ebook img

DTIC ADA575033: Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA575033: Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices

A Soluble P3HT-Grafted Graphene for R (cid:1) Efficient Bilayer Heterojunction T Photovoltaic Devices I C Dingshan Yu,† Yan Yang,‡ Michael Durstock,§,* Jong-Beom Baek,(cid:1) and Liming Dai†,* †DepartmentofChemicalEngineering,CaseWesternReserveUniversity,Cleveland,Ohio44106,‡DepartmentofChemistryandBiochemistry,NewMexicoState University,NewMexico88003,§MaterialsandManufacturingDirectorate,AirForceResearchLaboratory,RXBP,Wright-PattersonAirForceBase,Ohio45433,and L (cid:1)InterdisciplinarySchoolofGreenEnergy,UlsanNationalInstituteofScienceandTechnology(UNIST),100,Banyeon,Ulsan,689-798SouthKorea E T hephotovoltaiceffectinvolvesthe generationofelectronsandholesin ABSTRACT CHOH-terminatedregioregularpoly(3-hexylthiophene)(P3HT)waschemicallygraftedonto 2 asemiconductordeviceunderillu- carboxylicgroupsofgrapheneoxide(GO)viaesterificationreaction.TheresultantP3HT-graftedGOsheets(G- minationandthesubsequentchargecollec- P3HT)aresolubleincommonorganicsolvents,facilitatingthestructure/propertycharacterizationandthedevice tionatoppositeelectrodes.1(cid:1)8Photonab- fabricationbysolutionprocessing.ThecovalentlinkageandthestrongelectronicinteractionbetweentheP3HT sorptionoforganicoptoelectronicmaterials andgraphenemoietiesinG-P3HTwereconfirmedbyspectroscopicanalysesandelectrochemicalmeasurements. oftencreatesboundelectron-holepairs (i.e.,excitons).Chargecollection,therefore, Abilayerphotovoltaicdevicebasedonthesolution-castG-P3HT/C60heterostructuresshoweda200%increaseof requiresdissociationoftheexcitons,which thepowerconversionefficiency((cid:2)(cid:3)0.61%)withrespecttotheP3HT/C counterpartunderAM1.5illumination 60 occursonlyattheheterojunctioninterface (100mW/cm2). betweensemiconductingmaterialsofdif- ferentionizationpotentialsorelectronaf- KEYWORDS:graphene · poly(3-hexylthiophene) · end-functionalization · solution finities.Solubleconjugatedpolymersand processing · solarcells fullerenehavebeenwidelyusedaselectron donors(D)andacceptors(A)toenhance venteffectorpostfabricationdiffusion,also thechargeseparation.1(cid:1)5Thephotoin- createsproblemsinabilayerdevice.Fur- ducedchargetransferbetweentheexcited thermore,theoverallenergyconversionef- conductingpolymerdonorandC60accep- ficiencyofabilayerdeviceisdiminishedby torcanoccurveryrapidlyonasubpicosec- thelimitedeffectiveinterfacialareaavail- ondtimescalewithaquantumefficiencyof ableinthelayerstructure,andthephotoex- closetounityforchargeseparationfrom citationsproducedfarfromtheinterfacere- donortoacceptor.Becausetheexcitondif- combinebeforediffusingtothebilayer fusionrangeistypicallyatleastafactorof heterojunction.However,abilayeredde- 10smallerthantheopticalabsorption vicestructurecouldbemorefavorablewith depth,thephotoexcitationsproducedfar respecttothebulkheterojunctionforeffi- fromtheinterfacerecombinebeforediffus- cientchargetransportsincetheseparated ingtotheheterojunction.Inordertoover- chargecarrierscaneasilytransporttothe comethisdeficiency,bulkheterojunction oppositeelectrodeswithaminimizedre- photovoltaiccellsbasedoninterpenetrat- combinationpossibility.7(cid:1)9Inthisregard, ingnetworksconsistingofapolymericelec- Wangetal.9reportedthataP3HT/PCBMbi- trondonor[e.g.,poly(3-hexylthiophene)] layerpolymersolarcellwithaconcentra- andaC derivativeacceptor(typically, tiongradientshowedanenhancedphoto- 60 [6,6]-phenyl-C -butyricacidmethylester, currentdensityandpowerconversion 61 *Addresscorrespondenceto PCBM)havebeendeveloped.1,6 efficiencycomparedtothoseofthebulk [email protected](L.D.), Thebulkheterojunctionconcepthas heterojunctionphotovoltaiccellsunderthe [email protected](M.D.). beenwidelyusedforpolymerphotovoltaic samecondition.Ontheotherhand,theC 60 ReceivedforreviewMay20,2010 cells.Duetoitshighinterfacialcontactarea layerinbilayerdevicescouldprovideanad- andacceptedSeptember01,2010. betweenthedonorandacceptor,thebulk ditionalprotectiontothepolymerlayer heterojunctionismoreeffectivecompared frompossibledegradationcausedbyoxy- PublishedonlineSeptember10, 2010. withabilayerdevicestructure.Miscibility genandhumidity,thusimprovingthede- 10.1021/nn101671t betweentheelectronacceptoranddonor vicestability.10Moreimportantly,thebilayer attheinterface,eithercausedbyacosol- structureallowstheC60layertoprevent ©2010AmericanChemicalSociety www.acsnano.org VOL. 4 ▪ NO. 10 ▪ 5633–5640 ▪ 2010 5633 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 10 SEP 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction 5b. GRANT NUMBER Photovoltaic Devices 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Ulsan National Institute of Science and Technology REPORT NUMBER (UNIST),Interdisciplinary School of Green Energy & Inst of Advanced Materials & Devices,100, Banyeon,Ulsan 689-798, South Korea, 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT CH2OH-terminated regioregular poly(3-hexylthiophene) (P3HT) was chemically grafted onto carboxylic groups of graphene oxide (GO) via esterification reaction. The resultant P3HT-grafted GO sheets (GP3HT) are soluble in common organic solvents, facilitating the structure/property characterization and the device fabrication by solution processing. The covalent linkage and the strong electronic interaction between the P3HT and graphene moieties in G-P3HT were confirmed by spectroscopic analyses and electrochemical measurements. A bilayer photovoltaic device based on the solution-cast G-P3HT/C60 heterostructures showed a 200% increase of the power conversion efficiency ( 0.61%) with respect to the P3HT/C60 counterpart under AM 1.5 illumination (100 mW/cm2). 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 8 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 E L C I T R A Figure1.(a)SynthesisprocedureforchemicalgraftingofCHOH-terminatedP3HTchainsontographene,whichinvolvestheSOCl 2 2 treatmentofGO(step1)andtheesterificationreactionbetweenacyl-chloridefunctionalizedGOandMeOH-terminatedP3HT(step 2). thepolymerlayerfromdirectcontactwiththecath- tentialapplicationofgraphenesheetsinpolymer ode,reducingtherecombinationlossandeliminating photovoltaicdeviceshasbeenprecludedbytheirpoor anypossibleshortcircuitproblemforpolymerhybrid solubility,whichmakesthegraphenedispersionand solarcellscontainingconductingadditives(e.g.,carbon devicefabricationverydifficult,ifnotimpossible,bythe nanotubes,graphenesheets;seebelow).Inthisstudy, traditionalsolutionprocessingmethods(e.g.,spin-or therefore,wefocusonthebilayerstructuretodemon- blade-coating).Fortunately,thepresenceofoxygen- stratepotentialapplicationsofP3HT-graftedgraphene containingfunctionalgroups(e.g.,(cid:1)OHand(cid:1)COOH) (G-P3HT)inphotovoltaicdevices. ingrapheneoxide(GO)couldnotonlyimpartsolubil- Ascanbeseenfromabovediscussion,efficient ityforlarge-scalefilmformationthroughsolutionpro- photovoltaiccellsshouldinvolvematerialswitharela- cesses(e.g.,spin-castingandlayer-by-layerself- tivelyhighchargemobilityandlargeD(cid:1)Ainterfacefor assembling)27butalsofacilitatechemicalfunctionaliza- efficientexcitiondissociationandtransport.5,11Along tionofgrapheneforvariousapplications.28Although withcertaininorganicnanoparticles(e.g.,CdSe,12,13 someeffortshavebeenmadetowardpolymerfunction- CdTe,5andZnO14,15nanocrystals),carbonnanotubes alizationofGOsheets,noattempthasbeenreported (CNTs)haverecentlybeenusedinbilayerandbulkhet- forconjugatedpolymerchains.29 erojunctionpolymerphotovoltaicdevicestoprovide Inthisstudy,wehavechemicallygraftedCHOH- 2 thelargesurface/interfaceareaaswellasgoodelec- terminatedregioregularpoly(3-hexylthiophene)(P3HT) tronicpropertiesforenhancedchargeseparationand mainlyontocarboxylicgroupsofGOsheetsviaesterifi- transport.16(cid:1)20However,significantimprovementinthe cationreaction.TheresultantP3HT-graftedGOsheets overalldeviceperformancehasnotbeenachievedfor (G-P3HT)aresolubleincommonorganicsolvents,facili- CNT-basedpolymerphotovoltaiccellsduelargelyto tatingthestructure/propertycharacterizationandde- technicaldifficultiesindispersingCNTshomogenously vicefabricationbysolutionprocessing.Inparticular,we inthepolymermatrixwithoutanyshort-circuitprob- havefoundthatabilayerphotovoltaicdevicebased lem,particularlyinthebulkheterojunctionphotovol- onthesolution-castG-P3HTheterostructurewithther- taicdevices. mallyevaporatedC showedanupto200%increasein 60 AsthebuildingblocksforCNTsandothercarbon thepowerconversionefficiencycomparedtoitsP3HT/ nanomaterials,thetwo-dimensional(2-D)singleatomic C counterpartunderAM1.5illumination(100mW/ 60 carbonsheetsofgrapheneshowremarkableelec- cm2).Theresultantpowerconversionefficiencyof tronic,thermal,andmechanicalpropertiesattractive 