A Revealing the Impact of Catalyst Phase R T Transition on Carbon Nanotube I C in Situ Growth by Raman Spectroscopy L E RahulRao,†,‡,r,*NealPierce,†,§DavidLiptak,†,^DaylondHooper,†,^GordonSargent,†,^S.LeeSemiatin,† StefanoCurtarolo,zAvetikR.Harutyunyan,#andBenjiMaruyama†,* †MaterialsandManufacturingDirectorate,AirForceResearchLaboratory,Wright-PattersonAirForceBase,Ohio45433,UnitedStates,‡NationalResearchCouncil, Washington,D.C.20001,UnitedStates,§UniversityofDaytonResearchInstitute,Dayton,Ohio45469,UnitedStates,^UESInc.,Dayton,Ohio45433,UnitedStates, zDukeUniversity,Durham,NorthCarolina27708,UnitedStates,and#HondaResearchInstitute,Columbus,Ohio43212,UnitedStates.rPresentaddress:Honda ResearchInstitute,Columbus,Ohio43212,UnitedStates. ABSTRACT Thephysicalstateofthecatalystanditsimpacton thegrowthofsingle-walledcarbonnanotubes(SWNTs)isthesubject ofalong-standingdebate.WeaddressedithereusinginsituRaman spectroscopy to measure Fe and Ni catalyst lifetimes during the growthofindividualSWNTsacrossawiderangeoftemperatures (500(cid:2)1400 (cid:2)C). The temperature dependence of the Fe catalyst lifetimesunderwentasharpincreasearound1100(cid:2)Cduetoasolid- to-liquidphasetransition.Bycomparingexperimentalresultswith themetal(cid:2)carbonphasediagrams,weprovethatSWNTscangrow fromsolidandliquidphase-catalysts,dependingonthetemperature. KEYWORDS: carbonnanotubes.CVDgrowth.phasetransition.Ramanspectroscopy.insitu C arbonnanotubesareimpressivebe- carbon nanotube to grow preferentially causeoftheirwiderangeofpotential metallic10orsemiconductingnanotubes.11 applications,fromstructuralcompo- Diffusion mechanisms and solubility limits sitestoenergystoragetosensorsandelec- inliquidversussolidstatesareverydiffer- tronicdevices.1However,theirtransitionto ent, and are important considerations in commercialuseisimpededbyourcontin- growth models; for example whether car- uedinabilitytocontrolgrowth.Thelackof bon diffuses in the bulk of the catalyst or control largely stems from holes in our along the surface.12 However, the most fundamentalunderstandingofgrowthmech- interesting catalysts, that is, transition me- anisms.Inthisregard,oneimportantissue talslikeFeorNihavesolid-to-liquidtransi- thatremainslargelyunresolvedistherole tionswithinthetypicaltemperaturerange of the physical state of the catalyst in of SWNT growth. Thus we wondered how influencing the structure and yield of thestateofthecatalystimpactsthegrowth SWNTs.Whilethestateofthecatalyst(i.e., ofcarbonnanotubesandwhattheimplica- liquidorsolid)duringnanotubegrowthwas tionsforthisareongrowthmechanisms. longdebatedintheliterature,growthfrom To directly address this issue, here we oxides,2 carbides,3,4 and low-melting tem- used a uniquesystem, theAdaptive Rapid *Addresscorrespondenceto peraturemetals,5haveshownthatgrowthis Experimentation and Spectroscopy (ARES) [email protected], possible from both liquids and solids. The system,whichincorporatedmicro-Raman [email protected]. stateofthecatalysthasimportantimplica- spectroscopywithcold-wallchemicalva- ReceivedforreviewSeptember3,2012 tionsforboththeresultantgrowthinterms por deposition (CVD), to measure the andacceptedJanuary23,2013. of yield or length,6,7 as well as our under- growth kinetics of individual SWNTs13 Publishedonline standing of the growth mechanisms. For from two of the most popular transition 10.1021/nn304064u example, in the solid state, the catalyst metal catalysts;Fe and Ni. In situ Raman canformfacets,whichmaytemplate8,9the spectroscopy during SWNT growth has CXXXXAmericanChemicalSociety RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX A www.acsnano.org Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2013 2. REPORT TYPE 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Revealing the Impact of Catalyst Phase Transition on Carbon Nanotube 5b. GRANT NUMBER Growth by in Situ Raman Spectroscopy 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Air Force Research Laboratory,Materials and Manufacturing REPORT NUMBER Directorate,Wright-Patterson