ebook img

DTIC ADA579943: Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-integrated Electronics PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA579943: Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-integrated Electronics

REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) New Reprint - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Dissolvable films of silk fibroin for ultrathin conformal W911NF-07-1-0618 bio-integrated electronics 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 7620AK 6. AUTHORS 5d. PROJECT NUMBER Dae-Hyeong Kim, Jonathan Viventi, Jason J. Amsden, Jianliang Xiao, Leif Vigeland, Yun-Soung Kim, Justin A. Blanco, Bruce Panilaitis, Eric 5e. TASK NUMBER S. Frechette, Diego Contreras, David L. Kaplan, Fiorenzo G. Omenetto, 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT NUMBER Tufts University Office of the Vice Provost Tufts University Medford, MA 02155 -5807 9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S) ADDRESS(ES) ARO U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT P.O. Box 12211 NUMBER(S) Research Triangle Park, NC 27709-2211 53392-MS-DRP.31 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and 15. SUBJECT TERMS silk, electronics, devices, biotic/abiotic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF PAGES David Kaplan UU UU UU UU 19b. TELEPHONE NUMBER 617-627-3251 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 Report Title Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics ABSTRACT offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices. REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number 53392.31-MS-DRP Dissolvable films of silk fibroin for ultrathin confo ... Block 13: Supplementary Note © 2010 . Published in Nature Materials, Vol. Ed. 0 9, (6) (2010), (, (6). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authroize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation. Approved for public release; distribution is unlimited. ARTICLES PUBLISHEDONLINE:18APRIL2010|DOI:10.1038/NMAT2745 Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics Dae-HyeongKimandJonathanViventietal.* Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describesamaterialstrategyforatypeofbio-interfacedsystemthatreliesonultrathinelectronicssupportedbybioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous,conformalwrappingprocessdrivenbycapillaryforcesatthebiotic/abioticinterface.Specializedmeshdesigns andultrathinformsfortheelectronicsensureminimalstressesonthetissueandhighlyconformalcoverage,evenforcomplex curvilinearsurfaces,asconfirmedbyexperimentalandtheoreticalstudies.Invivo,neuralmappingexperimentsonfelineanimal modelsillustrateonemodeofuseforthisclassoftechnology.Theseconceptsprovidenewcapabilitiesforimplantableand surgicaldevices. S trategies for bio-integrated electronics must overcome Silk is an appealing biopolymer as a temporary, soluble challenges associated with the mismatch between the hard, supporting substrate for this application because it is optically planarsurfacesofsemiconductorwafersandthesoft,curvi- transparent13,14, mechanically robust and flexible in thin-film lineartissuesofbiologicalsystems.Thesedifferencesinmechanics form15–17,compatiblewithaqueousprocessing18,19andamenableto and form lead, almost invariably, to low-fidelity coupling at the chemicalandbiologicalfunctionalization13,20.Thesilk,inboththe biotic/abiotic interface and limited long-term tissue health. The non-treated and methanol-treated formats, is biocompatible21,22, difficulties are most pronounced, and the solutions are perhaps bioresorbable23 and water soluble with programmable rates of mostimportant,insystemsdesignedforbrain/computerinterfaces dissolution15,16. Moreover, recent work demonstrates the ability (BCIs). State-of-the-art penetrating microelectrode arrays consist of silk films to serve as a platform for transistors23 and various ofsharpshanks,typically10×10arraysofpinswithbasewidths classes of photonic devices24,25. The process of preparing silk ∼80µm, lengths ∼1.5mm and pitch ∼400µm (ref. 1). These substrates for the purposes reported here began with material arrays are rigid and inflexible because of their construction derived from Bombyx mori cocoons, and followed published from blocks of silicon, which also supports their conventional procedures18,19. Briefly, boiling the cocoons in a 0.02M aqueous wafer-based electronics. They are valuable for research in BCIs, solution of sodium carbonate for 60min removed sericin, a but they damage tissue and do not offer long-term electrical water-soluble glycoprotein that binds fibroin filaments in the interface stability2 