0.61%indicatesthattheG-P3HT/C bilayerphotovol- 60 foravarietyofpotentialdeviceapplications.21(cid:1)25Of taicdeviceisalsomoreefficientthanitscounterpart particularinterest,grapheneshowsthehighestroom- withelectrondonorsbasedonP3HTwithandwithout temperaturemobilityforelectronandholetransport dopingbyCNTorinorganicnanocrystals,suchasCdTe amongallknowncarbonnanomaterials.25Compared tetrapods.5,17(cid:1)19 withCNTs,theone-atomthicknessand2-Dcarbonnet- workofgrapheneleadtoamuchhigherspecificsur- RESULTSANDDISCUSSION facearea(hence,alargerinterfaceinapolymermatrix) GOwaspreparedaccordingtoamodifiedHum- andareducedthrough-thicknessshortcircuitforthe mersmethod.30IndividualGOsheetsthusproduced photovoltaicactivelayereveninabulkheterojunction withathicknessof(cid:2)1.3nmandsizedistributioninthe device.22,26Therefore,thecombinationofgraphene rangeof0.2(cid:1)2(cid:3)mareshowninFigureS1oftheSup- sheetswithconjugatedpolymersisofgreatpromise portingInformation.EndfunctionalizationofP3HTwas forpolymer-basedphotovoltaiccells.However,thepo- carriedoutaccordingtothereportedproceduretoyield 5634 VOL. 4 ▪ NO. 10 ▪ YU ET AL. www.acsnano.org A (cid:1)CHOHendgroups31(SchemeS1,SupportingInfor- 2 R mation).AsforthepreparationoftheP3HTgrafted graphene,GOwasfirstreactedwithSOCl toobtain 2 T acyl-chloridefunctionalizedGO.Then,acondensation reactionbetweentheCH2OH-terminatedP3HTandthe I acyl-chloridefunctionalizedGOwasperformedtoyield C theG-P3HT(Figure1).ThefinalG-P3HTproductcanbe easilyredispersedincommonorganicsolvents,such L asTHF,chloroform,andtoluene,undersonication. E Figure2showsX-rayphotoelectronspectroscopy (XPS)spectraofGObeforeandaftergraftingwiththe CHOH-terminatedP3HTchains.WhileFigure2ashows 2 onlytheCandOpeaksforGO,thecorrespondingXPS spectrumforthepurifiedG-P3HTinFigure2breveals thepresenceofcarbon,oxygen,andsulfur,arisingfrom theP3HTchainsandgraphenesheets.Figure2crepro- ducesthehigh-resolutionC1sspectrumforGO,which exhibitsthepresenceofC(cid:1)C(284.5),C(cid:1)O(286.4), CAO(288.0)andCOOH(289.0eV)groups.Uponpoly- Figure2.XPSspectraofGOandG-P3HT.(a,b)Surveyspectraand(c, d)high-resolutionC1sspectra. mergrafting(Figure2d),theintensitiesoftheCAOand COOHpeaksdecreaseddramaticallyduetotheforma- Figure4ashowsthenormalizedabsorptionspectra tionofesterlinkagesbetweentheCOOHgroupsofGO ofpureP3HTandG-P3HTinchloroformsolution.A andthehydroxylgroupsoftheCHOH-terminated strongabsorptionbandat446nmattributabletothe 2 P3HT.ThepresenceoftheesterlinkagesinG-P3HTis (cid:4)(cid:1)(cid:4)*transition36wasseenforpureP3HT,whichred- alsoevidencedbytheCAOandC(cid:1)Opeaksat288.0 shiftedtoabout458nmupongraftingontographene and286.5eVinFigure2d,thoughthecontributionfrom inG-P3HT.However,thesimplemixtureofP3HTand someunreactedfunctionalgroupsintheGOcannot grapheneinthesamesolventdidnotcauseanysignifi- beruledout.Whiletheesterificationreactionbetween cantchangeintheP3HTabsorptionband(FigureS5, theacyl-chloridefunctionalizedGOandCHOH- SupportingInformation).Theseresultsindicatethat 2 terminatedP3HTsignificantlyreducedtheCOOHcom- thereexistsastronginteractionbetweenP3HTand ponentofGO,thesignificantdecreaseoftheC(cid:1)Ocom- grapheneinG-P3HT.Suchspecificinteractionprob- ponentinFigure2csuggestspossibleactivationofthe ablyincreasestheelectrondelocalizationalongthe (cid:1)OHgroupsofGObythionylchlorideandsubsequent polymerchain,thusleadingtotheobservedred-shift graftingoftheCH2OH-terminatedP3HTontotheacti- oftheopticalabsorptionpeak.18TheUV(cid:1)visabsorp- vated(cid:1)OHgroupofGObytheformationof tionspectraforthinfilmsofpureP3HTandG-P3HTare O(cid:1)S(O)(cid:1)Olinkage(Figure1).32 alsoshowninFigure4a.Asexpected,theP3HTthin TheesterlinkagebetweenP3HTandgraphenein filmshowedasignificantred-shiftofthe(cid:4)(cid:1)(cid:4)*absorp- G-P3HTwasalsoconfirmedby1HNMRmeasurements tionupto(cid:2)512nmfromthecorrespondingsolution (FigureS2(cid:1)S4,SupportingInformation)andfurther absorptionat446nmdue,mostprobably,tothestrong checkedbyFouriertransforminfrared(FTIR)spectros- interchaininteractionintheregioregularP3HTthin copy.AsshowninFigure3(solidline),thepureGO showsthepeaksofOH(O(cid:1)Hstretchingvibrations)at 3431,CAO(carboxylicacidandcarbonylmoieties)at 1731,andC(cid:1)C(skeletalvibrationofgraphiticdomains) at1627cm(cid:1)1,alongwiththebroadbandover 1000(cid:1)1400cm(cid:1)1arisingfromtheC(cid:1)OH(1227)and C(cid:1)O(1075)stretchingvibrations.33FortheG-P3HT(Fig- ure3,dashline),thebandsat1726and1242cm(cid:1)1can beattributedtotheCAOstretchingandtheC(cid:1)O stretchingoftheestergroups,respectively,confirming theformationofcovalentbondingbetweengraphene andP3HT.34Besides,thepresenceofP3HTisconfirmed bytheappearanceofthreeabsorptionbandsat2960, 2925,and2855cm(cid:1)1associatedwithaliphaticC(cid:1)H stretchingofP3HTandthe821cm(cid:1)1bandcorrespond- Figure3.FTIRspectraofGObeforeandaftergraftingwith ingtoaromaticC(cid:1)HbendingofP3HT.35 P3HTchains. www.acsnano.org VOL. 4 ▪ NO. 10 ▪ 5633–5640 ▪ 2010 5635 E L C I T R A Figure4.