ebook img

DTIC ADA572201: A Fluid Queueing Model for Link Travel Time Moments PDF

17 Pages·0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA572201: A Fluid Queueing Model for Link Travel Time Moments

A Fluid Queueing Model for Link Travel Time Moments† Jeffrey P. Kharoufeh,1 Natarajan Gautam2 1Department of Operational Sciences, Air Force Institute of Technology, AFIT/ENS, Building 640, 2950 Hobson Way, Wright Patterson AFB, Ohio 45433-7765 2Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, 310 Leonhard Building, University Park, Pennsylvania Received 12 September 2002; revised 27 March 2003; accepted 28 August 2003 DOI 10.1002/nav.10114 Abstract: We analyze the moments of the random time required for a vehicle to traverse a transportationnetworklinkofarbitrarylengthwhenitsspeedisgovernedbyarandomenvironment. Theproblemismotivatedbystochastictransportationnetworkapplicationsinwhichtheestimation of travel time moments is of great importance. We analyze this random time in a transient and asymptoticsensebyemployingresultsfromthefieldoffluidqueues.Theresultsaredemonstratedon twoexampleproblems.©2003WileyPeriodicals,Inc.*NavalResearchLogistics51:242–257,2004. Keywords: linktraveltime;randomenvironment;stochasticmodeling 1. INTRODUCTION Weconsiderthemovementofavehiclealongatransportationnetworklink(suchasafreeway segment)whoselengthisx units.Thevehicle’sspeedvariesoverthecourseofitssojourndue to the influence of an underlying environment process. Owing to the effects of this random environment,thetimerequiredtotraversethislinkisarandomvariabledenotedbyT(x).Inthis paper, our aim is to analyze the moments of the random travel time T(x), in the transient and the asymptotic sense, with the ultimate objective of obtaining computationally expedient measures that are extremely useful in a number of transportation contexts. To that end, we demonstratethattheproblemcanbeviewedandanalyzedasafluidqueueingmodelfromwhich such expedient measures may be derived. The approach allows us to consider the travel time moments for an individual link of a transportation network subject to a randomly evolving environment.Thisrandomenvironmentischaracterizedasacontinuous-timestochasticprocess on a finite sample space. †The views expressed in this paper are those of the authors and do not reflect the official policy or positionoftheUnitedStatesAirForce,DepartmentofDefense,ortheU.S.Government. Correspondenceto:J.P.Kharoufeh(e-mail:Jeffrey.Kharoufeh@afit.edu) ©2003WileyPeriodicals,Inc.*ThisarticleisaUSGovernmentworkand,assuch,isinthepublicdomain intheUnitedStatesofAmerica. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Fluid Queueing Model for Link Travel Time Moments 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Air Force Institute of Technology (AFIT/ENS),Department of REPORT NUMBER Operational Sciences,2950 Hobson Way,Wright Patterson AFB,OH,45433-7765 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Naval Research Logistics, 51 (2), 242-257 14. ABSTRACT We analyze the moments of the random time required for a vehicle to traverse a transportation network link of arbitrary length when its speed is governed by a random environment. The problem is motivated by stochastic transportation network applications in which the estimation of travel time moments is of great importance. We analyze this random time in a transient and asymptotic sense by employing results from the field of fluid queues. The results are demonstrated on two example problems. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 16 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 KharoufehandGautam:AFluidQueueingModelforLinkTravelTimeMoments 243 The dynamics of the model can be described as follows. If at time t (cid:1) 0 the underlying finite-stateprocessdenotedby{Z(t):t (cid:1)0}isinstatei(cid:1)S(cid:1){1,2, ...,K},thenthespeed of the vehicle is a strictly positive quantity V. The stochastic process {Z(t) :t (cid:1) 0} is the i random environment process. If D(t) denotes the cumulative distance travelled by the vehicle up to time t (cid:2) 0, and {Z(t) :t (cid:1) 0} is a Markov process, then it can be shown that {(D(t), Z(t)) : t (cid:1) 0} is also a Markov process. Moreover, the random variable D(t) is an additive functional of Z(t). The process {(D(t), Z(t)) : t (cid:1) 0} is used to analyze the moments of the random time T(x), which corresponds to a first passage time for the process {D(t) :t (cid:1) 0}. Our results are primarily motivated by problems in transportation and logistics where it is important for decision-makers to know the travel time moments of individual vehicles in a stochastictransportationnetwork.Themaincontributionoftheworkisthenovelapplicationof fluidqueueingtechniquesforthe analysis ofanindividual vehiclewhosetime-variant speedis modulated by a random environment. This is in contrast to an aggregated approach for all vehicles usually found in the traffic flow theory (cf. Lighthill and Whitham [12] and Highway Capacity Manual [7]). Our approach is intuitive in the sense that a plot of the vehicle’s speed over time corresponds to a sample path of a continuous-time stochastic process, possibly on a finitestatespace.Owingtoitsgenerality,themodelmaybeusedinanumberoftransportation settingsdirectlyorbymakingsuitablealterations.Wedescribeindetailapplicationsinground and maritime transportation. ● Ground transportation: Consider a vehicle that traverses a roadway segment with x correspondingtothephysicallengthofthesegment.Severalfactorsinfluencethespeed of the vehicle as it attempts to traverse the roadway segment. Some of those may be physicalfactors(e.g.,roadwaygeometry,grades,visibility),trafficfactors(e.g.,density, presence of heavy vehicles, merging traffic), or environmental factors (e.g., weather conditions,speedlimits,etc.).Itisassumedthattheenvironmentprocess{Z(t) :t (cid:1) 0} is known, and thus, may be used to obtain the moments of the random variable T(x). These moments can then be applied to construct parametric distributions for stochastic arc weights in transportation networks within the context of automatic route guidance systemsdescribedin[6]orinleast-timestochastictransportationnetworkproblemssuch as those described in [13] and [14]. ● Maritime transportation: The environment process approach is similarly applicable in maritime scenarios. In particular, consider a ship traversing one leg of its journey of length x. Stochastic and dynamic weather conditions directly influence the speed with which the ship may travel. In such case, the stochastic process {Z(t) :t (cid:1) 0} may be used to model the set of meteorological variables which determines the ship’s speed at agivenpointintime(andpossiblyspace).Byassigningacostforeachspeed(e.g.,fuel consumption)andmakingappropriatealterations,ourmodelmaybeusedtocomputethe expectedcostincurredfortraversingeachlegoftheship’ssojourn.Furthermore,ifeach arcofanetworkisgovernedbyitsownenvironmentprocess,thenitmaybepossibleto solve a stochastic and dynamic minimum cost problem such as that considered by Psaraftis and Tsitsiklis [17]. Throughout the remainder of this paper, we concern ourselves with the general setting of a vehicletraversingalinkoflengthx withtheunderstandingthatthismaypertaintoeitherofthe above scenarios. Moreover, we may model a number of real-world contexts with appropriate alterations to the problem parameters and their physical interpretations. 