AFB,OH,45433 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The physical state of the catalyst and its impact on the growth of single-walled carbon nanotubes (SWNTs) is the subject of a long-standing debate. We addressed it here using in situ Raman spectroscopy to measure Fe and Ni catalyst lifetimes during the growth of individual SWNTs across a wide range of temperatures (5001400 C). The temperature dependence of the Fe catalyst lifetimes underwent a sharp increase around 1100 C due to a solidto- liquid phase transition. By comparing experimental results with the metalcarbon phase diagrams, we prove that SWNTs can grow from solid and liquid phase-catalysts, depending on the temperature. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 8 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A R T I C L E Figure1. (a)Schematicoftheadaptiverapidexperimentationandspectroscopy(ARES)systemusedforinsitustudiesof SWNTcatalystlifetime.AmagnifiedviewofthepillarsisshownintheSEMimageonthebottomright.(b)Waterfallplot showingtemporalevolutionofRamanspectrafromagrowingnanotubeintheDandGbandregion.Spectraaveragedevery 20sfromconsecutivetimewindowsareplottedfrombottomtotop. previouslybeenusedsuccessfullytoevaluategrowth ofSWNTsfromwithinthelaserspot.Anexampleofa kineticsofindividual13andensemblesofSWNTs.14(cid:2)17 time-seriesofRamanspectracollectedduringagrowth Herewewereabletoperformmorethan100experi- experimentwithFecatalystisshownasawaterfallplot ments over a wide range of growth temperatures in Figure 1b, where initiation of SWNT growth is (500(cid:2)1400 (cid:2)C), enabling us to reveal striking differ- indicatedbytheappearanceandsubsequentincrease encesbetweenFeandNiwithanunprecedentedlevel inintensityoftheGbandat∼1560cm(cid:2)1(downshifted ofdetail.TheFecatalystlifetimeexhibitedadisconti- due to the elevated temperature). The G band areas nuity with increasing growth temperatures and was fromeachspectrumwerecalculatedandplottedwith accompaniedbyanincreaseinSWNTyield,indicating respecttotimeinordertoevaluatethegrowthkinetics thefirstdirectobservationofgrowthacrossasolid(cid:2) oftheSWNTs.TheRamanspectrawerealsonormalized liquid phase transformation. Ourresults suggest that with respect to the substrate (Si) peak intensities in thelengthandnucleationefficiencyofSWNTscanbe ordertoenablefaircomparisonofthedataacrossall controlled by engineering the phase states of the the growth experiments. The Raman spectrum col- catalysts. lectedjustbeforetheappearanceoftheGbandwas assignedtothetimecorrespondingtot=0.Wenote RESULTSANDDISCUSSION that a few previous in situ growth studies have re- Figure 1a shows a schematic of the ARES system portedan“incubationtime”duringwhichtheGband usedfortheSWNTgrowthstudies.Thesetupinvolved intensity increases slowly, followed by growth and laser-induced heating (laser excitation = 2.33 eV) of terminationphases.15,18Suchanincubationtimewas catalystfilms(FeandNi)onsiliconpillars,whichwere notobservedinthisstudy. formedbyetchingSi-on-SiO wafers(seethemagni- The integrated G band areas (normalized to unity) 2 fiedscanningelectronmicroscopy(SEM)imageonthe from two different experiments (using Fe and Ni bottom right in Figure 1a and the Methods section catalysts)areplottedwithrespecttotimeinFigure2. below for more details).13 Thesmall thermal mass of ThegrowthcurvesinFigure2werefittedtoadecaying thepillars(10μmdiameterandheight),combinedwith exponentialgrowthequationoftheform:G(t)=ντ[1(cid:2) thermal isolation from the wafer due to the oxide exp((cid:2)t/τ)], whereG(t), ν,and τare the areaof the G barrier, enabled rapid heating to nanotube growth band, initial growth rate, and time constant for the temperatures ranging from 500 to 1400 (cid:2)C using reaction,respectively.13(cid:2)17Thegrowthcurvesshown ethylene as the hydrocarbon source. The light scat- inFigure2panelsaandbcorrespondtoexperiments teredfromthepillarswascollectedforRamanspectra, conducted at different growth temperatures. It is whichwereacquiredcontinuouslyduringthegrowth