(a)UV(cid:1)visabsorptionspectraofpureP3HTandG-P3HT(solidanddashlines,respectively)inCHCl solutionat1 3 mg/mLandofsolidthinfilmpreparedbyspin-coatingonquartzplates.(b)PLspectraofpureP3HTandG-P3HT(solidand dashlines,respectively)inCHCl solutionat1mg/mLand(cid:4) (cid:3)450nm. 3 ex film.TheabsorptionbandoftheG-P3HTfilmalso Therefore,thecharge-transferinteractionindeedoc- showedastrongred-shiftupto(cid:2)522nmfromthecor- curredbetweentheP3HTandthegrapheneinG-P3HT, respondingsolutionabsorptionat458nm.The providinganewnonradiativedecaypathwayforphoto- graphene-inducedenhancementinelectrondelocaliza- generatedexcitonsintheG-P3HT.Furthermore,G-P3HT tionalongthechemicallygraftedP3HTchainswasalso alsoshowsarelativelyfastdecaytimecomparedwith observedintheG-P3HTfilm,asevidencedbyabout10 thesimplemixtureofP3HTandgraphene(i.e.,G/P3HT) nmred-shiftintheabsorptionbandoftheG-P3HTfilm havingaPLlifetimeof476ps(Figure5).Asaresult, withrespecttothatoftheP3HTfilm.Theobservedred- thechemicallinkagebetweentheP3HTandgraphene shiftsforthe(cid:4)(cid:1)(cid:4)*absorptionbandofG-P3HTinboth couldfacilitatetheexcitondissociationforthesolarcell thesolutionandthesolidstateuponbeinggrafted application. ontographeneindicateanenhancedelectrondelocal- Todemonstratethepotentialapplicationofthe izationthroughchargetransferwiththechemically G-P3HTinphotovoltaiccells,wecarriedoutcyclicvolta- conjugatedgraphenesheettoreducethebandgapen- mmetry(CV)measurementsofpureP3HTandG-P3HT ergy;anadvantageforthephotovoltaicapplication.37,38 fordeterminingtheirbandgapenergies.TheCVofboth AscanbeseeninFigure1,oneendoftheP3HTchain P3HTandG-P3HTrevealedwell-definedoxidationand intheHOHC(cid:1)P3HT(cid:1)CHOHwillbegraftedontoone reductionpeaks(FigureS6,SupportingInformation). 2 2 graphenesheet,whiletheotherendofthesamepoly- Fromtheonsetofoxidation(E )andreduction(E ) ox red merchainmayattachtothesameortoanother potentials,wecancalculatethehighestoccupiedand graphenesheettoformacontinuousnetworkstruc- lowestunoccupiedmolecularorbitals(HOMOand ture.Thisshouldalsofacilitatethechargetransportin LUMO,respectively)energylevelsaswellastheen- photovoltaiccells.Figure4bshowsphotoluminescence ergygaps(E )ofthepolymers,accordingtotheprevi- g (PL)spectraofP3HTandG-P3HTinchloroformsolu- ouslyreportedmethod(seeexperimentalmethods).40 tionatanexcitationwavelengthof450nm.Ascanbe Theobtainedelectrochemicaldata,togetherwiththe seen,thepureP3HTshowsastrongemissionbandover opticalabsorptiondataaresummarizedinTable1.As 550(cid:1)650nm,whichwasremarkablyreducedfor canbeseen,G-P3HTshowedalowerHOMOleveland G-P3HTduetothePLquenchingeffectcausedby anarrowerbandgapthanthatofP3HT.Therelatively graphene.22Thisisanadditionaladvantageforusing lowerbandgapobservedforG-P3HTprobablyresulted theG-P3HTinphotovoltaiccells. fromtheabove-mentionedcharge-transferinteraction PLlifetimemeasurementscanprovideanotherevi- betweenthegraphenesheetsandend-anchoredP3HT denceforthecharge-transferinteractionbetweenP3HT chains.41 andthegrapheneinG-P3HT.IftheobservedPL quenchingforP3HTintheG-P3HTresultsfromthe charge-transferinteractionwithgraphene,thenthe chemicalgraftingofP3HTchainsontothegraphene shouldacceleratethedecayoftheP3HTemission.Toin- vestigatecharge-transferinteraction,weperformed time-resolvedemissionstudiesbyusinganexcitation wavelengthof410nm.ThePLlifetimewascalculated byfittingdatatoasingleexponentialdecayfunction.39 ThePLlifetimeprofilesforthepristineP3HTand G-P3HTaregiveninFigure5,which,asexpected,shows Figure5.Time-resolvedphotoluminescencespectraofthe aPLlifetimeof507psforthepristineP3HTinCHCl 3 pristineP3HT(1mg/mL),G-P3HT(1mg/mL),andG/P3HT andamuchshorterPLlifetimeof380psfortheG-P3HT. mixture(1mg/mL)inCHCl. 