because of unwanted biological responses to cocoon butcaninduce undesirableimmunological responses21,26. the electrodes. Comparable BCI performance can be achieved An aqueous solution of lithium bromide at 60◦C solubilized withnon-penetrating,surfaceelectrodesystemsthatareminimally the fibres and subsequent dialysis removed the lithium bromide. invasiveandprovidegreatlyimprovedstability3–5 withminimized Centrifugationfollowedbymicrofiltrationeliminatedparticulates inflammation.Standardclinicalsubduralelectrodearraysareuseful toyieldsolutionsof8–10%silkfibroinwithminimalcontaminants. for BCIs (ref. 6) but their widely spaced (∼1cm), large contact Casting a small amount of the solution on a flat piece of electrodes(∼0.35cmdiameter)spatiallyundersampletheelectrical poly(dimethylsiloxane) (PDMS) followed by crystallization in air signalspresentonthesurfaceofthebrain7.Decreasingthespacing (∼12h) yielded uniform films (thickness of 20–50µm) (Fig.1a) andsizeofthemeasurementpointscanimproveBCIperformance that were subsequently removed from the PDMS for integration byprovidingaccesstohightemporalandspatialfrequencysignals8. withseparatelyfabricatedelectronics. Suchdesigns,however,demandexcellentconformalcoverageover For the systems described in the following, ultrathin, spin- the highly convoluted brain surface, to ensure direct coupling cast films of polyimide (PI) served as a support for arrays of betweenbraintissueandtheelectrodes. electrodes designed for passive neural recording. Control devices Reducing the thickness of the substrate decreases the bending consistedofotherwisesimilarlayouts,butformedusingstandard rigidity, thereby improving conformal contact. Unfortunately, photolithographic procedures applied directly on commercial PI clinicalarraysandeventhethinnestdevicesdesignedforresearch sheetswiththicknessesof25and75µm(SupplementaryFig.S1). havethicknesses(700µmand>10µm(refs9,10),respectively)that Anisotropic conductive film (ACF) bonded to electrode pads at are larger than desired to ensure conformal contact. Analogous one end of the arrays provided electrical connection to external systems based on stretchable substrates have also been explored data acquisition systems (Supplementary Fig. S2). Ultrathin PI in other neural interfaces11,12 but typically with similar or films, with or without mesh layouts, cannot be manipulated larger thicknesses. In conventional designs, ultrathin geometries effectively for processing, interconnecting or implanting onto (that is, <10µm) are impractical, because the films are not the brain because of their extreme flexibility and mechanical sufficiently self-supporting to be manipulated effectively during fragility. For these cases, the fabrication process exploited layers fabricationorimplantation. of PI spin-cast onto silicon wafers coated with sacrificial films of *Afulllistofauthorsandtheiraffiliationsappearsattheendofthepaper. NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials 1 ©2010 Macmillan Publishers Limited. All rights reserved. ARTICLES NATUREMATERIALS DOI:10.1038/NMAT2745 a Silk Silk film Cast and dry silk on PDMS substrate b Fabricated device on Dissolve PMMA; Connect ACF; carrier wafer transfer to silk contact to brain; (PI/PMMA/Si) substrate using silk solution dissolve silk substrate ACF 2 mm pad Silk ACF c ACF Silk Brain Open skull, Contact, pour Dissolve silk, prepare electrode saline solution conformal contact Figure1|Schematicillustrationandimagescorrespondingtostepsforfabricatingconformalsilk-supportedPIelectrodearrays.a,Castinganddrying ofsilkfibroinsolutiononatemporarysubstrateofPDMS;5–15-µm-thicksilkfilmafterdryingfor12hatroomtemperature.b,Stepsforfabricatingthe electrodearrays,transferprintingthemontosilkandconnectingtoACFcable.c,Schematicillustrationofclinicaluseofarepresentativedeviceinan ultrathinmeshgeometrywithadissolvablesilksupport. poly(methylmethacrylate) (PMMA) (left frame of Fig.1b). After section. Electrode arrays were implanted by placing them on electrodefabrication,themeshstructuredevicesunderwentfurther the exposed brain (after craniotomy) and then flushing with etching to remove unwanted parts of the PI. The processing was saline to dissolve the silk. This procedure induced spontaneous, completed by dissolving the PMMA layer with acetone, transfer conformalwrappingofthedevice,asillustratedschematicallyfor printing the entire assembly to a film of silk and connecting the themeshdesigninFig.1c.Afterthemeasurements,theelectrode ACF, yielding easily manipulated bioresorbable neural recording array can be easily removed, because of the attachment of the systems. See schematic illustrations and