clear from both Figure 2 that the growth curve RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX B www.acsnano.org A 1000 and 1100 (cid:2)C, thus implying a difference in the R catalyticprocessatlowandhightemperatures. T The shaded band between 1000 and 1100 (cid:2)C in Figure 3a delineates the transition between low and I C hightemperaturegrowth,referredtoasregionsIandII, respectively. The catalyst lifetimes decrease monoto- L nicallywithincreasinggrowthtemperatureinregionI, E followed by a transition between 1000 and 1080 (cid:2)C, abovewhichthecatalystlifetimejumpsfrom∼100s up to ∼600 s. Beyond 1100 (cid:2)C, the lifetime values decreaseagainuptothemaximumgrowthtempera- ture(∼1390(cid:2)C)inregionII.ThedecreaseinFecatalyst lifetimes arealso indicatedby theexponential fitsto the data in regions II and I in Figure 3a (also see SupportingInformation,FigureS1andrelateddiscus- sionregardingthedatafits).IncontrasttoFe,theNi catalyst lifetimes decrease monotonically across the fulltemperaturerange(Figure3c),anddonotexhibit any discontinuity, suggesting the same phase of Ni catalystatallgrowthtemperatures.Unlikethecatalyst lifetimes, the initial growth rates did not display any discontinuity for either Fe or Ni with increasing tem- perature(SupportingInformation,FigureS2). Tounderstandthenatureofthisdiscontinuityinthe Figure 2. Typical growth curves at two different growth Fe catalyst lifetime, we compare the Fe and Ni life- temperaturesobtainedbyplottingthecalculatedGband area(normalizedtounity)versustime,using(a)Fe,and(b) time(cid:2)temperatureplotsinFigure3panelsaandcto Nicatalysts.Thegrowthcurvesarefittedtoanexponential their corresponding modified metal(cid:2)carbon binary equationoftheformG(t)=ντ[1(cid:2)exp((cid:2)t/τ)]whereG(t),ν, phase diagrams. It should be noted that our experi- andτaretheareaoftheGband,initialgrowthrateandtime constantofthereaction,respectively. mentalresultsarebasedonreactionkinetics,whilethe phase diagrams correspond to thermodynamic equi- correspondingtothehighertemperatures(990(cid:2)Cfor librium. Nevertheless,itisinstructive tocomparethe Feand1200(cid:2)CforNi)hasasmallertimeconstant; evolution of the lifetimes with the thermodynamic phase diagrams for a qualitative understanding of thatis,growthsatthehighertemperaturesterminated the catalyst behavior. In Figure 3 panels b and d we faster than growth at lower temperatures, implying showtheFe-andNi-richpartsofthemodifiedFe(cid:2)C that the catalyst had a shorter lifetime at the higher and Ni(cid:2)C phase diagrams, respectively. Both phase temperature.Henceforth,thetimeconstantsobtained diagramshavebeendownshiftedbyΔT≈125(cid:2)Cto fromthefitstothegrowthcurveswillbereferredtoas account for the Gibbs(cid:2)Thomson depression for a thecatalystlifetimes. supportedcatalystparticle.19,20Theinitialparticlesize In general, the lifetime of a thermally activated distributionsoftheas-depositedFeandNideposition catalytic process is a function of the temperature. on the pillars were quite similar (see Supporting In- Lifetimevaluesobtainedfrommanydifferentexperi- formationFigureS3),withameanparticlesizearound ments using Fe and Ni catalysts are plotted against 2.5nm,hencetheshadedtransitionregionsinFigure3 growth temperatures in Figure 3 panels a and c, toaccountforsize-relatedeffects. respectively. Every data point in Figure 3a,c corre- Whencomparingthelifetime(cid:2)temperatureplotin sponds to a separate growth experiment; in all, over Figure 3a with the modified Fe(cid:2)C phase diagram 100 experiments were performed over a wide tem- (Figure 3b), it becomes immediately apparent that peraturerangefrom500to1400(cid:2)C.Notethesignifi- region I can be attributed to the phase fields below cant difference between the behaviors of Fe and Ni: the eutectic temperature. This implies that the Fe- WhiletheNicatalystlifetimesdecreasemonotonically catalystwasinthesolidstateforgrowthtemperatures withtemperature(Figure3c),thereisadiscontinuityin upto1000(cid:2)C.Interestingly,thisrangeoftemperatures