3 5636 VOL. 4 ▪ NO. 10 ▪ YU ET AL. www.acsnano.org A TABLE1.OpticalandelectrochemicaldataofP3HTandG-P3HT R UV(cid:1)visabsorption cyclicvoltammetry T CHCl3solution solidfilms Eox(V) Ered(V) (cid:4)max(nm) (cid:4)onset(nm) Eg(eV) (cid:4)max(nm) (cid:4)onset(nm) Eg(eV) HOMO(eV) LUMO(eV) Eg(eV) I P3HT 446 545 2.28 512 648 1.91 0.89/(cid:1)5.29 (cid:1)1.01/(cid:1)3.39 1.90 C G-P3HT 458 557 2.23 522 666 1.85 0.99/(cid:1)5.39 (cid:1)0.84/(cid:1)3.56 1.83 L AsschematicallyshowninFigure6a,polymer rentdensity(J )of3.5mAcm(cid:1)2,fillfactor(FF)of0.41, sc E photovoltaiccellswiththestructureofITO/PEDOT: andoverallpowerconversionefficiency((cid:5))of0.61% PSS(30nm)/G-P3HTorP3HT(60nm)/C (45nm)/Al(100 wereobtainedfortheG-P3HT/C device.Incontrast, 60 60 nm)werefabricated.Apostfabricationannealingofthe thereferencephotovoltaiccellbasedonP3HT/C 60 G-P3HTactivelayerwasconductedat160°Cfor20 showedamuchlowerVoc(0.23V),Jsc(1.9mAcm(cid:1)2), minunderN,whichshouldnotonlyimprovethemor- and(cid:5)(0.20%)butaslightlyhigherFF(0.45).Therefore, 2 phologyoftheP3HTmatrix42butmoreimportantlyre- thephotovoltaiccellbasedonG-P3HT/C60clearlyout- movetheresidualfunctionalgroupsinthegraphene performeditscounterpartbasedonP3HT/C60.Whilethe sheettoincreasetheconjugationlengthforenhanc- increasedJscforthephotovoltaicdevicebasedon ingthechargetransportmobility.22Figure6bgivesthe G-P3HTcanbeattributedtotheenhancedcharge energyleveldiagramfortheG-P3HT/C device,while transport/collectionassociatedwiththegraphene 60 Figure6cshowsthecurrent(cid:1)voltage(J(cid:1)V)curvesfor sheets,theincreasedVocisnotinconsistentwiththere- boththeG-P3HT/C andP3HT/C photovoltaiccells. ducedHOMOleveloftheP3HTuponend-anchoring 60 60 ontothegraphenesheet,astheV forabulk- Asexpected,noshortcircuitcurrent(J )wasobserved oc sc heterojunctionsolarcellnormallydependsontheen- foreithertheP3HTorG-P3HT-baseddevicesindark. Upon100mW/cm2(AM1.5G)illumination,however, ergydifferencebetweentheLUMOleveloftheelectron acceptorandtheHOMOleveloftheelectrondonor.22 anopen-circuitvoltage(V )of0.43V,short-circuitcur- oc Consequently,significantlyimproveddeviceperfor- mancewitharemarkableincreaseinthepowerconver- sionefficiencyupto200%wasrepeatedlyobtained fortheG-P3HTdeviceswithrespecttotheP3HT counterpart. Table2summarizestypicaldeviceperformancefor about10bilayerphotovoltaiccellsinvestigatedinthis study,includingthereferencedevicesfabricatedinthe samemannerwithidenticaldeviceparametersbyusing themixtureofgraphene(2wt%)andP3HT/C asthe 60 activelayer.Inthiscase,itwasdifficulttoyieldahomo- geneousfilmbydirectlyblendinggraphenewithP3HT duetotheaggregationofgrapheneinthepolymerma- trix.Thegrapheneaggregationoftenhasadeleterious effectonthechargeseparation/transport.Hence,the overalldeviceefficiencywasnotremarkablyimproved (0.18%,Table2),althoughtheV exhibitedanincrease oc relativetothatoftheP3HT/C device(I(cid:1)Vcurve,Fig- 60 ureS7,SupportingInformation).Therefore,thedevice basedonG-P3HT/C showedthebestoveralldevice 60 performanceamongallofthedifferenttypephotovol- taicdevicesstudiedinthepresentwork.Althoughthe obtainedpowerconversionefficiencyof0.61%isstill moderate,itissignificantforbilayerdevicesandalready TABLE2.DevicePerformancesofSeveralDonors/C60 HeterojunctionDevices VOC(V) JSC(mA/cm2) FF (cid:2)(%) Figure6.(a)Schematicand(b)energyleveldiagramofa P3HT 0.23 1.9 0.45 0.20 ITO/PEDOT:PSS/G-P3HT/C60/Alphotovoltaicdevice.(c) G-P3HT 0.43 3.5 0.41 0.61 Current(cid:1)voltagecharacteristicsofthephotovoltaicdevices G/P3HTmixture 0.27 1.8 0.38 0.18 usingP3HT/C orG-P3HT/C astheactivelayer. 60 60 www.acsnano.org VOL. 4 ▪ NO. 10 ▪ 5633–5640 ▪ 2010 5637 E L considerablyhigherthanthoseofCNTorinorganic tatingthestructure/propertycharacterizationandde- nanocrystal(CdTe)-dopedP3HT(orP3OT)/C bilayer vicefabricationbysolutionprocessing. 