Geobacter Long-range electron transport in sulfurreducens fi bio lms is redox gradient-driven RachelM. Snidera,SarahM. Strycharz-Glavenb,StanislavD.Tsoib,JeffreyS.Ericksonb,andLeonardM.Tenderb,1 aNationalResearchCouncil,Washington,DC20001;andbCenterforBio/MolecularScienceandEngineering,NavalResearchLaboratory, Washington,DC20375 EditedbyHarryB.Gray,CaliforniaInstituteofTechnology,Pasadena,CA,andapprovedAugust7,2012(receivedforreviewJune11,2012) Geobacterspp.canacquireenergyby couplingintracellularoxida- includinganumberofc-typecytochromes,andtheircontributions tionoforganicmatterwithextracellularelectrontransfertoanan- to extracellular electrontransport havenot beendeterminedun- ode (an electrode poised at a metabolically oxidizing potential), derphysiologicallyrelevantconditionsowinglargelytothelackof formingabiofilmextendingmanycelllengthsawayfromtheanode information regarding their spatial organization. Recently, it has surface.Ithasbeenproposedthatlong-rangeelectrontransportin beenproposedthatmicrobesinhabitingmarinesedimentsmayuse suchbiofilmsoccursthroughanetworkofboundredoxcofactors, a network of such filaments and other extracellular proteins to thoughttoinvolveextracellularmatrixc-typecytochromes,asoccurs couple oxidation of sulfide in anoxic sediment with reduction of oxygen in overlying oxic sediment, resulting in the transport of for polymers containing discrete redox moieties. Here, we report measurementsofelectrontransportinactivelyrespiringGeobacter electronsovercentimeter-scaledistances(15). sulfurreducenswildtypebiofilmsusinginterdigitatedmicroelectrode GeobacterasaModel SystemforStudying Micrometer- arrays.Measurementswhenoneelectrodeisusedasananodeand ScaleBiological Electron Transport theotherelectrodeisusedtomonitorredoxstatusofthebiofilm15 Geobacter spp. are microorganisms that inhabit subsurface envi- μmawayindicatethepresenceofanintrabiofilmredoxgradient,in Y ronments, such as marine sediments (16), and they are widely G which the concentration of electrons residing within the proposed studied for their distinct ability to acquire energy by coupling OLO redoxcofactornetworkishigherfartherfromtheanodesurface.The intracellular oxidation of organic matter, such as acetate, with OBI magnitude of the redox gradient seems to correlate with current, extracellularelectrontransfertoinsoluble(i.e.,mineral)electron CR whichisconsistentwithelectrontransportfromcellsinthebiofilm acceptors (17). Geobacter are also able to directly transfer elec- MI totheanode,whereelectronseffectivelydiffusefromareasofhigh tronstononcorrosiveanodesofelectrochemicalreactors,result- tolowconcentration,hoppingbetweenredoxcofactors.Comparison ing in electrical current coupled to metabolic organic matter withgatemeasurements,whenoneelectrodeisusedasanelectron oxidation (18). When grown using an anode as their metabolic sourceandtheotherelectrodeisusedasanelectrondrain,suggests electron acceptor, Geobacter cells adhere to the anode surface, Y thattherearemultipletypesofredoxcofactorsinGeobacterbiofilms proliferate, and form a persistent multimicrobe-thick biofilm in TR spanningarangeinoxidationpotentialthatcanengageinelectron which all cells comprising the biofilm appear to contribute to MIS transport.Themajorityoftheseredoxcofactors,however,seemto current generation (19–21). Such biofilms are electrically con- HE C have oxidation potentials too negative to be involved in electron ductive, inferred by theability of cellsnot indirect contact with transportwhenacetateistheelectronsource. the anode surface to contribute to current generation (22), and confirmed by two-electrode conductivity measurements (20, 23). | | Geobacter cells possess an abundance of multiheme c-type cyto- microbialfuelcell bioelectrochemicalsystem | | chromesontheiroutermembrane,intheECM,andalongPilA- microbialelectrochemistry geomicrobiology multistepelectronhopping pili (24–33). Cyclic voltammetry (19, 34–37) and spectroelec- trochemicalmeasurements(38–43)ofactivelyrespiringGeobacter It is widelyacceptedthatelectrontransportcanoccurovermo- biofilms are consistent with long-range electron transport medi- lecular-scaledistancesinbiologicalsystemsbyelectronhopping atedbysequentialelectrontransferreactionsthroughanetwork among a small number of immobilized redox cofactors (1, 2). ofboundredoxcofactorscomprisedofECMc-typecytochromes