the Fe case between 1000 and 1100 (cid:2)C (Figure 3a) is also the most common for SWNT growth. The Fe where the catalyst lifetime increases from ∼100 s to catalyst lifetimes experience a sharp increase from ∼600 s. From a thermodynamic perspective, the dis- ∼100sto∼600sasthegrowthtemperaturegoesup continuityinthelifetimeoftheFecatalystnear1100(cid:2)C to around 1100 (cid:2)C.As mentioned above,discontinu- (Figure3a),thatis,anabruptincreasewithincreasing itiesinthermalprocessescanbeattributed tophase temperature,issuggestiveofaphasetransitionbetween transitions.Indeedwhencomparedwiththemodified RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX C www.acsnano.org A R T I C L E Figure 3. (a) Semilog plot of catalyst lifetimes vs growth temperatures for single SWNTs (circles) and multiple SWNTs (triangles)grownfromFe,and(b)theFe-richpartofthemodifiedFe(cid:2)Cphasediagram.(c)Semilogplotofcatalystlifetimesvs growthtemperaturesforNi,and(d)theNi-richpartofthemodifiedNi(cid:2)Cphasediagram.Thesolidlinesareexponentialfitsto thedata.Theshadedhorizontalregionsinthefigurescorrespondtophasetransitionsinthemodifiedbinaryphasesystems. Thehorizontalandverticalerrorbarsinpanelsaandcindicatea(5%variabilityincatalystlifetimevalues,anda(25(cid:2)C uncertaintyintemperaturemeasurement,respectively. phasediagram,onecanseethatregionIIisabovethe andcanbeexpectedtobeenhancedathighergrowth eutectic,implying thattheFecatalystisintheliquid temperatures,causingincreasedmassloss(orgain)in stateinthisregion.Wenotethatthereisalargedegree the active catalyst particle, and hence terminating ofscatterintheFelifetimedata,whichoccursduetoa growthatanearliertimecomparedtogrowthatlower distributionincatalystparticlesizes(SupportingInfor- temperatures.26Finally,wenotethatoursubstratewas mation,FigureS3).Smallerdiametercatalystparticles siliconwithanativeoxidelayer.Featomsareknownto arehighlyreactiveandcanbedeactivatedmoreeasily diffuse into the Si surface during SWNT growth.24 than larger particles,21 leading to shorter lifetimes. Additionally, Fe and Ni particles are known to form Nonetheless,inspiteofthescatter,theincreaseinFe silicides at the elevated growth temperatures,27,28 catalystlifetimesbetweenregionsIandIIissignificant whichcouldcauseearlygrowthtermination.Whileit andlikelyduetoaphasetransformation. is unclear which of these mechanisms was directly WithinregionIorregionII,thedecreaseincatalyst responsible for growth termination, a detailed study lifetimeswithtemperaturecouldoccurduetooneor wasbeyondthescopeofthispaper. moreterminationmechanisms,namely,overcoatingof TheNi(cid:2)Cphasediagram(Figure3d)islesscompli- thecatalystparticlebycarbon,22,23particlecoarsening,21 catedthantheFe(cid:2)Cphasediagram.Theeutecticpoint orsubsurfacediffusion.24Themaximumgrowthtem- for bulk Ni(cid:2)C is ∼170 (cid:2)C higher than that of Fe(cid:2)C perature in region I was around 1000 (cid:2)C, above the (itoccursat1326(cid:2)C,29andforournanoparticlesitis thermal decomposition temperature of our hydro- expected to be ∼1180 (cid:2)C according to the G-T carbon feedstock (ethylene).25 Thus the likelihood of depression). We conclude that the Ni catalyst used excess carbon buildup at higher temperatures in- forSWNTgrowththereforeremainedinthesolidstate creases and could cause early termination of growth over the entire growth temperature range, which (short lifetime). Furthermore, particle coarsening via explainsthemonotonicdecreaseofcatalystlifetimes Ostwaldripeningandsinteringisknowntoterminate withincreasingtemperatures(similartothedecrease SWNTgrowth.21Coarseningisalsoathermalprocess inlifetimesinregionIofsolidFe,asseeninFigure3b) RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX D www.acsnano.org A R T I C L E Figure4. (a)SEMimageand(b)postgrowthRamanspectrumofanindividualSWNTgrownunderthelaserspotfromaFe catalystparticle.Asinglepeakinthelow-frequencyRBMregionandanarrowGbandidentifytheindividualSWNT.