Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES 19b. TELEPHONE NUMBER (Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 JournalofMarineSystems109-110(2013)S153–S168 ContentslistsavailableatSciVerseScienceDirect Journal of Marine Systems journal homepage: www.elsevier.com/locate/jmarsys Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF radar mapping Alexei Sentchev a,⁎, Philippe Forget b, Yves Barbin b, Max Yaremchuk c aLaboratoired'OcéanologieetGéosciences(CNRS-UMR8187),UniversitéduLittoral-Côted'Opale,62930Wimereux,France bLaboratoiredeSondagesElectromagnetiquesdel'EnvironnementTerrestre(CNRS-UMR6017),UniversitéduSudToulonVar,83130LaGarde,France cNavalResearchLaboratory,Bldg.1009,StennisSpaceCenter,MS39529,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Thedatafromtwohigh-frequencyradars(HFR)operatingintheIroiseSeaarere-processedbyapplyingan Received10September2010 improvedversionofthedirectionfindingalgorithm,removingwave-inducedsurfacecurrentsandthevari- Receivedinrevisedform9November2011 ationalinterpolationonaregulargrid.Combiningtheseprocessingtechniquesallowedreconstructionof Accepted29November2011 thesurfacecurrentsatalevelofdetailsthatwasnotpreviouslyavailable.Refinedresolutionenabledtoiden- Availableonline11December2011 tifyfine-scalestructuresofsurfacecirculation,toquantifythevariabilityoftidalcurrentsandtheresidual (timeaveraged)velocityfield,andtoexplainspatialintermittenceinpolarizationofthetidalcurrentellipses. Keywords: Theanalyzeddataspantwomonth-longperiodsinspringandlatesummerof2007.Themajorfindingsin- HFradar Tidalcurrent clude(a)adipolestructureinthevorticityfieldcharacterizedbytwooppositelyrotatingeddies,generated Residualflow ontheleewardsideoftheUshantIslandatflood(negativepolarity)andatebb(positivepolarity);(b)anex- Eddyfield tremelystrongfortnightlyvariabilityoftidalcurrentsnorthwestoftheUshantIslandwiththehighestveloc- IroiseSea ity magnitude of 3.9m/s caused by the interference of the major semi-diurnal tidal constituents; (c) a significantcontributionofthehigherordernonlineartidalharmonicstothesurfacecurrentsintheFromveur strait,whichmaintainsstrongtidalcurrentsandaffectstheshapeoftheirfortnightlymodulation.Theresid- ualcirculationischaracterizedbytwodistinctzonesapproximatelyseparatedbythe100misobath:inthe offshorezonetheresidualcurrentshaveasignificantcontributionofthewind-drivencomponent,whereas thenearshorezoneischaracterizedbyextremelystrong(upto0.4m/s)time-independentresidualcircula- tionfeaturingtwopermanentanticycloniceddies:northofthewesternextremityoftheSeinarchipelago, and north the Ushant Island. The acquired data and the presented results could be useful for regional modelvalidationandstudiesofthelocaleddydynamics,tidalfronts,andpassivetracertransportinthe region. ©2011ElsevierB.V.Allrightsreserved. 1.Introduction westernBrittanycoasttomonitorsurfacecurrentsupto140kmoff- shore. The Iroise Sea circulation is very difficult to study by in situ Inrecentyears,high-frequency(HF)Dopplerradarsystemshave methods, as it is dominated by extremely strong tidal currents, hadstunningsuccessinthemappingofsurfacecurrents.Theability oftenexceeding3m/s,andaffectedbystrongandoftenviolentwest- tomapsurfacecirculationincoastaloceanareashasbroughtnewin- erly and southwesterly winds. Low pressure atmospheric systems sightstothecomplexitiesofphysicalprocessesinnearshorewaters, (cyclones), generated in the Northwestern Atlantic, regularly cross andallowedsignificantadvancesinourunderstandingofcirculation theIroiseSeaandmightcausesignificantsurgesontheWestBrittany andoceanographicconditionsinmanycoastalregions(e.g.Bassinet coast with sea surface rise up to 0.50m (Bouligand and Pirazzoli, al., 2005; Breivik and Sætra, 2001; Haus et al., 2000; Kaplan et al., 1999). Surface currents in the Iroise Sea are also affected by swell 