60 C heterojunctionsolarcells5,17(cid:1)19andevenbetterthan Detailedspectroscopicandelectrochemicalmeasure- thatofaCNT/P3HT/C bulkheterojunctionsolarcell.20 mentsindicatedthatchemicalgraftingofP3HTonto 60 I Furthermore,therelativelylowfillfactorfortheG-P3HT grapheneinducedastrongelectronicinteraction,lead- T deviceindicatesconsiderableroomforfurtherimprove- ingtoanenhancedelectrondelocalizationanda mentinthedeviceperformance. slightlyreducedbandgapenergyforthegraphene- R boundP3HT,withrespecttopureP3HT.Bilayerphoto- A CONCLUSION voltaicdevicesbasedontheG-P3HT/C60heterostruc- Insummary,regioregularpoly(3-hexylthiophene) turesshowedahighershortcircuitcurrentandopen (P3HT)chainshavebeencovalentlygraftedonto circuitvoltagewitha200%increaseinthepowercon- graphenesheetsviaesterificationbetweenthecarbox- versionefficiencycomparedtoitspureP3HT/C coun- 60 ylicgroupsinGOandCHOH-terminatedP3HT.There- terpart.Therefore,theorganicsolubleG-P3HTholds 2 sultantP3HT-graftedGOsheets(G-P3HT)possessgood greatpromiseforawiderangeofpotentialapplica- solubilityincommonorganicsolvents(e.g.,THF),facili- tionsinoptoelectronicdevices. METHODS ElectrochemicalMeasurements.Toinvestigatetheelectrochemi- PreparationofGONanosheets.GOsheetswerepreparedfromex- calpropertiesofP3HTbeforeandafterbeinggraftedonto grapheneandtoestimatetheirHOMOandLUMOenergylev- foliationofgraphiteaccordingtoamodifiedHummers method.30Briefly,commerciallyobtainedgraphitepowder(Ald- els,cyclicvoltammetry(CV)wascarriedoutbyusingastandard three-electrodesystem,whichconsistsofaglassycarbondiskas rich)wasvigorouslystirredforfivedaysinamixtureofHSO 2 4 theworkingelectrode,aplatinumwireasthecounterelec- (98%),NaNO,andKMnO.Aftercompletionofthereaction,the 3 4 trode,andasilverwireasthereferenceelectrode.Thepolymer mixturewaswashedwith5%HSO inwater.Consequently,30% 2 4 electrodewaspreparedbydrop-castingofapolymersolution HO wasaddedtothereactionvessel,andthemixturewas 2 2 ontotheglassycarbonelectrode.CVwasrecordedinacetoni- stirredfor2hatroomtemperature.TheGOwasfilteredand trilecontaining0.1Mtetrabutylammoniumhexafluorophos- washedthreetimeswith1MHClandthreetimeswithDIwa- phate(TBAPF,Aldrich)asthesupportingelectrolyte.Before ter.TheGOcanbeseparatedanddriedintoabrownpowder 6 eachmeasurement,theelectrochemicalcellwaspurgedwith form.TheAFMimageoftheobtainedGOsheetsisshowninFig- high-purityargongasfor15min.TheHOMOandLUMOenergy ureS1,SupportingInformation. levelsineVaswellastheelectrochemicalenergygap(E ineV)of PreparationofP3HT-GraftedGraphene.End-functionalizedregio- g thesampleswerecalculatedaccordingtothefollowing regularP3HTwithmethylenehydroxygroupswassynthesized bythepreviouslyreportedmethod.31Thepresenceofthemeth- equations:37 ylenehydroxygroupsatendswasconfirmedbyNMRresults (seeFiguresS2(cid:1)S4,SupportingInformation).Inatypicalexperi- EHOMO)-e(Eox+4.4) (1) mentforthesynthesisoftheP3HT-graftedgraphene,driedGO sample(25mg)wasrefluxedinthionylchloride(25mL)for24h, ELUMO)-e(Ered+4.4) (2) followedbytheremovalofexcessthionylchlorideunder vacuum.CH2OH-terminatedP3HT(100mg)in30mLTHFwas Eg)e(Eox-Ered) (3) thenaddedthroughasyringetothethionylchloridetreatedGO understirring,followedbytheadditionoftriethylamine(15 whereE andE aretheonsetofoxidationandreductionpo- ox red mL)innitrogenatmosphere.Aftersonicationfor2h,thereac- tential,respectively. tionmixturewasvigorouslystirredfor36h,leadingtoadarksus- FabricationandCharacterizationofPhotovoltaicDevices.Indiumtin pension.Thesolidinthesuspensionwasremovedbycentrifug- oxide(ITO,25(cid:6)/sq)coatedglassplateswereusedasthesub- ingat5000rpmfor10min,andthesolventintheclearsolution strateforthedevicefabrication.Thesubstrateswerecleanedby thuspreparedwaspartiallyremovedbyevaporation.Itwasfur- consecutivesonicationindetergent(MICRO-90),deionizedwa- therpurifiedbyprecipitatinginmethanol,filtering,andsolvent- ter,isopropylalcohol,andacetoneinanultrasonicbath(VWR washingthoroughlytoremovetheexcesstriethylamine.Thefi- model75D),followedbya10minUV(cid:1)ozonetreatment. nalproductwasdriedinvacuumovenfor24hat60°C. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PE- MicroscopicandSpectroscopicCharacterization.Thesurfacetopol- DOT:PSS)(BaytonP,(cid:2)30nminthickness)wasspincoatedonto ogyofGOwasexaminedusinganatomicforcemicroscopy thecleansubstrates,whichweresubsequentlydriedat120°C microscope(AFM,Micro40,andPacificTechnology)inthetap- for10mintoremoveresidualwater.Photovoltaicdeviceswere pingmodeunderambientatmosphere.Thesurfacechemistry thenfabricatedinagloveboxundernitrogenatmosphereby wasanalyzedusingaVGMicroTechESCA2000X-rayphotoelec- spincoatingaG-P3HTthinfilm(60nm)fromitschlorobenzene tronspectrometer(XPS).Fouriertransforminfrared(FTIR)spec- solution(10mg/mL),followedbyannealingat160°Cfor20min. trawererecordedonaPerkin-ElmerFTIRspectrometer(Spec- Thereafter,athinlayerofC (45nm)wasvacuumevaporated 60 trumONE).NMRmeasurementswereperformedinCDCl ona ontotheG-P3HTsurface,followedbyvacuumevaporationofAl 