(c)SEM imageand(d)postgrowthRamanspectrumfromapillarwheremultipleSWNTsgrewfromFecatalystparticleswithinthe laserspot.ThepresenceofmultipleSWNTsisconfirmedbytheappearanceofseveralRBMs,aswellasabroaderGbandinthe Ramanspectrum. and the absence of any discontinuities (phase tran- radial breathing mode (RBM) region, a disorder in- sitions)inNi.WhilewedidnotperformgrowthswithNi ducedpeakat∼1345cm(cid:2)1,andthegraphiticGband attemperaturesbeyond1200(cid:2)C,itisworthnotingthat at∼1592cm(cid:2)1.30Theappearanceofasinglepeakat thebehavioroftheNiservesasausefulreferencefor 143cm(cid:2)1intheRBMregioninFigure4bconfirmsthe comparison with Fe and confirms the impact of the presenceofasingleSWNTonthepillarwithinthelaser- peculiaritiesoftheirphasediagramsonSWNTgrowth. irradiatedzone.Additionalsupportisprovidedbythe The decrease of lifetimes with temperature can be narrow linewidths of the RBM (∼4 cm(cid:2)1) and the G attributed to reasons similar to the ones described band (∼8 cm(cid:2)1), which are characteristics of an in- aboveforFe. dividual SWNT.31,32 In contrast, the Raman spectrum WeperformedSEMandexsituRamanspectroscopy from the pillar that has multiple SWNTs (Figure 4c) postgrowthtoinvestigatedifferencesbetweennano- exhibitsRBMsat165,177,and201cm(cid:2)1,aswellasa tubes grown from solid and liquid Fe, and solid Ni. broaderGband(∼14cm(cid:2)1),confirmingthepresence SEM images collected from the Fe catalyst pillars of multiple SWNTs. We note that growth of a single with growth temperatures below 1000 (cid:2)C (region I, SWNT under our synthesis conditions implies low Figure 3a) revealed that a majority contained only a nucleationefficiencies, thereasons forwhichareun- single SWNT within the area heated by the laser,13 clear at present. One possible reason could be the while SEM images from the pillars corresponding to largerinitialcatalystfilmthicknessesemployed,which higher growth temperatures (region II) revealed the couldsignificantlyreducethenumberofcatalystparticles presence of multiple SWNTs grown within the area. that are small enough to nucleate SWNTs. Neverthe- Figure4panelsaandcshowexamplesofSEMimages less, it is important to stress that the low nucleation of growth experiments from regions I and II. The efficienciesenabledustomeasurethegrowthkinetics presenceofan individualSWNTand multipleSWNTs ofindividualSWNTs,therebygivingusuniqueinsights can be clearly discerned at lower (Figure 4a) and comparedtothelargenumbersofnanotubesgrownin higher(Figure4c)growthtemperatures,respectively. forests. Further confirmation of this phenomenon was ob- We represent the occurrences of growth of single tainedby postgrowth Ramanspectroscopy measure- SWNTs with circles and multiple growths of SWNTs ments. Figure 4 panels b and d show postgrowth with triangles in Figure 3a. Interestingly, postgrowth Ramanspectracollectedfromtheareascorresponding SEM and Raman spectroscopy analysis on the Ni totheSEMimagesinFigure4panelsaandc,respectively. catalyst pillars showed only individual SWNTs on all TheRamanspectra(laserexcitation2.33eV)exhibitpeaks the pillars (Supporting Information, Figure S4). The typical of SWNTs, namely, peaks in the low frequency observationofsingleandmultipleSWNTsinregionsI RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX E www.acsnano.org A and initial growth rates are from the ensemble (see R SupportingInformation,FigureS5andrelateddiscussion). T Finally, we point out another important difference betweenFeandNi;SWNTgrowthfromFehaslonger I C lifetimescomparedtothatofNi.Lifetimesupto2000s wereobservedinSWNTsgrowingfromFe,whichisa L factorof6higherthanthelongestlifetimeobservedforNi. E Thediffusionofcarboninsolidγ-FeandsolidNiare ofthesameorderofmagnitude;34,35however,thesolu- bilitiesofcarboninFeandNiaredifferent.Althoughthe carbonsolubilityhasbeenpredictedtoreduce(Fe(cid:2)C)36 orincrease(Ni(cid:2)C)37viadifferingmechanismsduetothe size reduction of nanoparticles, the values for the bulk systems can be used as a reasonable starting point. AccordingtothebulkFe(cid:2)CandNi(cid:2)Cphasediagrams,29 the solvus of