images in Fig.1b. In electrodestotheACF. all cases, the arrays consisted of 30 measurement electrodes ThesequenceofimagesinFig.2ashowsthedissolutionprocess (Au, 150nm) in a 6×5 configuration, each with dimensions for a representative case (7-µm-thick PI film, connected to ACF of 500µm×500µm and spaced by 2mm. Interconnection wires on a silk substrate with a thickness of ∼25µm) inserted into were protected by a thin (∼1.2µm) overcoat of PI to prevent warm water (∼35◦C). As the silk substrate disappears, the total contact with the tissue or surrounding fluids. Choosing the bending stiffness, EI, diminishes markedly because of its cubic thickness of the PI passivation layer to match that of the PI dependenceonthickness.ComputedresultsappearinFig.2band substratelocatestheinterconnectsattheneutralmechanicalplane, Supplementary Fig. S3c for PI thicknesses of 2.5 and 7µm. To therebyminimizingthepotentialforbending-inducedmechanical highlight the benefits of reduced thickness, the inset shows the fracture. Details of the fabrication steps appear in the Methods ratio of EI for these two cases. Through programmed control 2 NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials ©2010 Macmillan Publishers Limited. All rights reserved. NATUREMATERIALS ARTICLES DOI:10.1038/NMAT2745 a 1 cm Water No silk Silk film Dissolve b 2.5 108 25 o 20 2.0 108 ness rati 1105 27.5 µ µ m m s tsitfiffnfneessss Silk 4m) Stiff 5 .µPa 1.5 108 00 5 10 15 20 25 30 s (G Silk thickness ( µ m) 7 µ m s e n g stiff 1.0 108 n di en 2.5 µ m B 5.0 107 0 0 5 10 15 20 25 30 Silk thickness ( µ m) c 100 2.5 108 7 µ m ning silk (%) 486000 .µ4ss (GPa m) 211...005 111000888 2.5 µ m Remai 20 Stiffne 5.0 107 0 0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 Time (min) Time (min) Figure2|Time-dependentchangesasthesilksubstratedissolves.a,Dissolutionofthesilkthroughsubmersioninwarmwater.b,Totalbendingstiffness of7µmand2.5µmelectrodearraysonsupportingsilkfilmsasafunctionofthethicknessofthesupportingsilkfilm.Inset:Theratioofbendingstiffness between7µmand2.5µm.c,Time-dependentchangeinthevolumeofasilkfilmduringdissolution(leftframe)andbendingstiffnesscalculatedforsilk treatedin70%ethanolfor5sfortwodifferentarraythicknesses(rightframe).The5sethanoltreatmentincreasesthedissolutiontimefromminutesto about1h. of the dissolution rate by modifications of the silk protein SupplementaryFigsS5andS6.Torevealtheunderlyingmechanics, secondary structure15,16, these changes in EI can be designed wecarriedoutsystematicandquantitativestudiesonwell-defined to occur over periods of time ranging from seconds to years, surfacesthatcapturecertainbasicfeaturesofthecurvatureofthe depending on requirements. Figure2c shows, as an example, the brain.Thefirstsetofexperimentsexploredwrappingthedevices dissolution rate of silk film slightly treated with ethanol (left onisolatedandoverlappedcylindricalsurfaces.Figure4ashowsthe frame) and the computed time dependence of EI in devices that simplestcaseofadevicewithbendingstiffnessEI,thicknessh,width employmorethoroughethanoltreatment(rightframe).Theerror b and length 2L, wrapped on a cylinder with radius R. Analytical rangeforsilkthicknessmeasurementis±7%.SeeSupplementary expressions for EI can be written for the multilayer structures of Informationfordetailedconditions.Thisdissolutiontimecanbe Fig.1intermsofmaterialspropertiesandgeometries,asdescribed lengthened even more by extending the treatment time to days in the Supplementary Information. For the wrapped state to be or weeks15; the corresponding time dependence of EI appears in energeticallyfavourable, SupplementaryFig.S4. Toexaminetheabilityofthesesystemstoconformtorelevant γ ≥γ = EI (1) surfaces,wecarriedoutexperimentsusingahumanbrainmodel, c 2R2b followingthebasicstepsshowninFig.1c.Figure3providesimages forvariouscasesafterwashingwithsaline,includingrelativelythick where γ is the adhesion energy per unit area. The bottom frame control devices that do not incorporate silk. Clearly, the extent ofFig.4acomparestheaboverelationwithaseriesofexperiments of conformal coverage increases with decreasing thickness; the (Supplementary Fig. S7). The data, the error range of which is meshdesignprovidesfurtherimprovements,asshowninFig.3d, ±5%,areconsistentwithγ ∼10mJm−2,whichiscomparableto NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials 3 ©2010 Macmillan Publishers Limited. All rights reserved. ARTICLES NATUREMATERIALS DOI:10.1038/NMAT2745 a radiusr ,attheangularpositionθ =sin−1[d/(R+r )].Thecontact 0 0 0 angleofathinfilmwithonecylinder,θ,canbeshowntobe Rsinθ dRθcosθ (cid:18)γ (cid:19)(cid:18) d dθcosθ(cid:19) + − −1 1− + =0 d−Rsinθ (d−Rsinθ)2 γ Rsinθ Rsin2θ c (2) Dfroemcr e7a6s e µ tm hi ctok n2e.5ss µ m Cfrohman gshee settr utcot mureesh whereγcisgiveninequation(1).Thesolutionofequation(2)takes b 1 cm 76 µ m 26 µ m tahteθf=orm0,θan=dθth(de/fRilm,γ/dγoce)s.nFoortγwr<apγca,rothuenedntehrgeycyhlainsdaemrsi.nPimarutimal wrappingoccurstoacontactangleofθ (thatis,contactforangles between0andθ<θ )forγ ≤γ <γ(cid:48),whereγ(cid:48) isobtainedfrom 0 c c c equation(2)withθ=θ asgivenintheSupplementaryInformation. 