244 NavalResearchLogistics,Vol.51(2004) The main contributions of this work can be summarized as follows. First, using the tools of fluid queueing models, we present a transparent approach for implicitly incorporating the time dependenceofspeedforavehicletraversingalinkoflengthx. Next,wegiveanexplicitmatrix transformexpressionfortherthmomentofthelinktraveltimewhichgivesexactresultswhen thetransformcanbealgebraicallyinverted,andveryaccurateapproximateresultswithnumer- icalinversion.Third,wediscussasymptoticresultsforthefirstandsecondmomentsofthelink traveltimewhichserveascomputationallyexpedientapproximationsorasparameterestimates for surrogate link travel time distributions. The remainder of the paper is organized as follows. The next section reviews the pertinent concepts from the theory of fluid queues and demonstrates the means by which the theory is applied to the link travel time problem. Section 3 demonstrates how to compute the moments of the link travel time for a link of arbitrary (but finite) length x. In Section 4, we use the transform results of Section 3 to provide intuitive asymptotic expressions for the mean and varianceofthelinktraveltime.Section5presentsnumericalresultsontwoexampleproblems followed by our concluding remarks in Section 6. 2. MATHEMATICAL MODEL 2.1. Fluid Queueing Concepts Inthissection,weprovideabriefoverviewofthenotationandrudimentaryconceptsoffluid queueing models. A fluid queueing model can be described as one in which the input to a stochasticsystemismodeledasacontinuousfluidthatentersabufferandthenleavesthebuffer through an output channel (service mechanism) with constant output capacity c. One measure ofimportanceforsuchsystemsistheamountoffluidcontainedinthebufferattimet denoted bytherandomvariableX(t). Thestochasticprocess,{X(t) :t (cid:1) 0}, isoftenreferredtoasthe buffercontentprocess.Thereexistsanexternalprocesscalledtherandomenvironmentprocess that modulates the input of fluid to the buffer. That is, the state of the random environment process dictates the rate at which fluid flows into the buffer. Suppose{Z(t) :t (cid:1) 0} denotestherandomenvironmentprocessthatdrivesfluidgeneration. Define R as entrance rate of fluid to the buffer at time t and let the drift function of this Z(t) process be (cid:2) (cid:3)R (cid:4)c. (1) Z(cid:3)t(cid:4) Z(cid:3)t(cid:4) The overall storage capacity of the buffer is denoted by a fixed, deterministic value B. The dynamics of the buffer-content process when B (cid:5) (cid:6)are given by (cid:1) dX(cid:3)t(cid:4) (cid:2) , X(cid:3)t(cid:4)(cid:5)0, (cid:3) Z(cid:3)t(cid:4) dt (cid:2)Z(cid:7)(cid:3)t(cid:4), X(cid:3)t(cid:4)(cid:3)0, where w(cid:7) (cid:1) max{w, 0}. In case B (cid:8) (cid:6), the system is governed by (cid:1) (cid:2)(cid:7) , X(cid:3)t(cid:4)(cid:3)0, dX(cid:3)t(cid:4) Z(cid:3)t(cid:4) (cid:3) (cid:2) , 0(cid:6)X(cid:3)t(cid:4)(cid:6)B, dt (cid:2)Z(cid:9)(cid:3)t(cid:4), X(cid:3)t(cid:4)(cid:3)B, Z(cid:3)t(cid:4) where w(cid:9) (cid:1) max{0, (cid:9)w}. The probability law of the buffer-content process, {X(t) :t (cid:1) 0} isdictatedbytheformoftherandomenvironmentprocess,{Z(t) :t (cid:1) 0}, andtheassociated KharoufehandGautam:AFluidQueueingModelforLinkTravelTimeMoments 245 function (cid:2). This function, referred to as the drift function, corresponds to the net input rate of fluidtothebuffer(entrancerate(cid:9)exitrate).Thediagonalmatrix(cid:10) (cid:1)diag( (cid:2) , (cid:2) , ..., (cid:2) ) 1 2 K is called the drift matrix. The first time the buffer fluid crosses some fixed level x corresponds directly to a first passage time for the stochastic process {X(t) :t (cid:1) 0}. Many researchers in the field of telecommunications have recognized the utility