2005;Kovacevicetal.,2004;Marmorinoetal.,1999;Sentchevetal., andwindwaves.Violentstorms,oftenoccurringinwinter,contribute 2009a,2009b;Yoshikawaetal.,2007). tothereputationoftheIroiseSeaasoneofthemostdangerousseas IroiseSeaisoneoftheregions,continuouslymonitoredbyHFra- inEurope. darssince2006(Fig.1).Asystem,composedoftwohigh-frequency CirculationintheIroiseSeahasbeenstudiedpreviouslybymany Wellen Radars (WERA) operating at 12.4MHz, is deployed on the authors by means of field measurements (Le Boyer et al., 2009; Mariette and Le Cann, 1985; Pingree et al., 1975) and numerical modelling (Mariette et al., 1982; Muller et al., 2009, 2010). These ⁎ Correspondingauthor. studiesinvestigatedthecharacteroflocalgeostrophicandtidalcircu- E-mailaddresses:[email protected](A.Sentchev), lations,eddyfrontaldynamicsandshedlightontheroleoftidalmix- [email protected](P.Forget),[email protected](Y.Barbin), [email protected](M.Yaremchuk). ing in controlling cross-frontal heat and mass exchange. They also 0924-7963/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved. doi:10.1016/j.jmarsys.2011.11.024 S154 A.Sentchevetal./JournalofMarineSystems109-110(2013)S153–S168 Distance (km) 0 25 50 75 100 145 48°40 English Channel 50oN m Met Buoy 150 Ushantur St. G Brittany 48oN e v Loire R. de (deg N) 48°20 Fro Mm olène Le Conquet Distance GoBfiuslcfay G 46oN Latitu Iroise Sea (km) aronne 44oN R . 6oW 4oW 2oW 0o B 48°00 Sein Arch. 50 m 100 m 35 −6°00 −5°40 −5°20 −5°00 −4°40 Longitude (deg W) Fig.1.LocationoftheIroiseSeaandHFRsurveyarea(greysquarecontourontherightpanel).ExperimentaldomainintheIroiseSea(greyshading)andradarcoveragezone(left panel).Radarsitesareshownbygreycircles.Greybrokencontoursshowcoverageareaforindividualradars.Squaresdenotelocationsofthemetbuoyandtidalgaugestation.Open circleindicatesthelocationofthegridpointwherewaveinducedcomponentofsurfacecurrentwasanalyzedindetail(cf.Fig.2dandFig.3b).Contourintervalofthebathymetryis 50m(greysolidlines).Greydashedlinesshowcoverageareasfortheindividualradars.Geographicnamesusedinthetextarealsoshown. allowedbetterunderstandingoftherolethatdifferentphysicalforc- First,weperformhighresolutionsurfacecurrentmappinginboth ing mechanisms play in the Lagrangian circulation of the basin. In temporal and spatial dimensions (20min and 1km) by applying a particular,theinfluenceofthebottomthermalfrontonsurfacecircu- novelapproachtotherawHFRdataprocessinginconjunctionwith lationandlarge-scaleeddymotionsassociatedwithfrontaldynamics high-performancevariationalinterpolationtechnique.Highazimuth- wereevidencedin(LeBoyeretal.,2009;Mulleretal.,2009).Howev- alresolutionoftheradialvelocitiesisachievedbytheHFRsignalpro- er, with the exception of the recent field study of Le Boyer et al. cessing using an improved version of the MUSIC direction finding (2009),itisdifficulttofindadetailedobservation-baseddescription algorithm(Lipaetal.,2006).Theradialvelocitiesaretheninterpolat- ofthecirculationinthisareainliterature.Quantitativeestimatesof edontheregulargridusingavariational2dVarmethod(Yaremchuk thesmallscalecirculationfeatures,theirmagnitudeanddependence and Sentchev, 2009, referred hereafter as YS09). Furthermore, the onvariousforcingfactorsremainrelativelyuncertain.Thisshortcom- contributionofsurfacewavestotheradarderivedvelocitiesisesti- ingisprimarilyduetothedifficultiesinacquisitionofthelong-term mated with the method recently developed by Ardhuin et al. high-resolutioninsitudatabecauseoftheextremelystrongcurrents (2009).Thesethreetechniqueshavebeenimplementedforproces- and severe meteorological conditions in this part of the Atlantic singofHFRdatafortwoselectedperiods:inspringandlatesummer Ocean. Complexity of the physical processes occurring in the Iroise 2007 representing in total 52days. The summer period is synchro- Sea in conjunction with complex topography renders modelling of nizedwiththeextensivefieldexperimentintheIroiseSeaabroadof