0 For γ ≥γ(cid:48), wrapping is complete (that is, conformal contact for c angles between 0 and θ ). By comparing equation(2) with the 0 Poor contact Poor contact experimentinSupplementaryFig.S8,theextractedadhesionenergy 2.5 µ m 7.0 µ m per unit area is γ =10mJm−2. Results appear in the bottom frame of Fig.4b, where the parameters correspond roughly to features on the brain model: R=6.14mm, d =5.93mm and r =1.72mm.Theerrorrangeofthedatais±5%.(Experimental 0 images appear in Supplementary Fig. S8.) By substituting θ with θ in equation(2), the critical thickness for conformal contact is 0 obtained as h =4.9µm for the present system; that is, devices Good contact Good contact thinner than ∼04.9µm achieve conformal contact on this surface. c 0.3 cm 76 µ m 26 µ m Theexperimentalresultsareconsistentwiththiscalculation. Cylindrical surfaces such as those of Fig.4a,b are developable; thebrainisnot.Asamodelnon-developablesurface,weexamined the case of a hemispherical substrate. Figure4c shows results for electrode arrays with sheet designs at thicknesses of 7 and 2.5µmandwithanopenmeshlayout28 at2.5µm,eachonaglass hemispherewitharadiusofcurvatureof6.3mm.Withonlywater 2.5 µ m 7.0 µ m capillarityastheadhesionforce,themeshelectrodearrayachieves excellentconformalcontact.Thesheetsshowcomparativelypoor contact, with large wrinkles, even for the thinnest case (that is, 2.5µm). Mechanical analysis of a simple model reveals the underlyingphysics.TheleftframeofFig.4dshowsthemechanics model for the sheet design, which consists of a circular film with d 0.2 cm radius r+w wrapped onto a sphere with radius R. The central greenpartdenotesaPIplateofradiusr,tensionstiffness(Eh) and PI Mesh type, 2.5 µ m equi-biaxialbendingstiffness(EI) .Theyellowringcorresponds PI toamultilayerstructureofPIandAu,ofwidthw,tensionstiffness (Eh) andequi-biaxialbendingstiffness(EI) .Forthe composite composite filmtowraparoundthesphere,therequiredminimumadhesion energyperunitareaisobtainedanalyticallyas Silk (EI) (Eh) (cid:90) r(cid:18) R x(cid:19)2 γsheet = PI+ PI 1− sin xdx Contact c R2 r2 0 x R electrode PI mesh 2w(EI) w(Eh) (cid:18) R r(cid:19)2 + composite+ composite 1− sin (3) Figure3|Neuralelectrodearraysofvaryingthicknessonsimulated rR2 r r R brainmodelstoillustrateflexibility.a,Schematicillustrationoftrendsin thicknessandstructurethatimproveconformalcontact.b,Seriesof Amechanicsmodelforthemeshdesignappearsintherightframe picturesillustratinghowthethicknessoftheelectrodearraycontributesto ofFig.4d,whichconsistsofonlyacircularstripofacorresponding conformalcontactonabrainmodel.c,Magnifiedviewofthepicturesinb. multilayer of PI and Au. In this case, the minimum adhesion d,Imageofanelectrodearraywithameshdesignonadissolvablesilk energyperunitareais substrate.Thearrowsindicatestrutsinthemeshthathelptostabilizethe (cid:32) (cid:114) (cid:33)2 Auinterconnectsafterdissolutionofthesilk.Theinsetillustratesthehigh γmesh=(EI)composite+w2(Eh)composite 1− 1−r2 (4) degreeofconformalcontactthatcanbeachievedonthebrainmodelonce c R2 24r2 R2 thesilksubstratehasbeendissolved. For the case that w (cid:28)r, γsheet in equation(3) is always larger c reportedvaluesforwetinterfaces27.Reducingthethicknessprovides thanγmesh inequation(4);thatis,γsheet>γmesh.Theinferenceis c c c clearbenefits,forexample,wrappingcylindersusingonlycapillary thattheopenmeshdesignrequiresamuchloweradhesionenergy adhesionforcesispossibleforR∼1cmwhenh<∼15µm. thanthecorrespondingsheet,therebyleadingtogreatlyimproved A pair of overlapped cylinders represents a simple model for ability for conformal coverage, as shown in Supplementary Fig. a gyrus of the brain. Figure4b shows cylinders with radii R, a S9a. Supplementary Fig. S9c shows critical adhesion energies for centre-to-centreseparationof2dandconnectedbyasmootharcof filmswiththicknessesupto80µm.Forathicknessof2.5µmand 4 NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials ©2010 Macmillan Publishers Limited. All rights reserved. NATUREMATERIALS ARTICLES DOI:10.1038/NMAT2745 w/r =4, γcsheet=29.1mJm−2 for the sheet, which is more than a 2L b 2L 12timeslargerthanthemeshγcmesh=2.4mJm−2.Inaddition,the h h ma efashctdoersiogfniwn/vro,lvceosmmpeamrebdranweitshtrasihnesetthsatwairthesmsimalillearr,btyhricokungehslsy. R r0 θ0 For the experimental mesh systems, this ratio is of the order R 2d of 1/4. As a result, for a representative critical wrinkling strain of 0.1%, nearly two thirds of the sheet will wrinkle. Under the sameconditions,theentiremeshgivesperfect,conformalcontact. θ Finally,thenormal(peeling)interfacialstressforthemeshisonly 1/4ofthatforthesheet(SupplementaryFigsS9bandS9d),leading toimprovedadhesionandreducedforcesappliedtothesubstrate. SeeSupplementaryInformationfordetails. 