of such modelsforsolvingengineeringproblems.AfewimportantpapersinthisareaareduetoAnick, Mitra, and Sondhi [2], Elwalid and Mitra [5], Kesidis, Walrand, and Cheng-Shang [8], and KulkarniandGautam[11].Otherresearchershaveconsideredmoregeneralizedfluidqueueing problemsandsomegoodexamplesarethepapersduetoAsmussen[3],Rogers[18],and,more recently, Takada [19]. The approach of our paper is to apply a fluid queueing model for the mathematical characterization of link travel time moments as simple expressions that may be computedinacomputationallyexpedientmanner.Wenextdemonstratethemeansbywhichthis may be accomplished. 2.2. Fluid Model for Vehicle Displacement Now consider a vehicle that must traverse a link of length x whose speed is governed by a randomenvironmentonafinitestatespaceS(cid:5){1,2, ...,K},whereK(cid:1)N,thesetofnatural numbers.Definetherandomenvironmentprocessby{Z(t):t (cid:1)0}sothatattimet,thevehicle assumesa(strictlypositive)speedV . Sincetheenvironmentprocesshasafinitestatespace, Z(t) the vehicle may assume speeds in the finite set {V : i (cid:5) 1, 2, ..., K}, where V (cid:2) 0 for all i i i. Moreover, define the matrix V (cid:5) diag(V , V , ..., V ). Hence, the time dependence of 1 2 K vehiclespeediscapturedimplicitlythroughtheenvironmentprocess,{Z(t):t (cid:1)0}.Theinitial conditionsexperiencedbythevehiclearecapturedbytheinitialstateoftheenvironmentZ(0), andwedenotetheinitialdistributionoftheenvironmentprocess,arowvector,z (cid:5)[P{Z(0)(cid:5) 0 i}]. Define by D(t), the total displacement of the vehicle up to time t and the associated stochasticprocess{D(t) :t (cid:1) 0}. Withthesedefinitions,wearenowpreparedtoformalizethe analogy to a fluid queueing model. Table 1 summarizes the relationship between the concepts of a fluid queueing model and those of the link travel time model. Thoughmanyanalogousconceptsexistbetweenthetwomodels,therearesomenoteworthy distinctions.Inourmodel,welimitthemovementofavehicletothepositivedirectiononlyand weallowonlypositivevelocities.Oncethevehiclebeginsitssojourn,itdoesnotstop,nordoes itmoveinthenegativedirection.Theanalogoussituationinthefluidqueueingmodelisthatthe output capacity of the system is zero (c (cid:5) 0) and the buffer accumulates fluid until it first reaches the threshold value x. Hence, our link travel time model is a special case of a general fluid queueing model in which the drift rates ({(cid:2)}) are all positive, and the D process, i correspondingtothebuffercontentprocessX,possessesmonotonicallyincreasingsamplepaths. The cumulative distance travelled by the vehicle up to time t (cid:2) 0 is defined by Table1. Analogousfluidqueueingandtransportationconcepts. Fluidqueueingconcept Transportationanalogy EnvironmentprocessZ EnvironmentprocessZ Drift function (cid:2), i (cid:1) S Velocity function V, i (cid:1) S i i Driftmatrix(cid:10) VelocitymatrixV BuffercontentprocessX VehicledisplacementprocessD FluidlevelcrossingtimeT(x) VehicledistancecrossingtimeT(x) 246 NavalResearchLogistics,Vol.51(2004) (cid:2) t D(cid:3)t(cid:4)(cid:3) V du. (2) Z(cid:3)u(cid:4) 0 Equation (2) indicates that D is a Markov additive functional of Z and that the random travel time T(x) is given by the first passage time T(cid:3)x(cid:4)(cid:3)inf(cid:11)t:D(cid:3)t(cid:4)(cid:5)x(cid:12). (3) When the process {Z(t) :t (cid:1) 0} is an irreducible, continuous-time Markov chain (CTMC) on S (cid:5) {1, 2, ..., K} with infinitesimal generator matrix Q (cid:5) [q ], the dynamics of the ij buffer-contentprocessarewellunderstood.Forexample,Rogers[18]solvedforthestationary probability law of the buffer-content process when the buffer is finite or infinite using the Wiener-HopffactorizationforthegeneratormatrixofthegoverningMarkovprocess.Asmussen [3] derives the stationary distribution in two cases, with and without an additional Brownian component. Recently, Takada [19] presented a fluid queueing model that generalizes previous results for the MAP/G/1 queue by allowing the buffer content process to additionally have jumps. These works provide mathematically elegant approaches for computing the invariant probability distribution of the buffer-content process. By contrast, the link travel time problem requiresthetransientprobabilitylawasindicatedbyEquation(3).Forthepurposesofthiswork, weconsideratransformapproachfortheprobabilitydistributionofD(t)fromwhichweareable to obtain both transient and asymptotic measures for the link travel time moments. The following brief review of this distribution follows from [9]. Define the joint distribution function H(cid:3)x, t(cid:4)(cid:3)P(cid:11)D(cid:3)t(cid:4)(cid:7)x, Z(cid:3)t(cid:4)(cid:3)i(cid:12), i(cid:1)S. (4) i Moreover, define the cumulative distribution function for T(x) by (cid:4) G(cid:3)x, t(cid:4)(cid:3)P(cid:11)T(cid:3)x(cid:4)(cid:7)t(cid:12)(cid:3)1(cid:4)P(cid:11)D(cid:3)t(cid:4)(cid:7)x(cid:12)(cid:3)1(cid:4) H(cid:3)x, t(cid:4). (5) i i(cid:1)S Let H(x, t) (cid:5) [H(x, t)] denote a 1 (cid:13) K vector. It can be shown that the joint probability i i(cid:1)S distribution H(x, t) satisfies the partial differential equation (PDE), (cid:8)H(cid:3)x, t(cid:4) (cid:8)H(cid:3)x, t(cid:4) (cid:9) V(cid:3)H(cid:3)x, t(cid:4)Q, (6) (cid:8)t (cid:8)x withinitialconditionH(x, 0)(cid:5) z . DenotebyH*(x, s ), theLaplacetransform(LT)ofH(x, 0 2 t) with respect to t given by (cid:2) (cid:6) H*(cid:3)x, s (cid:4)(cid:3) e(cid:9)s2tH(cid:3)x, t(cid:4) dt, (7) 2 0 and the Laplace-Stieltjes transform (LST) of H*(x, s ) with respect to x as 2 KharoufehandGautam:AFluidQueueingModelforLinkTravelTimeMoments 247 (cid:2) (cid:6) H˜*(cid:3)s , s (cid:4)(cid:3) e(cid:9)s1xdH*(cid:3)x, s (cid:4). (8) 1 2 2 0 so that H˜*(s , s ) (cid:5) [H˜*(s , s )] is a 1 (cid:13) K row vector of transform expressions. The 1 2 i 1 2 i(cid:1)S following result of [9] can be used in conjunction with Eq. (5) to obtain the probability distribution of the random link travel time T(x). THEOREM 1: The solution to the differential Eq. (6) in the transform space is given by H˜*(cid:3)s , s (cid:4)(cid:3)z (cid:3)s V(cid:9)s I(cid:4)Q(cid:4)(cid:9)1, (9) 1 2 0 1 2 whereH˜*(s , s ) isdefinedbyEq.(8),z istheinitialenvironmentdistribution,ands ands 1 2 0 1 2 are complex transform variables with Re(s ) (cid:2) 0 and Re(s ) (cid:2) 0. 1 2 Finally, it is easy to see that the cumulative distribution function for T(x) is given by 1 G˜*(cid:3)s , s (cid:4)(cid:3) (cid:4)z H˜*(cid:3)s , s (cid:4)e, (10) 1 2 s 0 1 2 2 wheree denotesaK-dimensionalcolumnvectorofones.ItshouldbenotedthattheLSTofthe link travel time distribution can be obtained as a 1-dimensional transform with respect to the temporalvariabletinaslightlymoremathematicallyelegantmanner.Inparticular,wenotethat ourproblemisaspecialcaseoftheproblemsconsideredbybothRogers[18]andAsmussen[3] with the exception that Eq. (9) corresponds to a transient distribution. The distributions of this section can be accurately computed using a two-dimensional numerical inversion algorithm such as the one due to Moorthy [15]. However, it is possible to generateapproximatedistributionswithfarlesscomputationaleffortbycomputingthemoments of the vehicle link travel time and using them in surrogate, parametric distributions. This approachmaybeespeciallyusefulintheanalysisofstochastictransportationnetworkswherein the entire cumulative distribution function is needed to compute stochastically shortest paths. However, in lieu of the link travel time distribution, the moments of this random time can be computed in a simple fashion. Moreover, asymptotic approximations of the link travel time momentscanbeobtainedasclosed-formanalyticalexpressions.InSection3,weshowhowto compute the moments of the random link travel time using Eq. (9) when the length of the link (x) is finite. 