γ-Fe is ∼4 times higher than that of Ni, makingFemoreefficientatgrowingSWNTs,andcould Figure5. Histogramsoflengthscorrespondingtoindividual SWNTs (bottom panel) grown at temperatures < 1100 (cid:2)C explainthelongerlifetimesobservedinFe. (regionI,Figure3b)andmultipleSWNTs(toppanel)grown attemperatures>1100(cid:2)C(regionII,Figure3b). CONCLUSIONS andIIcorrelatesverywellwiththephasetransitionsof WeusedinsituRamanspectroscopytomeasurethe thecatalystinregionsIandII,implyingthatthesolid lifetimes of Fe and Ni catalysts over a wide range of catalyst produced single SWNTs for both Fe and Ni, growth temperatures. With our custom rapid experi- whilethenucleationdensitywashigherwiththeliquid mentation (ARES) system, we carried out over 100 Fecatalyst,producingmultipleSWNTs.Indeed,liquid experiments,enablingustogleanimportantinsights Fehasahighersolubilityforcarbon,andhenceprob- into the growth process that would have otherwise ablyahigheractivityforSWNTgrowth.Furthermore, beenmissed.Ourresultsrevealedadiscontinuityinthe thediffusionofcarbonthroughliquidFeisfasterthan Fe catalyst lifetimes around 1100 (cid:2)C due to a solid- diffusionthroughsolidγ-Fe(by2ordersofmagnitude),33,34 to-liquidphasetransition. Incontrast, themonotonic thustheSWNTsgrownfromliquidFeareexpectedto behavioroftheNilifetimesmeantthatNiwasinthe be longer.6 SEM analysis revealed that the SWNTs in solid state through the whole range of growth tem- regionIIweregenerallylongerthantheSWNTsfrom peratures. The behavior of the Fe catalyst was ex- region I (see histograms in Figure 5). We note that a plained by comparison with the binary metal(cid:2)carbon detailed analysis of diffusion and reduction rates in phasediagrams,aswellasexperimentalevidence,which solidand liquid Fe catalyst particlesand their conse- showed dramatic increases in the nucleation densities quencestowardnanotubegrowthwouldprovidevital andlongerlifetimeswhencrossingthephaseboundary clues to prove the occurrence of a phase transition; fromsolidtotheliquidstate.OurresultsprovethatSWNT such studies are currently in progress and will be growth is feasible from both solid and liquid catalyst reported in the future. We also note that the in situ dependingonthegrowthtemperature,resolvingalong- growth curves measured from experiments that pro- standingdebateinthefield.Asadirectconsequence,the duced single and multiple SWNTs were fitted to a length and nucleation density of the SWNTs can be singleexponentialcurve.Inotherwords,intheexperi- tailored for specific applications by engineering the ments that produced multiple SWNTs, the lifetime correctcatalystandgrowthtemperature. METHODS nanotubegrowth.Priortoeachgrowthexperiment,thecham- GrowthoftheSWNTstookplacevialaser-inducedCVDinside berwaspumpeddowntoabasepressureof∼9(cid:3)10(cid:2)6Torr, followedbybackfillingargontothegrowthpressureof25Torr. ahighvacuumchambercoupledtoaRamanmicroscope,as Atthistimeaconstantflowofargonandhydrogenwasinitiated shown schematically in Figure 1. The samples consisted of at25and10sccm,respectively,whilethechamberpressurewas siliconpillars,10μmindiameter,spaced40μmapart,formed maintainedat25Torr.TheRamanexcitationlaserwasfocused bydeepreactiveionetchingofa10μmtoplayerofasilicon- oneachpillarthroughalongworkingdistance40(cid:3)objective on-insulator substrate. The small thermal mass of the pillar lensandheatingwasachievedbyincreasingthelaserpower. allowedforefficientheatingtothegrowthtemperature(from Thetemperatureofthesiliconpillarswasestimatedusingthe 500to1400(cid:2)C)usingafewhundredmilliwattsoflaserpower. ratiooftheanti-StokestoStokespeaksintheRamanspectra Theoxidebarrierlayerbelowthepillarsenhancedheatingby fromthepillars.38Oncethelaserwasfocusedonapillar,the restrictingconductiveheattransferbetweenthepillarandthe powerwasincreasedtoheatituptothegrowthtemperature, underlying bulk silicon substrate. Thin films (2(cid:2)3 nm) of Fe followedbytheintroductionof5sccmofethylenetoinitiate andNi,sputteredonthesubstrateswereusedascatalystsfor