3 Bruker300MHzNMRspectrometer.Thermogravimetricanaly- (100nm)ontotheC layerthroughashadowmasktodefinean 60 ses(TGA)weremadeonaTAQ50instrumentunderN atmo- activeareaof6mm2foreachdevice.Thecurrent(cid:1)voltage(J(cid:1)V) 2 spherewithaheatingrateof20°C/min.UV(cid:1)visabsorptionspec- curvesofthephotovoltaicdeviceswererecordedonaKeithly trawererecordedonaPerkin-ElmerLambda900UV(cid:1)vis-NIR 236source-measurementunit.Thephotocurrentwasmeasured spectrophotometer.Photoluminescence(PL)spectroscopywas undersimulatedAM1.5Girradiation(100mW/cm2),usingaxe- donewithaLS55spectrometer(Perkin-Elmer)atanexcitation nonlamp-basedsolarsimulator(XPS-400,SolarLightCo.).Allde- wavelengthof450nm.Time-resolvedphotoluminescencespectro- viceswerefabricatedandtestedinoxygenandmoisture-freeen- scopywasperformedwithatime-correlatedsinglephoton vironmentundernitrogeninsidetheglovebox.Forcomparison, countingspectrometer.Outputofamode-lockedTi:sapphirela- bilayersolarcellsbasedonpureP3HT/C andonP3HTmixed 60 serrunningat820nmwasdoubledtogenerateexcitationpulses withgraphene(2wt%)/C werealsofabricatedandinvesti- 60 at410nm. gatedunderthesamecondition. 5638 VOL. 4 ▪ NO. 10 ▪ YU ET AL. www.acsnano.org A Acknowledgment.TheauthorsthankthesupportfromAFOSR Composites.Sol.EnergyMater.Sol.Cells2007,91, (FA9550-09-1-0331)andWCUProjectthroughUNISTfromthe 1478–1482. R MinistryofEducation,Science,andTechnologyinKorea. 17. Pradhan,B.;Batabyal,S.K.;Pala,A.J.Functionalized CarbonNanotubesinDonor/Acceptor-typePhotovoltaic T SupportingInformationAvailable:AFMimageofGO Devices.Appl.Phys.Lett.2006,88,093106. nanosheets,1HNMRspectraoftheregioregularP3HTwith 18. Arranz-Andres,J.;Blau,M.J.EnhancedDevice (cid:1)CHOor(cid:1)CH2OHendgroupsandtheP3HTgraftedgraphene, PerformanceUsingDifferentCarbonNanotubeTypesin I absorptionspectraofthemixtureofgrapheneandP3HTinchlo- PolymerPhotovoltaicDevices.Carbon2008,46, C roform,andtheJ(cid:1)Vcurvefromabilayersolarcellbasedon 2067–2075. tSh1e(cid:1)mS7ix.tTuhriesoinffgorrampahteionneiasnadvaPi3laHbTle/Cf6r0eearoefsceheanrgineFviigautrheesInter- 19. ISmompraonvii,nPg.RPh.;oStoomvoalntai,iSc.RPe.;sFploanhsaeuto,fEP.;oUlym(3e-no,M. L netathttp://pubs.acs.org. octylthiophene)/n-SiHeterojunctionbyIncorporating E DoubleWalledCarbonNanotubes.Nanotechnology2007, REFERENCESANDNOTES 18,185708–185802. 20. Li,C.;Chen,Y.;Wang,Y.;Iqbal,Z.;Chhowalla,M.;Mitra,S. 1. Heeger,A.J.SemiconductingandMetallicPolymers:the FourthGenerationofPolymericMaterials.Angew.Chem., AFullerene-SingleWallCarbonNanotubeComplexfor Int.Ed.2001,40,2591–2611. PolymerBulkHeterojunctionPhotovoltaicCells.J.Mater. 2. Tompson,B.C.;Frechet,J.M.Polymer-Fullerene Chem.2007,17,2406–2411. CompositeSolarCells.Angew.Chem.,Int.Ed.2008,47,58– 21. Wang,X.;Zhi,L.J.;Mullen,K.Transparent,Conductive 77. GrapheneElectrodesforDye-sensitizedSolarCells.Nano 3. Kim,Y.;Shin,M.;Lee,I.;Kim,H.;Heutz,S.Multilayer Lett.2008,8,323–327. OrganicSolarCellswithWet-processedPolymericBulk 22. Liu,Z.;Liu,Q.;Huang,Y.;Ma,Y.;Yin,S.;Zhang,Chen,Y.; HeterojunctionFilmandDry-processedSmallMolecule Sun,W.;Chen,Y.OrganicPhotovoltaicDevicesBasedona Films.Appl.Phys.Lett.2008,92,093306. NovelAcceptorMaterial:Graphene.Adv.Mater.2008,20, 4. Kim,K.;Liu,J.;Carroll,D.L.ThermalDiffusionProcessesin 3924–3930. BulkHeterojunctionFormationfor 23. Yu,D.;Dai,L.Voltage-inducedIncandescentLight Poly-3-hexylthiophene/C SingleHeterojunction EmissionfromLarge-areaGrapheneFilms.Appl.Phys.Lett. 60 Photovoltaics.Appl.Phys.Lett.2006,88,181911. 2010,96,143107. 5. Li,Y.;Mastria,R;Li,K.;Fiore,A.;Wang,Y.;Cingolani,R.; 24. Qu,L.;Liu,Y.;Baek,J.;Dai,L.Nitrogen-DopedGrapheneas Manna,L.;Gigli,G.ImprovedPhotovoltaicPerformanceof EfficientMetal-FreeElectrocatalystforOxygenReduction BilayerHeterojunctionPhotovoltaicCellsbyTriplet inFuelCell.ACSNano2010,4,1321–1326. MaterialsandTetrapod-shapedColloidalNanocrystals 25. Eda,G.;Chhowalla,M.Graphene-basedCompositeThin Doping.Appl.Phys.Lett.2009,95,043101. FilmsforElectronics.NanoLett.2009,9,814–818. 