3. TRANSIENT LINK TRAVEL TIME MOMENTS In this section, we derive an expression using the fluid queueing approach for the moments of the link travel time whenever the link length is finite. By Eq. (5), (cid:4) G(cid:3)x, t(cid:4)(cid:3)1(cid:4) H(cid:3)x, t(cid:4), (11) i i(cid:1)S where G is the CDF of the random link travel time, H(x, t) (cid:5) P{D(t) (cid:7) x, Z(t) (cid:5) i}, and i S is the finite state space of the random environment process {Z(t) :t (cid:1) 0} that modulates 248 NavalResearchLogistics,Vol.51(2004) vehicle speed. It is well-known that the rth moment of the random variable T(x) may be obtainedbyevaluatingat0,therth-orderderivativeoftheLaplace-Stieltjestransform(LST)of G which is given by (cid:2) (cid:4) (cid:6) G˜(cid:3)x, s (cid:4)(cid:3) e(cid:9)s2t dG(cid:3)x, t(cid:4)(cid:3)1(cid:4) H*(cid:3)x, s (cid:4)s , (12) 2 i 2 2 0 i(cid:1)S whereH*(x, s ) isgivenbyEq.(7).Therthmomentofthelinktraveltime,denotedbym (x), i 2 r is (cid:8)r m(cid:3)x(cid:4)(cid:3)E(cid:14)(cid:3)T(cid:3)x(cid:4)(cid:4)r(cid:15)(cid:3)(cid:3)(cid:9)1(cid:4)r G˜(cid:3)x,s (cid:4)(cid:5) . (13) r (cid:8)sr 2 s2(cid:5)0 2 Next define (cid:6) (cid:7) (cid:4) (cid:4) (cid:8)rG˜(cid:3)x,s (cid:4) (cid:8)rH*(cid:3)x,s (cid:4) (cid:8)r(cid:9)1H*(cid:3)x,s (cid:4) Kr(cid:3)x(cid:4)(cid:3)(cid:3)(cid:9)1(cid:4)r 2 (cid:3)(cid:3)(cid:9)1(cid:4)r(cid:7)1 s i 2 (cid:9)r i 2 . (14) s2 (cid:8)sr 2 (cid:8)sr (cid:8)sr(cid:9)1 2 i(cid:1)S 2 i(cid:1)S 2 Equation (14), which is derived from Eq. (12), implies that (cid:4) (cid:8) (cid:8)r(cid:9)1H*(cid:3)x,s (cid:4) m(cid:3)x(cid:4)(cid:3)Kr(cid:3)x(cid:4)(cid:3)(cid:3)(cid:9)1(cid:4)r(cid:7)1r i 2 . (15) r 0 (cid:8)sr(cid:9)1 i(cid:1)S 2 s2(cid:5)0 Inordertosolvethedifferentialequation(15),transformmethodsareagainemployed.TheLST of m (x) with respect to x is r (cid:2) (cid:6) m˜ (cid:3)s (cid:4)(cid:3) e(cid:9)s1x dm(cid:3)x(cid:4). r 1 r 0 By taking the LST of Eq. (15) on both sides, (cid:4) (cid:8) (cid:8) (cid:8)r(cid:9)1H˜*(cid:3)s ,s (cid:4) (cid:8)r(cid:9)1H˜*(cid:3)s ,s (cid:4) m˜ (cid:3)s (cid:4)(cid:3)(cid:3)(cid:9)1(cid:4)r(cid:7)1r i 1 2 (cid:3)(cid:3)(cid:9)1(cid:4)r(cid:7)1r 1 2 e, (16) r 1 (cid:8)sr(cid:9)1 (cid:8)sr(cid:9)1 i(cid:1)S 2 s2(cid:5)0 2 s2(cid:5)0 where H˜*(s , s ) is the matrix transform of Eq. (9). Assuming the existence of all derivatives 1 2 of H(x, s ) at s (cid:5) 0, inversion of Eq. (16) yields the rth moment of the random link travel i 2 2 time. The following lemma will be needed to derive a matrix expression for Eq. (16). LEMMA 1: The kth order partial derivative of the vector H˜*(s , s ) with respect to s is 1 2 2 (cid:8)kH˜*(cid:3)s , s (cid:4) 1 2 (cid:3)(cid:3)(cid:9)1(cid:4)kk!z (cid:3)s V(cid:9)s I(cid:4)Q(cid:4)(cid:9)k(cid:9)1, k(cid:1)0. (cid:8)sk 0 1 2 2 KharoufehandGautam:AFluidQueueingModelforLinkTravelTimeMoments 249 Lemma 1 can be easily proved by mathematical induction and is next used to derive a general expression for the rth moment of the link travel time. THEOREM 2: The Laplace-Stieltjes transform of m (x) is given by r m˜ (cid:3)s (cid:4)(cid:3)r!z (cid:3)s V(cid:4)Q(cid:4)(cid:9)re. (17) r 1 0 1 PROOF: Applying Lemma 1 to Eq. (16) directly shows that (cid:8)r(cid:9)1 m˜ (cid:3)s (cid:4)(cid:3)(cid:3)(cid:9)1(cid:4)r(cid:7)1r H˜*(cid:3)s ,s (cid:4)(cid:5) e r 1 (cid:8)sr(cid:9)1 1 2 s2(cid:5)0 2 (cid:3)(cid:3)(cid:9)1(cid:4)r(cid:7)1r(cid:3)(cid:9)1(cid:4)r(cid:9)1(cid:3)r(cid:4)1(cid:4)!z (cid:14)(cid:3)s V(cid:4)Q(cid:4)(cid:9)1(cid:15)re(cid:3)r!z (cid:3)s V(cid:4)Q(cid:4)(cid:9)re, 0 1 0 1 and the proof is complete. (cid:1) Equation(17)givesanexactanalyticalexpressionfortheLSToftherthmomentoftherandom linktraveltime,providedthatallderivativesexistats (cid:5) 0. Insomecases,thetransformmay 2 be inverted algebraically for an exact solution. However, very close approximations may be obtainedvianumericalinversioninonlyonedimensionbyusinganumberofwidelyavailable inversion algorithms such as the one due to Abate and Whitt [1]. 4. ASYMPTOTIC LINK TRAVEL TIME MOMENTS In this section, the asymptotic behavior of the moments of the random link travel time is considered.Insubsections4.1and4.2,weinvestigatethefirstandsecondmomentsofthelink traveltimeintheasymptoticregion(asx3(cid:6))whenthespeedismodulatedbyaCTMC,{Z(t) : t (cid:1) 0}. Insubsection4.3,theasymptoticvarianceisconsidered.Asymptoticapproximations often yield computationally expedient expressions that can drastically reduce computational effortbyeliminatingthe needfor iterativealgorithms.Furthermore,theseapproximationsmay be used to construct surrogate, parametric distributions for the link travel time. 4.1. Asymptotic First Moment of T(x) In order to prove our result for the asymptotic mean of the random link travel time, we first need the following lemma. LEMMA2:LetQ betheinfinitesimalgeneratormatrixfortheenvironmentprocess,{Z(t) : t (cid:1) 0}, having stationary distribution p (cid:5) [p] . Then the matrix Qˆ (cid:5) V(cid:9)1Q is an j j(cid:1)S infinitesimal generator for a CTMC, {Zˆ(t) :t (cid:1) 0}, with limiting distribution pˆ (cid:5) [pˆ ] j j(cid:1)S given by pV pˆ (cid:3) j j, j(cid:1)S, (18) j pv which satisfies pˆQˆ (cid:5) 0 and pˆe (cid:5) 1, where v (cid:5) Ve and pv (cid:5) ¥ pV. j j j 250 NavalResearchLogistics,Vol.51(2004) PROOF: The proof is immediate since V(cid:9)1Q is positive recurrent and clearly possesses the stated unique, stationary distribution. (cid:1) Theorem 3 provides an intuitive result for the mean link travel time, namely, that the long-run averagelinktraveltimedividedbyitsdisplacementconvergestothereciprocalofthelong-run average speed of the vehicle. THEOREM 3: As x 3 (cid:6), m (cid:3)x(cid:4) 1 1 3 . (19) x pv PROOF: By the asymptotic properties of the LST, it is well known (Kulkarni [10], p. 583) that lim s m˜ (cid:3)s (cid:4)(cid:3)limm (cid:3)x(cid:4)/x. 1 1 1 1 s130 x3(cid:6) Thus, it will be shown that s m˜ (s ) 3 (pv)(cid:9)1 as s 3 0. Applying Theorem 2, 1 1 1 1 s m˜ (cid:3)s (cid:4)(cid:3)s z (cid:3)s V(cid:4)Q(cid:4)(cid:9)1e(cid:3)z s (cid:3)s I(cid:4)V(cid:9)1Q(cid:4)(cid:9)1V(cid:9)1e. (20) 1 1 1 1 0 1 0 1 1 ByLemma2,Qˆ (cid:5) V(cid:9)1Q isageneratormatrixfortheCTMC,{Zˆ(t) :t (cid:1) 0}, withprobability transition matrix Pˆ(t) satisfying the forward equation, dPˆ(cid:3)t(cid:4) (cid:3)Pˆ(cid:3)t(cid:4)Qˆ. (21) dt Transform methods are employed to solve Eq. (21). After simplification, the LST of Pˆ(t), denoted by, (cid:16)(s ), is 1 (cid:16)(cid:3)s (cid:4)(cid:3)s (cid:3)s I(cid:4)Qˆ(cid:4)(cid:9)1. (22) 1 1 1 By the limiting properties of the LST (Kulkarni [10]), lim (cid:16)(cid:3)s (cid:4)(cid:3)limPˆ(cid:3)t(cid:4)(cid:3)Pˆ(cid:3)(cid:6)(cid:4), (23) 1 s130 t3(cid:6) wherethejthcolumnofPˆ((cid:6)) haspˆ ofEq.(18)foreachrow,providedtheCTMCisergodic. j Now, substituting Eqs. (22) and (17) into Eq. (20) gives lim s m˜ (cid:3)s (cid:4)(cid:3)lim z s (cid:3)s I(cid:4)V(cid:9)1Q(cid:4)(cid:9)1V(cid:9)1e(cid:3)z Pˆ(cid:3)(cid:6)(cid:4)V(cid:9)1e(cid:3)(cid:3)pv(cid:4)(cid:9)1, 1 1 1 0 1 1 0 s130 s130 and the result is obtained. (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.