120 60 In vivo neural monitoring experiments on a feline animal Modelling Modelling mmftdihuxoeaerctdodhetsaoilunnmdbieactymess.netoxedTnprehesodeotsrteat2adetx8esai◦tdcs2×tai×hpn2epv32opa◦crlrmvaaoetcufdtriescsagapanilnoaicdnameno.iptafselAcisecnotyahretteiiseontxifnizo.tseiTcadoulhfsceectaedrhtaleenowscneitiortfthoaaodvmmioetsuoyanrrharaieatbnaoyldders μThickness ( m) 9630000 UnwrappEexdWpeγrraimp=pe 1en0dt mJ m¬2 θ(degree)3410055 Conform. wrapPartial wrap NEox wperaripment covered much of the visual cortex as shown in the left frames 0 1 2 3 4 0 20 40 60 80 ofFig.5a–c.Visualstimuliconsistedoffull-fielddriftinggratings Diameter (cm) Thickness ( μ m) presented for 1s at 2Hz with a spatial frequency of 0.5cycles c per degree. Gratings were presented at two different directions 0.3 cm overeightdifferentorientations(16uniquestimuli).However,the responses obtained from all 16 unique stimuli were averaged to obtainthelargestpossiblesignal-to-noiseratio. Three kinds of electrode array were used for comparison: 76-µm- and 2.5-µm-thick sheets and a 2.5µm-thick mesh. The 76 μ m 2.5 μ m second two included dissolvable silk supports. The left images of Fig.5a–c illustrate the progressively improved conformal contact 0.2 cm withreducedthickness(thatis,76µmto2.5µm,inFig.5aandb, respectively) and with introduction of the mesh (that is, Fig.5c). The right frames of Fig.5a–c demonstrate the effectiveness of decreasing the electrode thickness and the mesh structure on physiologicalmeasurementsofbrainactivity. In particular, these frames show the average evoked response measuredateachelectrode,eachplottedinaspatialarrangement that corresponds to the images in the left frames. Prominent visuallyevokedpotentialsareobserved,particularlyastrongP100 response. The P100 response is a ‘positive’ evoked response Mesh typicallyoccurringat100msafterthestimulationonset29.TheP100 d responsesshowninFig.5areplottedpositivedown,byconvention. The background colour of each plot illustrates a quantitative r r measure of the evoked response signal quality. This measure of R w w signalqualitywascalculatedbydividingtherootmeansquare(rms) Side Top Side Top amplitudeofeachaverageelectroderesponseinthe200mswindow immediately after the presentation of the visual stimulus by the rmsamplitudeoftheaverage1.5swindowimmediatelypreceding Figure4|Mechanicalmodelling,theoreticalpredictionsandmeasured thestimuluspresentation.ThecolourbaratthebottomofFig.5c properties.a,AthinfilmwrappedaroundacylinderofradiusR.The providesthenumericalscaleforallofthecoloursusedinFig.5a–c. unwrappedandwrappedstatesappearinthetopandcentreframes, Thismeasurementservesasaquantitativemetricoftheelectrode respectively.Thebottomframecomparesthemechanicsmodeland performance, because the uniform nature of the stimulation is experiments.b,Athinfilmwrappedaroundtwooverlappedcylinders.The expectedtoevokesimilarresponsesacrosstheentirevisualcortex. topandcentreframesshowtheunwrappedandwrappedstates, Ineachcase,28ofthe30electrodechannelswererecordedand respectively.Thebottomframeshowsacomparisonbetweenthe evaluatedforevokedpotentialresponse,ascolouredingreentored. mechanicsmodelandexperiments.c,Imagesofelectrodearrays(76µm Twochannels,indicatedingrey,werereservedaslocalreferences, sheetinlefttop,2.5µmsheetinrighttopand2.5µmmeshinbottom asrequiredbytherecordingapparatus,andwerenotevaluated.The panel)wrappedontoaglasshemisphere.d,Mechanicsmodelsforsheet channelswithhighandlowrmsamplituderatiosarecolouredgreen (leftframe)andmesh(rightframe)designs. andred,respectively.The76µm(Fig.5a)electrodearrayexhibited thelowestperformancewithameanrmsamplituderatioofall28 with the brain and recorded weak responses. The 2.5µm mesh channels of 3.6±1.8. This was due to poor contact at many of electrode (Fig.5c) showed the best performance, with nearly all theelectrodes.The2.5µmarray(Fig.5b)showedbetterconformal channels in good contact and a still higher mean rms amplitude contact and correspondingly a higher mean rms amplitude ratioof5.7±3.0.Thelowerstandarddeviationofthe2.5µmarray ratio of 5.2±3.9. However, the higher standard deviation