ebook img

DTIC ADA573518: Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors PDF

4.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA573518: Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors

Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering by Ryan M. Fuller B.S. Applied Mathematics, Rochester Institute of Technology, 2006 2012 Wright State University Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Adaptive Noise Reduction Techniques for Airborne Acoustic Sensor 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Wright State University,Department of Electrical REPORT NUMBER Engineering,Dayton,OH,45435 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Ground and marine based acoustic arrays are currently employed in a variety of military and civilian applications for the purpose of locating and identifying sources of interest. An airborne acoustic array could perform an identical role, while providing the ability to cover a larger area and pursue a target. In order to implement such a system, steps must be taken to attenuate environmental noise that interferes with the signal of interest. In this thesis, we discuss the noise sources present in an airborne environment, present currently available methods for mitigation of these sources, and propose the use of adaptive noise cancellation techniques for removal of unwanted wind and engine noise. The least mean squares, affine projection, and extended recursive least squares algorithms are tested on recordings made aboard an airplane in-flight, and the results are presented. The algorithms provide upwards of 37dB of noise cancellation, and are able to filter the noise from a chirp with a signal to noise ratio of -20db with minimal mean square error. The experiment demonstrates that adaptive noise cancellation techniques are an effective method of suppressing unwanted acoustic noise in an airborne environment, but due to the complexity of the environment more sophisticated algorithms may be warranted. iii 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 80 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 WrightStateUniversity GRADUATESCHOOL August7,2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISIONBYRyanM.FullerENTITLEDAdaptiveNoiseReductionTechniquesfor AirborneAcousticSensors BE ACCEPTED IN PARTIAL FULFILLMENT OF THE RE- QUIREMENTSFORTHEDEGREEOFMasterofScienceinEngineering. BrianD.Rigling,Ph.D. ThesisDirector KefuXue,Ph.D. DepartmentChairofElectricalEngineering Committeeon FinalExamination BrianD.Rigling, Ph.D. KefuXue, Ph.D. FredGarber, Ph.D. AndrewT.Hsu,Ph.D. Dean,GraduateSchool ABSTRACT Fuller, Ryan M. , M.S.Egr, Department of Electrical Engineering, Wright State University, 2012. AdaptiveNoiseReductionTechniquesforAirborneAcousticSensors. Ground and marine based acoustic arrays are currently employed in a variety of military and civilian applications for the purpose of locating and identifying sources of interest. An airborne acousticarraycouldperformanidenticalrole,whileprovidingtheabilitytocoveralargerareaand pursueatarget. Inordertoimplementsuchasystem,stepsmustbetakentoattenuateenvironmental noise that interferes with the signal of interest. In this thesis, we discuss the noise sources present inanairborneenvironment,presentcurrentlyavailablemethodsformitigationofthesesources,and proposetheuseofadaptivenoisecancellationtechniquesforremovalofunwantedwindandengine noise. Theleastmeansquares,affineprojection,andextendedrecursiveleastsquaresalgorithmsare testedonrecordingsmadeaboardanairplanein-flight,andtheresultsarepresented. Thealgorithms provide upwards of 37dB of noise cancellation, and are able to filter the noise from a chirp with a signal to noise ratio of -20db with minimal mean square error. The experiment demonstrates that adaptive noise cancellation techniques are an effective method of suppressing unwanted acoustic noiseinanairborneenvironment,butduetothecomplexityoftheenvironmentmoresophisticated algorithmsmaybewarranted. iii Contents 1 Introduction 1 1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 PreviousWork 5 2.1 PassiveMeansofAttenuatingEnvironmentalInterference . . . . . . . . . . . . . . 5 2.2 ActiveMethodsforAttenuationofEnvironmentalInterference . . . . . . . . . . . 6 2.2.1 SpatialFiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 AdaptiveNoiseCancellationforSignalEnhancement . . . . . . . . . . . . 7 2.3 CurrentlyAvailableSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 HelicopterAlertandThreatTermination(HALTT) . . . . . . . . . . . . . 8 2.3.2 Boomerang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3 LowCostScoutUAVAcousticsSystem(LOSAS) . . . . . . . . . . . . . 8 2.3.4 ShotSpotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.5 ShotStalker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 AcousticFundamentalsandRecording 10 3.1 SoundPropagationThroughAtmosphere . . . . . . . . . . . . . . . . . . . . . . 