nanotubegrowth.Ramanspectrabetween(cid:2)2000and3000cm(cid:2)1 RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX F www.acsnano.org A werecollectedandsavedatone-secondintervalsduringthe 15. Li-Pook-Than,A.;Lefebvre,J.;Finnie,P.PhasesofCarbon R growth experiment. Nanotube nucleation and growth was NanotubeGrowthandPopulationEvolutionfrominSitu detected by the appearance, and subsequent increase in RamanSpectroscopyDuringChemicalVaporDeposition. T intensity,oftheGbandat1500(cid:2)1600cm(cid:2)1.Theethyleneflow J.Phys.Chem.C2010,114,11018–11025. wasturnedoffaftertheGbandintensitystabilizedfollowingthe 16. Chiashi,S.;Murakami,Y.;Miyauchi,Y.;Maruyama,S.Cold I initialincrease,thusindicatingterminationofgrowth. WallCVDGenerationofSingle-WalledCarbonNanotubes C Conflict of Interest: The authors declare no competing andinSituRamanScatteringMeasurementsoftheGrowth financialinterest. Stage.Chem.Phys.Lett.2004,386,89–94. L 17. Einarsson, E.; Murakami, Y.; Kadowaki, M.; Maruyama, S. E Acknowledgment. The authors gratefully acknowledge Growth Dynamics of Vertically Aligned Single-Walled funding from the Air Force Office of Scientific Research Carbon Nanotubes from in Situ Measurements. Carbon 2008,46,923–930. (AFOSR)and theNationalResearch Council. Wealsoexpress 18. Wako, I.; Chokan, T.; Takagi, D.; Chiashi, S.; Homma, Y. ourgratitudetoJunLouforproducingthepillarsubstratesand Direct Observation of Single-Walled Carbon Nanotube thankOhadLevyforusefuldiscussions. GrowthProcessesonSiO SubstratebyinSituScanning SupportingInformationAvailable:Discussiononexponential ElectronMicroscopy.Chem2.Phys.Lett.2007,449,309–313. fitstothedata,histograms,andSEMimagesofinitialandfinal 19. Jiang, A.; Awasthi, N.; Kolmogorov, A. N.; Setyawan, W.; particlesizedistributions,SEMandRamanspectrumcollected Börjesson,A.;Bolton,K.;Harutyunyan,A.R.;Curtarolo,S. from an individual SWNT grown from Ni. This material is Theoretical Study of the Thermal Behavior of Free and availablefreeofchargeviatheInternetathttp://pubs.acs.org. Alumina-SupportedFe-CNanoparticles.Phys.Rev.B2007, 75,205426. 20. Harutyunyan,A.R.;Mora,E.;Tokune,T.;Bolton,K.;Rosén, REFERENCESANDNOTES A.;Jiang,A.;Awasthi,N.;Curtarolo,S.HiddenFeaturesof 1. Baughman,R.H.;Zakhidov,A.A.;deHeer,W.A.Carbon the Catalyst Nanoparticles Favorable for Single-Walled Nanotubes;The Route toward Applications. Science CarbonNanotubeGrowth.Appl.Phys.Lett.2007,90,3120. 2002,297,787. 21. Amama,P.B.;Pint,C.L.;McJilton,L.;Kim,S.M.;Stach,E.A.; 2. Steiner, S. A.; Baumann, T. F.; Bayer, B. C.; Blume, R.; Murray,P.T.;Hauge,R.H.;Maruyama,B.RoleofWaterin Worsley,M.A.; MoberlyChan, W.J.;Shaw,E.L.;Schlogl, SuperGrowthofSingle-WalledCarbonNanotubeCarpets. R.;Hart,A.J.;Hofmann,S.;etal. NanoscaleZirconiaas NanoLett.2009,9,44–49. a Nonmetallic Catalyst for Graphitization of Carbon 22. Puretzky,A.A.;Geohegan,D.B.;Jesse,S.;Ivanov,I.N.;Eres, andGrowthofSingle-andMultiwallCarbonNanotubes. G.InSituMeasurementsandModelingofCarbonNano- J.Am.Chem.Soc.2009,131,12144–12154. tubeArray GrowthKinetics During ChemicalVaporDe- 3. Yoshida,H.;Takeda,S.;Uchiyama,T.;Kohno,H.;Homma,Y. position.Appl.Phys.A:Mater.Sci.Process.2005,81,223– Atomic-Scale in-Situ Observation of Carbon Nanotube 240. GrowthfromSolidStateIronCarbideNanoparticles.Nano 23. Yamada,T.;Maigne,A.;Yudasaka,M.;Mizuno,K.;Futaba, Lett.2008,8,2082–2086. D.N.;Yumura,M.;Iijima,S.;Hata,K.RevealingtheSecretof 4. Wirth,C.T.;Bayer,B.C.;Gamalski,A.D.;Esconjauregui,S.; Water-Assisted Carbon Nanotube Synthesis by Micro- Weatherup, R. S.; Ducati, C.; Baehtz, C.; Robertson, J.; scopic Observation of the Interaction of Water on the Hofmann, S. The Phase of Iron Catalyst Nanoparticles Catalysts.NanoLett.2008,8,4288–4292. During Carbon Nanotube Growth. Chem. Mater. 2012, 24. Kim,S.M.;Pint,C.L.;Amama,P.B.;Zakharov,D.N.;Hauge, 4633–4640. R. H.; Maruyama, B.; Stach, E. A. Evolution in Catalyst 5. Rao,R.;Eyink,K.G.;Maruyama,B.Single-WalledCarbon MorphologyLeadstoCarbonNanotubeGrowthTermina- NanotubeGrowthfromLiquidGalliumandIndium.Car- tion.J.Phys.Chem.Lett.2010,1,918–922. bon2010,48,3971–3973. 