thecirculationalsodifficult.Inthatrespect,remotesensingofsurface theR/V“CôtesdelaManche”(LeBoyeretal.,2009). currentsbyHFradars(HFR)providesauniqueopportunitytoestab- Second,westudytheresultingsurfacecirculationpatternsfrom lishamonitoringsysteminthebasinonaregularbasis. theperspectiveofdifferentmodesofvariability.Wefocusonphysical Astheexperimentaldatarequiredformodelvalidationhavebeen processesgoverningthetidalcurrentsandresidualcirculationinthe extremely scanty until recently, in 2005, the French Naval Oceano- area.TheHFRobservationsrevealedflowcomplexityandvariability graphic Centre (SHOM) put forward an initiative to perform the atalevelofdetailsthatwerenotpreviouslyavailable.Refinedresolu- HFRobservationsofsurfacecirculationintheIroiseSea.Theexperi- tionallowedustoidentifyfine-scalestructuresofsurfacecirculation, ment was designed to get better knowledge on physical processes toquantifythevariabilityoftidalcurrentsandresidualvelocityfield, governingthecirculationandtoperformthevalidationofnumerical andtoexplainpatchinessinpolarizationoftidalcurrentellipses. models. Beam Forming (BF) algorithm actually used for processing The paper is organized as follows. In Section 2, we present the theradardatainnearlyreal-time(Marietteetal.,2006)providesra- study site, the environmental data (recorded and derived from nu- dial velocities of surface current along sixteen beams with 9° azi- mericalmodeling)duringselectedperiodsoftheradarexperiment, muthal discretization. The angular resolution of the system is too the HFR network, and briefly describe the methods of analysis. In coarseand,toouropinion,unabletocapturethefinescalestructure Section3,wedescribeandanalyzetheobservedfeaturesofsurface ofthesurfaceflow,especiallyaroundtheislandsandintheFromveur circulation,flowvariability,andthefine-scalestructuresinvorticity Straitwhichareofparticularinterest. andresidualvelocityfieldsintheIroiseSea.Discussionoftheresults Inthepresentstudyweaddresstwochallenges. andsummaryarepresentedinSection4. A.Sentchevetal./JournalofMarineSystems109-110(2013)S153–S168 S155 2.Dataandmethods southern part, there is a group of islets and rocks belonging to the Seinarchipelago.Onlyapartofitisexposedatlowtide. 2.1.Studysiteandenvironmentalconditions In the Iroise Sea, tidal currents are generally characterized by clockwiserotationinresponsetothejointeffectoftheCoriolisforce Thestudysite,IroiseSea,islocatedintheextremenorth-eastern andseasurfacegradientsrelatedtotidalwavepropagation.Incident partoftheGulfofBiscay(Fig.1).Thisisashallowwaterareawith tidalwavesarrivefromtheGulfofBiscay,travelaroundtheW.Brit- depth gradually decreasing westward from 50 to 150m with more tanyPeninsulaandentertheEnglishChannel.Thetidalwaves’inter- gentle bottom slope in the South. In the North, there is a group of actionsisthedominantfactorthatdeterminesvariabilityofthesea small islands, islets and rocks that form Molène archipelago, and a surfaceheight(SSH)andcurrentsintheregion.TheSSHvariability bigger, 8×4km, Ushant Island. It is separated from the Molène in the Le Conquet harbor exposes variations of 2 to 7m (Fig. 2a), Islands by the 2km wide and 50m deep Fromveur strait. In the withthepredominantsemi-diurnal period,smalldiurnalinequality 8 (a) m) n ( 6 o ati v e 4 El e c a 2 urf S 0 10/4 14/4 18/4 22/4 26/4 30/4 4/5 (b) 7 m/s d n wi d e v er s b O 10/4 14/4 18/4 22/4 26/4 30/4 4/5 (c) 7 m/s d n wi d e v er s b O 24/8 28/8 01/9 05/9 09/9 13/9 17/9 4 0.2 (d) 3 m) m/s) Hs ( 2 0.1 ss ( U 1 0 0 24/8 28/8 01/9 05/9 09/9 13/9 17/9 Time (days) Fig.2.Externalforcingdata.(a)TidalelevationobservedinLeConquetharbourinApril–May2007.WindmeasurementsmadeatMetBuoywithintheradarcoveragezoneduring April–May(b)andAugust–September2007(c)(RegionalMet-officedata).Arrowsshowobservedwinddirection.Windspeedscaleisgivenintherightuppercorner.