6. Sun,S.S.;Sariciftci,N.S.OrganicPhotovoltaics: 26. Yang,N.;Zhai,J.;Wang,D.;Chen,Y.;Jiang,L.Two- Mechanisms,MaterialsandDevices;CRCPress:BocaRaton, dimensionalGrapheneBridgesEnhancedPhotoinduced FL,2005. ChargeTransportinDye-SensitizedSolarCells.ACSNano 7. Sun,Q.;Park,K.S.;Dai,L.LiquidCrystallinePolymersfor 2010,4,887–894. EfficientBilayer-Bulk-HeterojunctionSolarCells.J.Phys. 27. Yu,D.;Dai,L.Self-AssembledGraphene/CarbonNanotube Chem.C2009,113,7892–7897. HybridFilmsforSupercapacitors.J.Phys.Chem.Lett.2010, 8. Sun,Q.;Dai,L.;Zhou,X.;Li,L.;Li,Q.Bilayer-andBulk- 1,467–470. heterojunctionSolarCellsusingLiquidCrystalline 28. Liu,Y.;Yu,D.;Zeng,C.;Miao,Z.;Dai.,L.Biocompatible PorphyrinsasDonorsbySolutionProcessing.Appl.Phys. Graphene-oxide-basedGlucoseBiosensors.Langmuir Lett.2007,91,253505. 2010,29,6158–6160. 9. Wang,D.H.;Lee,H.K;Choi,D.;Park,J.H.;Park,O. 29. Salavagione,H.J.;Gomez,M.A.;Martnez,G.Polymeric Solution-processablePolymerSolarCellsfromaPoly(3- ModificationofGraphenethroughEsterificationof hexylthiophene)/[6,6]-phenylC61-butyricAcidmethylEster GraphiteOxideandPoly(vinylalcohol).Macromolecules ConcentrationGradedBilayers.Appl.Phys.Lett.2009,95, 2009,42,6331–6334. 043505. 30. Becerril,H.A.;Mao,J.;Liu,Z.;Stoltenberg,R.M.;Bao,Z.; 10. Li,Y.;Mastria,R.;Fiore,A.;Nobile,C.;Yin,L.;Biasiucci,M.; Chen,Y.EvaluationofSolution-ProcessedReduced Cheng,G.;Cucolo,A.;Cingolani,R.;Manna,L.;etal. GrapheneOxideFilmsasTransparentConductors.ACS ImprovedPhotovoltaicPerformanceofHeterostructured Nano2008,2,463–470. Tetrapod-ShapedCdSe/CdTeNanocrystalsUsingC 60 31. Liu,J.;McCullough,R.D.EndGroupModificationof Interlayer.Adv.Mater.2009,21,4461–4466. RegioregularPolythiophenethroughPostpolymerization 11. Peumans,P.;Uchida,S.;Forrest,S.R.EfficientBulk Functionalization.Macromolecules2002,35,9882–9889. HeterojunctionPhotovoltaicCellsusingSmall-molecular- 32. http://www.cem.msu.edu/(cid:2)reusch/VirtualText/alcohol1.htm weightOrganicThinFilms.Nature2003,425,158–162. 33. Paredes,J.I.;Villar-Rodil,S.;Martinez-Alonson,A.;TascO´n, 12. Huynh,W.U.;Dittmer,J.J.;Alivisatos,A.P.Hybrid J.M.D.GrapheneOxideDispersionsinOrganicSolvents. Nanorod-polymerSolarCells.Science2002,295, Langmuir2008,24,10560–10564. 2425–2427. 34. Philip,B.;Xie,J.;Chandrasekhar,A.;Abraham,J.;Varadan, 13. Liu,J.S.;Tanaka,T.;Sivula,K.;Alivisatos,A.P.;Frechet, J.M.J.EmployingEnd-FunctionalPolythiopheneTo V.K.ANovelNanocompositefromMultiwalledCarbon ControltheMorphologyofNanocrystal-Polymer NanotubesFunctionalizedwithaConductingPolymer. CompositesinHybridSolarCells.J.Am.Chem.Soc.2004, SmartMater.Struct.2004,13,295–298. 126,6550–6551. 35. Song,Y.J.;Lee,J.;Jo,W.H.Multi-walledCarbon 14. Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P. NanotubesCovalentlyAttachedwithPoly(3- NanowireDye-sensitizedSolarCells.Nat.Mater.2005,4, hexylthiophene)forEnhancementofField-effectMobility 455–459. ofPoly(3-hexylthiophene)/Multi-walledCarbonNanotube 15. Oosterhout,S.D.;Wienk,M.M.;vanBavel,S.S.; Composites.Carbon2010,48,389–395. Thiedmann,R.;Koster,L.J.A.;Gilot,J.;Loos,J.;Schmidt,V.; 36. Kuila,B.K.;Malik,S.;Batabyal,S.K.;Nandi,A.K.In-Situ Janssen,R.A.J.TheEffectofThree-dimensional SynthesisofSolublePoly(3-hexylthiophene)/Multiwalled MorphologyontheEfficiencyofHybridPolymerSolar CarbonNanotubeComposite:Morphology,Structure,and Cells.Nat.Mater.2009,8,818–824. Conductivity.Macromolecules2007,40,278–287. 16. Reyes-Reyesa,M.;Lopez-Sandovalb,R.;Liu,J.;Carrollc,D.L. 37. Peng,Q.;Park,K.;Lin,T.;Durstock,M.;Dai,L.Donor-p- BulkHeterojunctionOrganicPhotovoltaicBasedon AcceptorConjugatedCopolymersforPhotovoltaic Polythiophene-polyelectrolyteCarbonNanotube Applications:TuningtheOpen-CircuitVoltageby www.acsnano.org VOL. 4 ▪ NO. 10 ▪ 5633–5640 ▪ 2010 5639 E L AdjustingtheDonor/AcceptorRatio.J.Phys.Chem.B2008, 112,2801–2808. C 38. Liao,L.;Dai,L.;Smith,A.;Durstock,M.;Lu,J.;Ding,J.;Tao, Y.Photovoltaic-activeDithienosilole-containingPolymers. Macromolecules2007,40,9406–9412. I 39. Kim,Y.;Bradley,D.D.C.BrightRedEmissionfromSingle T LayerPolymerLight-emittingDevicesBasedonBlendsof RegioregularP3HTandF8BT.Curr.Appl.Phys2005,3,222– 226. R 40. Sun,Q.J.;Wang,H.Q.;Yang,C.H.;Li,Y.F.Synthesisand ElectroluminescenceofNovelCopolymersContaining A CrownEtherSpacers.J.Mater.Chem.2003,13,800–806. 41. Bavastrello,V.;Carrara,S.;Kumar,R.M.;Nicoline,C.Optical andElectrochemicalPropertiesofPoly(o-toluidine) MultiwalledCarbonNanotubesCompositeLangmuir- SchaeferFilms.Langmuir2004,20,969–973. 42. Chu,C.;Yang,H.;Hou,W.;Huang,J.;Li,G.Yang,Yang. ControloftheNanoscaleCrystallinityandPhase SeparationinPolymerSolarcells.Appl.Phys.Lett.2008,92, 103306. 5640 VOL. 4 ▪ NO. 10 ▪ YU ET AL. www.acsnano.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.