrength.Thatis,inthestrong- point/computational-cell.Thisequalitycanbestatedas: shockregime,as-shockedmaterialstateishighlyheterogeneous atasupergrain-sizelengthscaleandfairlyhomogeneouswithin P +Q =P +Q =P+Q (20) in di vidual grains.Ins harpco ntras t,in thew eak-shockregim e,the 1 1 2 2 as-shocked mater ial statet endstobe m ore uniformand approac hes where the quantities with subscripts pertain to the individual theoneobt ainedin thepr esent w ork . compo nent s while th e qua ntities with out sub scr ipts pertain to

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.