(d)3-hdata ofsignificantwaveheight,Hs(solidline),andwave-inducedvelocity,Uss(dashedline),inAugust–September2007inthemiddleofthestudyarea.SeeFig.1forlocationofmea- surementpoints. S156 A.Sentchevetal./JournalofMarineSystems109-110(2013)S153–S168 andpronouncedfortnightlymodulationduetotheinterferenceofthe beendocumentedbyMulleretal.(2007)whofoundaslightsystem- semi-diurnal(M ,S ,N )andquarter-diurnal(M ,MS )constituents. aticvariationofthewinddirectionintheareabetweentheUshant 2 2 2 4 4 Both primary and secondary spring tides occur during the period IslandandtheBrittanycoast. shown.Tidalvelocitiesandtransportsshowfortnightlyvariabilityin responsetothespring-neapcycle. Buoyancyforcinginthedomainisrelativelyweak.Themajorityof 2.2.HFRdataandmethodsofprocessing freshwatercomesfromtheAulneandsmallerriverslocatedonthe westernBrittanycoast.TheirdischargetotheIroiseSeaofapproxi- 2.2.1.HFRvelocitydata mately 60m3/s observed in April 2007 (http://www.hydro. Asystemoftwohigh-frequencyWellenRadars(WERA)operating eaufrance.fr)canbeconsideredasnegligible,comparedtodischarge at12.4MHzisdeployedonthewesternBrittanycoastfromJuly2006 of the Loire and Garonne rivers into the central part of the Gulf of todate.IndividualradarsitesarelocatedatCapeGarchine(siteG),a Biscay (1200 and 900m3/s respectively) during the same period. seashoreflat-groundarea,andCapeBrezellec(siteB),50kmsouth- Greatdistancebetweentheserivers'mouthsandtheIroiseSeafavors ward.Atbothsites,transmissionisdonebyanendfirearrayoffour the fresh water dispersion and only a small quantity of freshwater antennasformingarectangle.Thereceivingarraycontains16equally reachesthewesternBrittanycoast. spacedantennasparalleltotheshorelineandstretchedalong150m. Fig.2bshowswindsmeasuredattheoffshoremetbuoy(seeFig.1 TheBeamforming(BF)method,actuallyusedforprocessingthe forbuoylocation).Twodistinctwindregimeswereobservedduring radardatainnearreal-time,providesradialvelocitiesofsurfacecur- thespringperiod.Betweenthe10thand22thofApril,(thefirst12- rentalongbeamswith3dBwidthof9°ontheaverage.Anautomatic day period), winds were generally coming from the North and RFI(RadioFrequencyInterference)clearinghasbeenintegratedinto North–East with moderate speeds ranging from 5 to 8m/s. From signal processing algorithm (Gurgel and Barbin, 2008), along with April22untilMay5,variablewindregimewasobservedwithsmall thequalitycontrolforremovingoutliersandradialvelocitiesexceed- dominationofnortheasterlywindswithspeedsupto10m/s.During ing4m/s.Theradial(alongbeam)resolutionis1.5kmandtherange thelatesummerperiod,thewinds,generallystronger,wereblowing isoftheorderof140km.Inpractice,foroptimalimplementationof mostlyfromthenorthernandnorth-easternsectors(Fig.2c). the RFI clearing method, the data were processed up to a range of ThespectrumofthehourlywindsrecordedbytheoffshoreMet 120km. buoyisgiveninFig.3a.Spectralanalysisofbothzonalandmeridional Radialvelocitiesfromtworadarsarecombinedtoprovidesurface windcomponentsandthetotalkineticenergyofthewindshowsthe currentmapsat20-minacquisitionrate(http://www.previmer.org/ rednatureofthespectrumwhichfollowsapowerlowwithspectral observations/courants/radar_hf_iroise). The accuracy of the radar- slope close to −5/3, mainly in higher frequency band (>1 cyc/d). derivedvelocitieshasbeenestimatedbySHOM(OceanographicDivi- Thespectrumrevealsavarietyofatmosphericmotionswithsignifi- sionoftheFrenchNavy)throughacomparisonwithsurfacedrifters cant peaks at diurnal and sub-diurnal frequencies (0.55, 0.35, and andADCPcurrentmeasurementsforaperiodof7months.Inthema- 0.2cyc/d).Diurnalpeakevidencestheeffectofseabreeze,whereas jorityofsituations,thediscrepancyinvelocitymeasuredbydifferent othersignificantpeaksarewithintherangeofcyclonic-anticyclonic instruments did not exceed0.15m/s (Le Boyer et al., 2009). It was frequencies. They are certainly related with cyclonic activity over also noticed that a large fraction of this discrepancy might not be the North Atlantic. Small scale variability of the local winds has due to instrumental errors, but to the definition of the “surface (a) (b)100 1/2 101 y) y) da da 10−1 s/ s/ e e cl cl y y 22/s)/(cm 100 −5/3 22/s)/(cm 10−2 1 y ( y ( 1/4 sit sit en 10−1 en 1/6 al D al D 10−3 ctr ctr e e p p S S wer 10−2 wer 10−4 o o P P 10−3 10−1 100 101 10−1 100 101 Frequency (cycles/day) Frequency (cycles/day) Fig.3.PowerspectraofthewindandHFradardata.