and illustratesthatmostoftheelectrodesrecordedgoodresponses. correspondinglywidespectrumoftheredandgreenchannelson Figure5dshowsrepresentativesingle-channeldatafromoneof thearrayindicatethatalthoughmanyelectrodesrecordedexcellent the2.5µmmeshelectrodes.Asleepspindleisobservedwithgood signals,approximatelyhalfoftheelectrodesstillhadpoorcontact signal amplitude and signal-to-noise ratio. This collective set of NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials 5 ©2010 Macmillan Publishers Limited. All rights reserved. ARTICLES NATUREMATERIALS DOI:10.1038/NMAT2745 a observations is consistent with the systematic mechanics studies 76 µ m describedpreviously.Wedidnotobserveanyevidenceofimmune response. Histology data from related types of device implanted undertheskinexhibitednoinflammationafter4weeks,asshown inSupplementaryFig.S10. Althoughpurelypassiveelectrodesystemsservetodemonstrate the advantages and underlying aspects of these systems, the same approaches are compatible with fully active electronics and optoelectronics. This technology allows intimate integration of finelyspacedelectrodesystemswithlivingtissue,enablingthekind ofreliablebiotic/abioticinterfacewithmoving,biologicalstructures that will be required for chronically implanted, high-resolution medical devices. This improved electrode/tissue interface has the potential for a positive impact on human health in many modes b 2.5 µ m ofuse. Methods Thickelectrodearray(>25µM)fabrication. CommercialPIfilms(Kapton, Dupont)withthicknessesof25and75µmwereattachedtoatemporarycarrier substrateconsistingofaglassslidecoatedwithPDMS.Aftercleaningthesurfaces withacetone,isopropylalcoholanddeionizedwater,electronbeamevaporation formeduniformcoatingsofmetal(Cr/Au,50/1450A).Photolithographyand patternedetchingyieldedarraysofinterconnectlines.ThinlayersofPI(thickness ∼1.2µm)spin-castandpatternedbyreactiveionetchingleftonlytheendsofthe linesexposed.Furtherdepositionandpatterningdefinedsquaremetalelectrode padsattheselocations.PeelingtheseawayfromthePDMS-coatedglassslideand bondingthemtoanACFcable,usingproceduresdescribedinaseparatesection, completedthefabrication.SupplementaryFig.S1providesaschematicdiagram andimagesoftheprocess. c Mesh Thinelectrodearray(<10µM)fabrication. Thefabricationinthiscaseused acarriersiliconwafercoatedwithathin(∼1.2µm)spin-castlayerofPMMA (A2,MicroChem).ThedevicesubstrateconsistedofafilmofPI(SigmaAldrich) spin-castontothePMMA.Proceduressimilartothosedescribedforthickdevices formedthemetalelectrodesandPIovercoat.Afterfabrication,theultrathindevices werereleasedbydissolvingthesacrificialPMMAlayer.Transferprintingwitha PDMSstampdeliveredthedevicestodrysilkfilmsubstrates,coatedwith∼9%silk solutionasanadhesive.ThefinalstepinvolvedbondingofanACFcable. Meshelectrodearray(<10µM)fabrication. Thefirstandlastpartsofthe fabricationsequencewereidenticaltothestepsoutlinedintheprevioussection. Theonlydifferencewastheadditionofasteptoremovecertainregionsof thepolymerlayers(thatis,PIandunderlyingPMMA)byoxygenreactive V ionetchingthroughamask(designinSupplementaryFig.S3)todefinethe 0.2 cm 2 m meshstructure.Detaileddimensionsareasfollows:thickness∼2.5µm,contact 0. 200 ms electrodesize500µm×500µm,meshwidth∼250µm.(Seemoredetailsin SupplementaryFig.S5.)Thisetchingimmediatelyfollowedtheformation oftheelectrodepads. 0 2 4 6 8 d ACFconnection. Thecontactpadsontheelectrodearraywerefirstalignedwith theACFcable.Metalclipswereusedtoapplypressure,spreadevenlyoverthe mV contactpadareausingapieceofPDMSinsertedbetweentheACFandtheclips. 1 Next,theclampedsampleandACFwereplacedinanovenpreheatedto∼150◦C 200 ms for∼15min.Thisprocessformedastrongmechanicalbondbetweentheelectrode arrayandtheACFwithlowelectricalresistance. Figure5|Photographsanddatafromanimalvalidationexperiments. Dataacquisitionandprocessing. Theelectrodearrayswereconnectedtoa a–c,Imageofanelectrodearrayonafelinebrain(left)andtheaverage NeuralynxDigitalLynxdataacquisitionsystemthroughtheACFandacustom evokedresponsefromeachelectrode(right)withthecolourshowingthe electrodeinterfaceboard.TheboardappearsinSupplementaryFig.S11. SupplementaryFig.S2showstheconnectedelectrodearray,ACFribbonand ratioofthermsamplitudeofeachaverageelectroderesponseinthe circuitboard.ThesignalsweresampledatthestandardDigitalLynxsampling 200mswindow(plotted)immediatelyafterthepresentationofthevisual rateof32,556Hzperchannel.Thehigh-passfilterwassetat1Hzandlow-pass stimulustothermsamplitudeoftheaverage1.5swindow(notshown) filterat9kHz.CustomMATLABsoftware(TheMathWorks)wasusedforoffline immediatelyprecedingthestimuluspresentationfora76µm(a),2.5µm processing.Signalsweredown-sampledto2,713Hzandfurtherlow-passfilteredat (b)and2.5µmmesh(c)electrodearray.Thestimuluspresentationoccurs 50Hz.Responseswereaveragedforeachstimulusandplottedperelectrode. attheleftedgeoftheplottedwindow.Inallthreeimages,theoccipitalpole Animalexperiments. Experimentswereconductedinaccordancewiththeethical isatthebottomoftheframeandthemedialisattheright.Thescalebars guidelinesoftheNationalInstitutesofHealthandwiththeapprovalofthe atthebottomofcindicatethespatialscalefortheleftframesandthe InstitutionalAnimalCareandUseCommitteeoftheUniversityofPennsylvania. voltageandtimescalesfortherightframesofa–c.Thecolourbaratthe Surgicalandstimulationmethodswereasdescribedindetailpreviously29–31.Briefly, bottomofcprovidesthescaleusedintherightframesofa–cto adultcats(2.5–3.5kg)wereanaesthetizedwithintravenousthiopentalwitha continuousinfusion(3–10mgkg−1h−1)andparalysedwithgallaminetriethiodide indicatethermsamplituderatios.d,Representativevoltagedatafroma (Flaxedil).Heartrate,bloodpressure,end-tidalCO andelectroencephalograph singleelectrodeina2.5µmmeshelectrodearrayshowinga weremonitoredthroughouttheexperimenttoassu2redepthandstabilityof sleepspindle. anaesthesiaandrectaltemperaturewaskeptat37–38◦Cwithaheatingpad.The 6 NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials ©2010 Macmillan Publishers Limited. All rights reserved. NATUREMATERIALS ARTICLES DOI:10.1038/NMAT2745 surfaceofthevisualcortexwasexposedwithacraniotomycentredatHorsley 19. Perry,H.,Gopinath,A.,Kaplan,D.L.,Negro,L.D.&Omenetto,F.G. Clarkeposterior4.0,lateral2.0. Nano-andmicropatterningofopticallytransparent,mechanicallyrobust, Forvisualstimulation,thecorneaswereprotectedwithcontactlensesafter biocompatiblesilkfibroinfilms.Adv.Mater.20,3070–3072(2008). dilatingthepupilswith1%ophthalmicatropineandretractingthenictitating 20. Murphy,A.R.,John,P.S.&Kaplan,D.L.Modificationofsilkfibroinusing membraneswithphenylephrine(Neosynephrine).Spectaclelenseswerechosen diazoniumcouplingchemistryandtheeffectsonhMSCproliferationand bythetapetalreflectiontechniquetooptimizethefocusofstimuliontheretina. differentiation.Biomaterials29,2829–2838(2008). Thepositionofthemonitorwasadjustedwithanx–ystagesothatthearea 21. Altman,G.H.etal.Silk-basedbiomaterials.Biomaterials24,401–416(2003). centralaewerecentredonthescreen.StimuliwerepresentedonanImageSystems 22. Santin,M.,Motta,A.,Freddi,G.&Cannas,M.Invitroevaluationof (Minnetonka)modelM09LVmonochromemonitoroperatingat125framess−1at theinflammatorypotentialofthesilkfibroin.J.Biomed.Mater.Res.46, aspatialresolutionof1,024×786pixelsandameanluminanceof47cdm−2. 382–389(1999). 23. Kim,D-H.etal.Siliconelectronicsonsilkasapathtobioresorbable, Received 26 November 2009; accepted 10March2010; implantabledevices.Appl.Phys.Lett.95,133701–133703(2009). 24. Amsden,J.J.etal.Spectralanalysisofinducedcolourchangeonperiodically publishedonline18April2010;correctedonline 23April2010 nanopatternedsilkfilms.Opt.Express17,21271–21279(2009). 25. Parker,S.T.etal.Biocompatiblesilkprintedopticalwaveguides.Adv.Mater. References 21,2411–2415(2009). 1. Kim,S.etal.IntegratedwirelessneuralinterfacebasedontheUtahelectrode 26. Soong,H.K.&Kenyon,K.R.Adversereactionstovirginsilksuturesincataract array.Biomed.Microdevices11,453–466(2009). surgery.Ophthalmology91,479–483(1984). 2. Ryu,S.I.&Shenoy,K.V.Humancorticalprostheses:Lostintranslation? 27. Chaudhury,M.K.&Whitesides,G.M.Directmeasurementof Neurosurg.Focus27,E5(2009). interfacialinteractionsbetweensemisphericallensesandflatsheetsof 3. Andersen,R.A.,Musallam,S.&Pesaran,B.Selectingthesignalsfora poly(dimethylsiloxane)andtheirchemicalderivatives.Langmuir 7, brain–machineinterface.Curr.Opin.Neurobiol.14,720–726(2004). 1013–1025(1991). 4. Mehring,C.etal.Inferenceofhandmovementsfromlocalfieldpotentialsin 28. Someya,T.etal.Conformable,flexible,large-areanetworksofpressureand monkeymotorcortex.NatureNeurosci.6,1253–1254(2003). thermalsensorswithorganictransistoractivematrixes.Proc.NatlAcad. 5. Ball,T.etal.Towardsanimplantablebrain–machineinterfacebasedon Sci.USA102,12321–12325(2005). epicorticalfieldpotentials.Biomed.Tech.49,756–759(2004). 29. Padnick,L.B.&Linsenmeier,R.A.Propertiesoftheflashvisualevoked 6. Wilson,J.A.,Felton,E.A.,Garell,P.C.,Schalk,G.&Williams,J.C. potentialrecordedinthecatprimaryvisualcortex.VisionRes.39, ECoGfactorsunderlyingmultimodalcontrolofabrain–computerinterface. 2833–2840(1999). IEEETrans.NeuralSyst.Rehabil.Eng.14,246–250(2006). 30. Cardin,J.A.,Palmer,L.A.&Contreras,D.Stimulusfeatureselectivityin 7. Freeman,W.J.,Rogers,L.J.,Holmes,M.D.&Silbergeld,D.L.Spatialspectral excitatoryandinhibitoryneuronsinprimaryvisualcortex.J.Neurosci.27, analysisofhumanelectrocorticogramsincludingthealphaandgammabands. 