10 3.2 ClassificationofSoundSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 AudioRecording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 AudioMicrophonesandPreamplifiers . . . . . . . . . . . . . . . . . . . . 16 3.3.2 AudioRecorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iv 4 NoiseinanAirborneEnvironment 22 4.1 EnvironmentalNoiseInterference . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 WindNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 AircraftNoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 AirborneTestPlatforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 SuperCubTestPlatform . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 MonocoupeTestPlatform . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 AdaptiveNoiseCancellation 31 5.1 FundamentalsofAdaptiveNoiseCancellation . . . . . . . . . . . . . . . . . . . . 31 5.2 AdaptiveAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.1 LeastMeanSquaresAlgorithm . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.2 AffineProjectionAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.3 ExtendedRecursiveLeastSquaresType-1Algorithm . . . . . . . . . . . . 38 6 ExperimentalValidationofEffectivenessofAdaptiveAlgorithms 40 6.1 PreliminaryExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2 FlightTestSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3 FlightTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.4.1 NoiseCancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.4.2 SignalEnhancementforAdditiveChirp . . . . . . . . . . . . . . . . . . . 50 7 Conclusion 56 A MatlabCodeforAdaptiveAlgorithms 58 A.1 NormalizedLeastMeanSquaresProgram . . . . . . . . . . . . . . . . . . . . . . 58 A.2 AffineProjectionProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A.3 ExtendedRecursiveLeastSquaresType-1Program . . . . . . . . . . . . . . . . . 62 Bibliography 65 v List of Figures 3.1 Illustrationofinversesquarelawrelationofsoundintensitytodistance. . . . . . . 11 3.2 Attenuationofsoundinairincreaseswithfrequency(figurefrom[1]). . . . . . . . 12 3.3 Attenuation of 250Hz sound in air decreases with increasing temperature (figure from[1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Attenuation of 1kHz sound in air decreases with increasing humidity (figure from [1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Audiblefrequencyrangeandhearingrangeofvarioussources(figurefrom[2]). . . 14 3.6 Approximateintensityofvarioussoundsources(figurefrom[2]). . . . . . . . . . 14 3.7 Soundpressurelevelofconversation,withareferenceSPLof65dBat1meter,asa functionofdistance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Directionality of microphone types: (a) omnidirectional; (b) subcardioid; (c) car- dioid;(d)supercardioid;(e)bidirectional;(f)shotgun. . . . . . . . . . . . . . . . . 17 3.9 Frequency response of Audio Technica Pro 42 boundary microphone (figure from [3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Comparisonofturbulentandlaminarfluidflow. . . . . . . . . . . . . . . . . . . . 23 4.2 SuperCubLPRTFRCAirplane[4] . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 SuperKraftMonocoupe90ARCairplane. . . . . . . . . . . . . . . . . . . . . . . 27 4.4 AccesspanelforfuselageofMonocoupe90A. . . . . . . . . . . . . . . . . . . . . 27 4.5 Soundspectrumofmonocoupein-flight(RelativeIntensity(dB)vs. Frequency(Hz)). 29 4.6 SpectrogramofMonocoupein-flightusingaHanningwindowoflength4096(Fre- quency(kHz)vs. Time(s)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 vi 4.7 SpectralbandsproducedbyMonocoupeengineusingaHanningwindowoflength 16384(Frequency(Hz)vs. Time(s)). . . . . . . . . . . . . . . . . . . . . . . . . 30 5.1 Blockdiagramofgenericadaptivenoisecancellationconcept. . . . . . . . . . . . 32 5.2 Blockdiagramofgenericadaptivefilter. . . . . . . . . . . . . . . . . . . . . . . . 33 6.1 Recordingdevicesetup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 PlacementofthemicrophoneswithinMonocoupechassis. . . . . . . . . . . . . . 44 6.3 PlacementoftherecorderandGPSwithinMonocoupechassis. . . . . . . . . . . . 44 6.4 Recordedflightpathforexperimentwithsecondoflatitude/longitudelinesinpink 47 6.5 Recordedaltitude(abovesealevel)andvelocityduringexperiment. . . . . . . . . 48 6.6 Spectrogram of reference signal of low-speed recording with 9-second chirp and SNR=-20dBusingaHanningwindowoflength4096(Frequency[kHz]vs. Time[s]). 52 6.7 Spectrogram(usingHanningwindowoflength4096)ofcruisespeedrecordingwith -20dBchirp,filteredwithLMS(Frequency[kHz]vsTime[s]). . . . . . . . . . . . 54 6.8 Spectrumofcruisespeedrecordingwith-20dBchirp,filteredwithLMS. . . . . . . 54 6.9 Spectrumofcruisespeedrecordingwith-20dBchirp,filteredwithAPA. . . . . . . 55 6.10 Spectrumofcruisespeedrecordingwith-20dBchirp,filteredwithERLS-1. . . . . 55 vii Acknowledgement AirForceResearchLaboratory-AirVehiclesDirectorate RaymondBortner BryanCannon AirForceResearchLaboratory-PropulsionDirectorate KeithNumbers AirForceResearchLaboratory-711thHumanPerformanceWing FrankMobley KenJohnson viii Dedicatedto JamesandAmyFuller and JillianMarconi ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.