(a)WindspectrumrecordedattheMetbuoyinApril–May2007.(b)Kineticenergyspectraatthesameperiodfortwoselected gridpointsoftheradarcoveragezone:apointclosesttotheMetbouy(blackline)andapointinthecentralpartofthezone(greyline).SeeFig.1forpointlocation.Numbersstand fordominanttidalperiod(indays).Errorbarindicates95%confidenceiterval. A.Sentchevetal./JournalofMarineSystems109-110(2013)S153–S168 S157 velocity”,asothermeasurementtechniquesaresensitivetotheshear TheDFtechniquewasappliedtotheHFRdatatoretrieveradial oftheEuleriancurrent,toStokesdrift,totheseastate,etc. velocitiesfortwoselectedperiods,namely,from10Aprilto5May, Despiteagoodqualityoftheradialvelocitiesrecordedbythera- andfrom24Augustto19September2007.Thesecondperiodwas dars, angular resolution of the system is relatively coarse and does ofparticular interestbecauseitcoincidedwith extensivefieldex- not capture the fine scale structure of the surface flow, especially periment(LeBoyeretal.,2009).Duringtheseperiods,bothradars aroundUshant-MolèneIslandsandintheFromveurstraitwhichare worked continuously with low data loss. Fractional availability of ofparticularinterest. radial velocity data for both radars during the two periods is shown in Fig. 5. The data were available in at least 50% of time 2.2.2. Application of the direction finding method for processing the within a cone with a radius of approximately 100km. Despite of radardata itslowaltitude(20m),theUshantIslandstronglyaffectsavailabil- Toobtainhigherresolutionradialvelocitymaps,theHFRsignals ityofradardataprovidingdropsinthedatareturnto25%(forsite were reprocessed by using the Multiple Signal Classification B) and to 50% (for site G) behind the island. The fractions of the (MUSIC)directionfinding(DF)algorithmofSchmidt(1986)driven datareturnbytheindividualradarsareshowninFig.5bythincon- by the parameterization of Lipa et al. (2006). In contrast to BF, the tours.Theinterpolationgridgivenbytheboldcontourhasapprox- DFmethodseeksforthebearingsfromwhichtheenergeticDoppler imately4000points,equallyspacedby1.1km,andcoversanearly lines originate. If no solution is delivered in a given direction slot, circular area with the seaward limit of 90km from the coast. The thenthe DF methodleaves a gap in the velocity record. If multiple condition of 50% availability of the radial velocity data is met in Dopplershiftsolutionsaredeliveredinthesamebin,apoweraver- the majority of the interpolation area with the exception of the agedDopplershiftvalueiscalculated.Themaximumvalueofradial northernpartforsiteB.Theanglebetweenradarbeamsatpoints velocity measured by a radar operating at a wavelength λ ofbeamintersectionwasgreaterthan30°allovertheinterpolation (12.4MHz)islimitedbyf ⋅λ/2(4.3m/s),wheref istheBraggfre- area. B B quency(0.359Hz)correspondingtotheradarfrequency. Processeddirectionsspannedtheaperturefrom−70°to70°with respecttothenormallineofthereceivingantennaarray,thusprovid- 2.2.3.Variationalinterpolation ing the azimuthal resolution of 2°. The azimuthal resolution varies Velocity vector maps were generated from radial velocity data along a given beam from 0.35km (1.6km for BF) to 2.8km using the variational interpolation technique, 2dVar (YS09). This is (12.6kmforBF)at10and80kmrange,respectively. non-local,kinematicallyconstrainedalgorithm.Itusesacombination Fig.4showsradialvelocitiesprovidedbyBFandDFmethodsfor ofradialvelocitiesatallmeasurementpointstoreconstructtheveloc- the same acquisition