25. Kamat,P.V.Graphene-BasedNanoarchitectures.Anchor- 6. Harutyunyan,A.;Tokune,T.;Mora,E.LiquidasaRequired ing Semiconductor and Metal Nanoparticles on a Two- Catalyst Phase for Carbon Single-Walled Nanotube DimensionalCarbonSupport.J.Phys.Chem.Lett.2009,1, Growth.Appl.Phys.Lett.2005,87,051919. 520–527. 7. Cervantes-Sodi,F.;McNicholas,T.P.;Simmons,J.G.,Jr.;Liu, 26. Picher,M.;Anglaret,E.;Arenal,R.;Jourdain,V.Processes J.;Csányi,G.;Ferrari,A.C.;Curtarolo,S.ViscousStateEffect Controlling the Diameter Distribution of Single-Walled on theActivity of FeNanocatalysts. ACS Nano 2010, 4, CarbonNanotubesDuringCatalyticChemicalVaporDe- 6950–6956. position.ACSNano2011,5,2118–2125. 8. Reich,S.;Li,L.;Robertson,J.ControltheChiralityofCarbon 27. Simmons, J. M.; Nichols, B. M.; Marcus, M. S.; Castellini, NanotubesbyEpitaxialGrowth.Chem.Phys.Lett.2006, O.M.;Hamers,R.J.;Eriksson,M.A.CriticalOxideThickness 421,469–472. forEfficientSingle-WalledCarbonNanotubeGrowthon 9. Koziol,K.K.K.;Ducati,C.;Windle,A.H.CarbonNanotubes SiliconUsingThinSiO DiffusionBarriers.Small2006,2, 2 withCatalystControlledChiralAngle.Chem.Mater.2010, 902–909. 22,4904–4911. 28. Jung, Y. J.; Wei; Vajtai, R.; Ajayan, P. M.; Homma, Y.; 10. Harutyunyan,A.R.;Chen,G.;Paronyan,T.M.;Pigos,E.M.; Prabhakaran,K.;Ogino,T.MechanismofSelectiveGrowth Kuznetsov,O.A.;Hewaparakrama,K.;Kim,S.M.;Zakharov, ofCarbonNanotubesonSiO/SiPatterns.NanoLett.2003, 2 D.;Stach,E.A.;Sumanasekera,G.U.PreferentialGrowthof 3,561–564. Single-WalledCarbonNanotubeswithMetallicConduc- 29. Binary Alloy Phase Diagams, 2nd ed.; Massalski, T. B., tivity.Science2009,326,116–120. Okamoto,H.,Eds.;ASMInternationalMaterials:Park,OH, 11. Chiang,W.-H.;Sankaran,R.M.LinkingCatalystComposi- 1990. tiontoChiralityDistributionsofas-GrownSingle-Walled 30. Jorio,A.;Dresselhaus,M.S.;Saito,R.RamanSpectroscopy CarbonNanotubesbyTuningNixfe1-XNanoparticles.Nat. in Graphene Related Systems: Carbon Nanotubes, Nano- Mater.2009,8,1–5. graphiteandGraphene;Wiley-VCH:Weinheim,Germany, 12. Hofmann,S.;Csányi,G.;Ferrari,A.C.;Payne,M.C.;Robertson, 2011. J. Surface Diffusion: The Low Activation Energy Path for 31. Rao,R.;Menendez,J.;Poweleit,C.D.;Rao,A.M.Anharmo- NanotubeGrowth.Phys.Rev.Lett.2005,95,036101. nicPhononLifetimesinCarbonNanotubes:Evidencefora 13. Rao,R.;Liptak,D.;Cherukuri,T.;Yakobson,B.I.;Maruyama, One-Dimensional Phonon Decay Bottleneck. Phys. Rev. B.InSituEvidenceforChirality-DependentGrowthRates Lett.2007,99,047403–047404. ofIndividualCarbonNanotubes.Nat.Mater.2012,11,1–4. 32. Jorio,A.;Fantini,C.;Dantas,M.;Pimenta,M.;SouzaFilho,A.; 14. Picher,M.;Anglaret,E.;Arenal,R.;Jourdain,V.Self-Deactivation Samsonidze,G.;Brar,V.;Dresselhaus,G.;Dresselhaus,M.; ofSingle-WalledCarbonNanotubeGrowthStudiedbyinSitu Swan,A.;etal.LinewidthoftheRamanFeaturesofIndividual RamanMeasurements.NanoLett.2009,9,542–547. Single-WallCarbonNanotubes.Phys.Rev.B2002,66,115411. RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX G www.acsnano.org A 33. Goldberg,D.;Belton,G.TheDiffusionofCarboninIron- R Carbon Alloys at 1560(cid:2)C. Met. Mater. Trans. B 1974, 5, 1643–1648. T 34. Tibbetts,G.G.DiffusivityofCarboninIronandSteelsat HighTemperatures.J.Appl.Phys.1980,51,4813–4816. I 35. Xiang,Q.;Yu,J.;Jaroniec,M.SynergeticEffectofMoS and C 2 GrapheneasCocatalystsforEnhancedPhotocatalyticH 2 Production Activity of TiO Nanoparticles. J. Am. Chem. L 2 Soc.2012,134,6575–6578. E 36. Harutyunyan, A.R.;Awasthi,N.;Jiang,A.; Setyawan, W.; Mora, E.; Tokune, T.; Bolton, K.; Curtarolo, S. Reduced CarbonSolubilityinFeNanoclustersandImplicationsfor theGrowthofSingle-WalledCarbonNanotubes.Phys.Rev. Lett.2008,100,195502. 37. Diarra,M.;Zappelli,A.;Amara,H.;Ducastelle,F.;Bichara,C. ImportanceofCarbonSolubilityandWettingPropertiesof Nickel Nanoparticles for Single Wall Nanotube Growth. Phys.Rev.Lett.2012,109,185501. 38. Hart,T.;Aggarwal,R.;Lax,B.TemperatureDependenceof RamanScatteringinSilicon.Phys.Rev.B1970,1,638–642. RAOETAL. VOL.XXX ’ NO.XX ’ 000–000 ’ XXXX H www.acsnano.org