10333–10344(2007). J.Neurosci.Methods95,111–121(2000). 31. Cardin,J.A.,Palmer,L.A.&Contreras,D.Cellularmechanismsunderlying 8. Kellis,S.S.,House,P.A.,Thomson,K.E.,Brown,R.&Greger,B.Human stimulus-dependentgainmodulationinprimaryvisualcortexneuronsinvivo. neocorticalelectricalactivityrecordedonnonpenetratingmicrowirearrays: Neuron59,150–160(2008). Applicabilityforneuroprostheses.Neurosurg.Focus27,E9(2009). 9. Rubehn,B.,Bosman,C.,Oostenveld,R.,Fries,P.&Stieglitz,T.A Acknowledgements MEMS-basedflexiblemultichannelECoG-electrodearray.J.NeuralEng. WethankT.BanksandJ.A.N.T.SoaresforhelpusingfacilitiesattheFrederick 6,036003(2009). SeitzMaterialsResearchLaboratory.Thismaterialisbasedonworksupportedbya 10. Hollenberg,B.A.,Richards,C.D.,Richards,R.,Bahr,D.F.&Rector,D.M. NationalSecurityScienceandEngineeringFacultyFellowshipandtheUSDepartment AMEMSfabricatedflexibleelectrodearrayforrecordingsurfacefield ofEnergy,DivisionofMaterialsSciencesunderAwardNo.DEFG02-91ER45439, potentials.J.Neurosci.Methods153,147–153(2006). throughtheFrederickSeitzMRLandCenterforMicroanalysisofMaterialsatthe 11. Yu,Z.etal.Monitoringhippocampuselectricalactivityinvitroonanelastically UniversityofIllinoisatUrbana-Champaign.Theaspectsoftheworkrelatingtosilkare deformablemicroelectrodearray.J.Neurotrauma26,1135–1145(2009). supportedbytheUSArmyResearchLaboratoryandtheUSArmyResearchOfficeunder 12. Meacham,K.W.,Giuly,R.J.,Guo,L.,Hochman,S.&DeWeerth,S.P. contractnumberW911NF-07-1-0618andbytheDARPA-DSOandtheNIHP41Tissue Alithographically-patterned,elasticmulti-electrodearrayforsurface EngineeringResourceCenter(P41EB002520).WorkattheUniversityofPennsylvania stimulationofthespinalcord.Biomed.Microdev.10,259–269(2008). issupportedbytheNationalInstitutesofHealthGrants(NINDSRO1-NS041811-04, 13. Lawrence,B.D.,Cronin-Golomb,M.,Georgakoudi,I.,Kaplan,D.L.& R01NS48598-04),andtheKlingensteinFoundation.J.A.R.issupportedbyaNational Omenetto,F.G.Bioactivesilkproteinbiomaterialsystemsforopticaldevices. ScienceSecurityandEngineeringFacultyFellowship. Biomacromolecules9,1214–1220(2008). Authorcontributions 14. Omenetto,F.G.&Kaplan,D.L.Anewrouteforsilk.NaturePhoton.2, 641–643(2008). D-H.K.,J.V.,J.J.A.,J.X.,L.V.,Y-S.K.,D.C.,D.L.K.,F.G.O.,Y.H,K-C.H.,M.R.Z.,B.L.and 15. Jin,H-J.etal.Water-stablesilkfilmswithreducedβ-sheetcontent.Adv.Funct. J.A.R.designedtheexperiments.D.H.K.,E.S.F.,J.V.,J.J.A.,J.X.,L.V.,Y-S.K.,B.P.and Mater.15,1241–1247(2005). J.A.B.carriedoutexperimentsandanalysis.D-H.K.,J.V.,J.J.A.,J.X.,L.V.,J.A.B.,D.C., 16. Lu,Q.etal.Water-insolublesilkfilmswithsilkIstructure.ActaBiomater.6, D.L.K.,F.G.O.,Y.H.,B.L.andJ.A.R.wrotethepaper. 1380–1387(2009). Additionalinformation 17. Jiang,C.etal.Mechanicalpropertiesofrobustultrathinsilkfibroinfilms. Adv.Funct.Mater.17,2229–2237(2007). Theauthorsdeclarenocompetingfinancialinterests.Supplementaryinformation 18. Sofia,S.,McCarthy,M.B.,Gronowicz,G.&Kaplan,D.L.Functionalized accompaniesthispaperonwww.nature.com/naturematerials.Reprintsandpermissions silk-basedbiomaterialsforboneformation.J.Biomed.Mater.Res.54, informationisavailableonlineathttp://npg.nature.com/reprintsandpermissions. 139–148(2001). CorrespondenceandrequestsformaterialsshouldbeaddressedtoB.L.orJ.A.R. Dae-HyeongKim1†,JonathanViventi2†,JasonJ.Amsden3,JianliangXiao4,LeifVigeland5,Yun-SoungKim1,JustinA.Blanco2, BrucePanilaitis3,EricS.Frechette6,DiegoContreras5,DavidL.Kaplan3,FiorenzoG.Omenetto3,YonggangHuang4, Keh-ChihHwang7,MitchellR.Zakin8,BrianLitt2,6*andJohnA.Rogers1* 1DepartmentofMaterialsScienceandEngineering,BeckmanInstituteforAdvancedScienceandTechnologyandFrederickSeitzMaterialsResearch Laboratory,UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois61801,USA,2DepartmentofBioengineering,UniversityofPennsylvania, Philadelphia,Pennsylvania19104,USA,3DepartmentofBiomedicalEngineering,TuftsUniversity,Medford,Massachusetts02155,USA,4Departmentof MechanicalEngineeringandDepartmentofCivilandEnvironmentalEngineering,NorthwesternUniversity,Evanston,Illinois60208,USA,5Department ofNeuroscience,UniversityofPennsylvaniaSchoolofMedicine,215StemmlerHall,Philadelphia,Pennsylvania19104,USA,6DepartmentofNeurology, HospitaloftheUniversityofPennsylvania,3WestGates,3400SpruceStreet,Philadelphia,Pennsylvania19104,USA,7AML,DepartmentofEngineering Mechanics,TsinghuaUniversity,Beijing100084,China,8DefenseAdvancedResearchProjectsAgency,Arlington,Virginia22203,USA.†Theseauthors contributedequallytothiswork.*e-mail:[email protected];[email protected]. NATUREMATERIALS|ADVANCEONLINEPUBLICATION|www.nature.com/naturematerials 7 ©2010 Macmillan Publishers Limited. All rights reserved.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.