time. In general, similar spatial patterns on ityvectorinonelocation.Thisfeatureoftheinterpolatingtechnique both velocity maps are found. However the pattern on the BF map canhelptoovercomesomelimitationsrelatedtoalackofdata.The issmearedinazimuthanditcanbedifficulttodeterminethespatial smoothnessoftheinterpolatedvectorfieldisenforcedbypenalizing extension or the limits for different structures in the velocity field. thesquaredLaplacianofvelocityandalsoofitscurlanddivergence, Detailedanalysisofvelocitymapsfordifferentperiodsoftidalcycle thusprovidingthealgorithmwithflexibilityandefficientcontrolof revealed that the magnitude and spatial variation of the velocity smoothness.Kinematicconstraints(zerofluxonrigidboundary),in- field were poorly represented by BF algorithm. However, the en- corporatedinto2dVar,appearparticularlyusefulgivenalargenum- hancedresolutionprovidedbytheDFmethodinherentlyintroduces ber of islands in the study area. The 2dVar interpolation was gaps (see above) and noise in the radial velocity field (Fig. 4b). developed and employed to reconstruct vector current fields using Noise comes from the fact that the velocity estimated at a given syntheticdatawithdifferent(upto50%)signal/noiseratiosandalso range for a particular bearing can originate from another bearing arealdatasetfromtheradarexperimentinBodegaBay,northernCal- dependingonthecomplexityoftheoceanwaveandcurrentcondi- ifornia,in theGulfofLion,westernMediterranean (Sentchevetal., tions (Barrick and Lipa, 1996, 1997). The variational method used 2009a,2009b),anddemonstratedcertainadvantagescomparedtoal- forradialvelocityinterpolationfrombothradarunits(Section2.2.3) ternative interpolation techniques (e.g., local interpolation, OMA performsgapfillingandoffersanefficientcontrolofthenoiselevel. (Mulleretal.,2009)). Fig.4.RadialvelocitymapsonApril17,2007(4:10am)derivedfromradardataprocessingby(a)beamformingand(b)directionfindingmethods. S158 A.Sentchevetal./JournalofMarineSystems109-110(2013)S153–S168 Fig.5.Cumulativeavailabilityoftheradialvelocitydata(inpercent)forradarstationB(a)andG(b)duringthetwoperiodsofanalysis(thincontourlines).Boldcontourenvelops theareawheresurfacevelocityvectorsweregeneratedateachtimeintervalbythevariationalalgorithm. 2.2.4.Velocityerrorsestimation onApril10,2007).Themapcombinesinformationabouttheavail- Thevariationalapproachusedforvelocityinterpolationallowses- abilityofthedata,accuracyofradialvelocitymeasurements,andgeo- timatingerrorsofthevelocityfield(YS09).Theinverseerrorcovari- metricdilutionofprecision(GDOP).Theresultantvelocityerrorsare ance matrix C−1 for gridded velocity is the matrix H of second lessthan15cm/sinthemajorityofthedomain,andrapidlyincrease derivativesofthecostfunctionwithrespecttouandv(theHessian (upto40cm/s)inareaspoorlycoveredbyobservations.Thecondi- matrixofthevariationalproblem).AsthematrixHmaynotnecessar- tiononangleintersection(b30°),adoptedforconfigurationofthein- ilyhavethefullrank,weseekforitsgeneralizedinversebydiscarding terpolationdomain,preventserrorgrowthatfarranges.Itshouldbe eigenvectorscorrespondingtosmalleigenvalues.Typically,0.02%of emphasizedthattheerrordistributioncorrespondingtovelocitiesof theeigenvectorsarerejectedduringtheinversionofH. theobservedcirculationpatterndoesnotgivetheobservationalsig- Fig.6shows,asanexample,themapoferrorsofinterpolatedve- naltonoiseratio.Thisratiocanbederivedbycomparingtheradial locity(currentvectormagnitude)forthefirstHFRsnapshot(00:10 velocitymapswithspatialdistributionoftheaccuracyoftheradial velocitymeasurements.Thelatterdependsuponthesystemconfigu- Vel. Err. (cm/s) ration,levelofbackscatteredenergy,seasurfacestate,variabilityof km currents within the radar measurement cell, …, and might attain 25 403530 8–10cm/s. 20 120 15 2.2.5.Removingtheseastateinfluence Surfacevelocityderivedfromradardataisestimatedfromthedif- 15 0 1 ferencebetweenthepositionoftheobservedandtheoreticalBragg linesontheDopplerspectrumoftheseasurfaceecho(Stewartand Joy, 1974). It is generally assumed that Bragg waves, i.e. waves 100 3 5 whosewavelength(atgrazingangle)isequaltothehalfoftheelec- tromagneticwavelength,satisfythelineardispersionrelationshipof 15 oceanwaves.Consideringnonlinearitiesoftheoceansurface,Weber 20 10 andBarrick(1977)slightlymodifiedthisrelationshipaccountingfor 80 3025 1 0 aallthtyeopreestiocfatlheexpsurersfasicoengwrahviictyhwquaavnetsi.fiBersotchheeeeftfeaclt.(a1n9d8c3a)npbroevuidseedd toextractthewaveinducedcurrentcomponentfromcurrentradio 40 10 measurements. The method of velocity correction was recently ap- pliedtoradarmeasurementsintheIroiseSea,withaparticularinter- 3 estofstudyingthewind-currentrelationship(Ardhuinetal.,2009) 60 5 locally.Inthepresentpaperweapplythemethodtothewholearea 4035 ofradarcoverage.Informationonsurfacewaveswasprovidedevery 3hbythenumericalwavemodelWAVEWATCHIIIat1/30°resolution 20 40 60 80 km (2.5km) using the implementation described in Ardhuin et al. (2009).AppendixAcontainsthedescriptionofthemethodapplied Fig.6.Velocityerrors(cm/s)forasurfacecurrentvectormaponApril10,2007,00:10. for estimation of the wave induced surface current velocity vector, A.Sentchevetal./JournalofMarineSystems109-110(2013)S153–S168 S159 U ,atthegridpointsofthewavemodel.ResultingvaluesofU were frequencyrange,thereisamoderateriseofenergywhichrevealsmo- SS ss spatiallyinterpolatedontheregularradargrid,theninterpolatedin tionswith3.3-dayperiod(Fig.3b).Analysisofsimilardistributionfor time,andfinallysubtractedfromtheradarderivedcurrentvelocities. thewind(Fig.3a)doesnotshowanysignificantatmosphericforcing Forconvenience,U willbereferredhereafterasStokesvelocityal- intidalband,suggestingtheabsenceofmodulationoftidalcurrents SS though in practice it represents approximately 85% of the model- bywind. estimatedStokesdriftvelocity(cf.Appendix). Furthermore, we applied the principal componentanalysis (PCA) Fig. 2d provides estimated Stokes velocity and significant wave technique to this data set in order to quantify tidal flow dynamics. height during the second (late summer) period of analysis in a Ourapproachhasacertainadvantageoverafrequentlyusedharmonic pointlocatedinthemiddleofthestudyarea(Fig.1).Strongcorrela- analysisbecauseitallowsquantifyingthetotalcontributionofalltidal tion is observed between the wind speed and Uss. Northern winds constituentstoobservedcurrentsandassessingtime-spacevariability with high speed, observed on August 29, September 3 and 18 of the currents.As tidal currents in the Iroise Sea are rotational, the (Fig. 2c), produce surface currents with magnitudes greater than currentvelocityvectorevolvingoveratidalcycledrawsanellipse.Pa- 0.10m/s. Winds from North–East sector tend to weaken surface rametersofsynthesizedellipses,retrievedfromthePCA,provideori- waves (H b1m) and the associated wave induced currents to less entation and magnitude of the dominant current. The anisotropy of s than0.10m/s(Fig.2d). oscillatorytidalflow(ellipseeccentricity)isquantifiedbyestimating Fig.7summarizesthecontributionofStokesvelocitytothesur- theeigenvalueratioofthevelocitycorrelationtensor.ThePCAtech- face currents in terms of the occurrence probability of a measured niquedoesnotgive,however,informationonthesignofrotationof current magnitude U and the wave induced current velocity U . velocityvectors.Tofillthisgap,weperformedrotaryspectralanalysis ss Thesestatisticalestimatescoverbothstudiedperiods.Themodulus (EmeryandThompson,1997)ofvelocitytimeseries,referredhereaf- of U isa small quantitycomparedto Uwith a peak ofoccurrence terasRSA.Thetechniqueinvolvesthedecompositionofthevelocity ss at0.05m/swhereastheoccurrencepeakforUis0.40m/s.Thehigh- vectorintotheclockwise(cw)andcounter-clockwise(ccw)rotating estmagnitudeofStokescurrentdidnotexceed0.18m/sduringthe circular complex-valued components. First, the RSA was performed period of interest. Moreover, U values are rather small compared toidentifythedominantfrequencyincurrentvelocityvariation.Both ss totheprecisionofradarsurfacecurrents.Forapointlocatedinthe cwS−(negative)andccwS+(positive)powerspectrarevealedpro- middle of the study area (Fig. 1), the absolute values of the west– nouncedpeaksatthesemi-diurnalfrequency.Afterthat,therotaryco- east (south–north) components of Uss exceed the intrinsic error of efficient,r=(S+−S−)/(S++S−),wasestimatedateverygridpointat the corresponding current components, estimated as 4cm/s (7cm/ thesepeakvalues.rrangesfrom−1forclockwisemotionto+1for s)in53%(7%)ofcases.Howeverthewest–eastcomponentofU is counter-clockwisemotion(r=0isoscillatingnon-rotationalflow). ss generally higher than this error and can exceed it 4 times. In that WehavealsoestimatedtheEulerianresidualcurrentsandinvesti- case,removingtheseastateinfluenceisusefultoimprovethequality gatedtheirrelationshipwithwindforcing. ofcurrentvelocityestimates. 2.2.6.Principalcomponentandrotaryspectralanalysis 3.Results Inordertoidentifyprocessesgoverningsurfacecirculationinthe IroiseSea,spectralanalysisofvelocityrecordsindifferentlocations 3.1.Tidalcurrents:spatialpatternsandvariability hasbeenperformed.Fig.3bshowsspectraldistributionofthetotalki- neticenergyfortwoselectedgridpoints:apointclosesttotheMet Spatial and temporal variability of tidal currents is quantified bouyandapointinthecentralpartoftheradarcoveragezone(see using the parameters of synthesized tidal current ellipses derived Fig.1forlocations).Thedistributionclearlyshowsthatsurfacedy- fromthePCAandRSA.TheresultsaresummarizedinFig.8forthe namicsintheIroiseSeaisdominatedbytides.ThespectrainFig.3b primaryspringtideperiod.Tidalcurrentellipses(Fig.8a)represent indicate that most of the kinetic energy is distributed between the the 7-day averaged circulation pattern associated with the tidal dominant tidal frequencies: semi-diurnal, quarter-diurnal, sixth- wavearrivingfromtheGulfofBiscayandtravelingnortheastwardto- diurnal and diurnal, with prevailing semi-diurnal tide. In sub-tidal wardtheEnglishChannel.Thedetailedanalysisofellipseorientation shows that tidal currents are controlled by the bottom topography and peculiarities of the coastline. These factors tend to align the 0.12 radar measurement majoraxesalongthedepthcontours. wave−induced current Onecandistinguishanisotropyofthecurrentfieldwithrelatively 0.1 highellipseeccentricityinthewesternpartoftheregionandintwo locationsintheeasternpart:southoftheUshantIs.andinashallow y bilit 0.08 waterregionbetweentheMolèneIslandsandBrittanycoast.Thefor- a mermightberelatedtothecurrentsquashagainsttheislandproduc- ob ing more circular shape of ellipses. The latter reflects the effect of r ce p 0.06 bottTohme sfrpiacttiiaolndoinstrtiibdualticounrroefntthse(Dreoftaanryt,c1o9e6f1fi)c.ient (Fig. 8b) shows n e thatcurrentsarerotatingclockwise(cw)inthemajorityofthedo- ur 0.04 main.Thisfeatureisrelatedtothespatialpatternoftheseasurface c oc gradients which tend to follow the propagation of the tidal wave fromtheGulfofBiscayinabroadcwturnaroundtheBrittanyPenin- 0.02 sula(e.g.Luxetal.,2010).TheCoriolisforceactingonthecurrentsre- inforcestheircwrotation(Defant,1961). 0 Themaximumnegativevaluesofr(upto−0.9)arefoundinthe 0.01 0.10 1.0 4.0 northeastern part of the region (Fig. 8b). Large positive values (up velocity m/s to0.7)areobservedinthreelocationsaroundtheUshantandMolène Islands (Fig. 8b), and in the vicinity of the Sein archipelago (not Fig.7.Probabilityofoccurrenceofthevelocitymagnitudeofsurfacecurrentsderived shown). In the shallow water areas, east of Molène and north of from radar measurements and the velocity magnitude of wave induced currents (Stokescurrent). Sein islands, the bottom friction comes into play, alternating the