Thereisgrowingawareness,however,ofthepossibilityofelectron terminating with electron transfer to the anode surface. This transportoverlengthscalesmuchlongerthanpreviouslythought proposed process, analogous to diffusive electron transport ob- possibleinbiologicalsystemsbyusingimmobilizedredoxcofactors servedforredoxpolymerscontainingdiscreteredoxmoieties(20, organizedintoelectrontransportconduits.Thisismostevidentby 44–48),isanextensionofthenormalmodeofelectrontransport microorganisms,suchasShewanellaspp.andGeobacterspp.,that inbiologicalsystemsinvolvingredoxproteins(2)tolongerlength canuseelectronacceptorsresidingoutsidethecellforrespiration scales(upto18μminthecaseofbiofilmsdescribedhere). (3).Forexample,inthecaseofShewanella,itisproposedthatthe The ability of a Geobacter biofilm to use an electrode as its CymA-MtrA-MtrC complex comprised of 3 multiheme c-type terminalmetabolicelectronacceptorallowsprecisemeasurement cytochromes totaling 24 hemes acts as a multistep conduit that of the rate of extracellular electron transport to the anode as conductsrespiredelectronsoriginatinginthecytoplasmfromthe currentandenablesmodulationoftherateanddrivingforcefor inner membrane through the periplasm and outer membrane to thecelloutersurface(4–6).Outsidethecell,bothShewanellaand extracellular electron transport by external control of the elec- trode potential. This ability enables application of electro- Geobacter secrete nanometer scale diameter, micrometer scale long proteinaceous filaments, referred to as pili and microbial chemical techniques, such as cyclic voltammetry (19, 20) and nanowires (7), that extend from their outer surfaces into the ex- tracellular matrix (ECM) thought to be involved in extracellular electron transport processes, including cell-to-cell electron trans- Authorcontributions:R.M.S.,S.M.S.-G.,andL.M.T.designedresearch;R.M.S.andJ.S.E. fer(8)andreductionofinsolubleoxidants(9).Exsituconductivity performedresearch;R.M.S.,S.M.S.-G.,S.D.T.,andL.M.T.analyzeddata;andR.M.S.,S.M.S.-G., measurements of individual filaments of Shewanella oneidensis andL.M.T.wrotethepaper. MR-1 confirm their lengthwise conductivity when isolated from Theauthorsdeclarenoconflictofinterest. cellsunderspecificconditions(10,11),andsubsequentmodeling ThisarticleisaPNASDirectSubmission. oftheircurrent–voltagecharacteristicsisconsistentwithmultistep FreelyavailableonlinethroughthePNASopenaccessoption. electron hopping involving redox cofactors proposed to be asso- 1Towhomcorrespondenceshouldbeaddressed.E-mail:[email protected]. ciated with these filaments (12–14). The ECM of both species, Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/doi:10. however,containmanyproteinsotherthanthosecomprisingpili, 1073/pnas.1209829109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1209829109 PNASEarlyEdition | 1of6 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2012 2. REPORT TYPE 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Long-range Electron Transport In Geobacter Sulfurreducens Biofilms Is 5b. GRANT NUMBER Redox Gradient-Driven 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Center for Bio/Molecular Science and REPORT NUMBER Engineering,Washington,DC,20375 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Published online before print September 5, 2012, Proceedings of the National Academy of Sciences 14. ABSTRACT Geobacter spp. can acquire energy by coupling intracellular oxidation of organic matter with extracellular electron transfer to an anode (an electrode poised at a metabolically oxidizing potential) forming a biofilm extendingmany cell lengths away from the anode surface. It has been proposed that long-range electron transport in such biofilms occurs through a network of bound redox cofactors thought to involve extracellularmatrix c-type cytochromes, as occurs for polymers containing discrete redox moieties. Here, we report measurements of electron transport in actively respiring Geobacter sulfurreducens wild type biofilms using interdigitated microelectrode arrays. Measurements when one electrode is used as an anode and the other electrode is used to monitor redox status of the biofilm 15 μm away indicate the presence of an intrabiofilm redox gradient, in which the concentration of electrons residing within the proposed redox cofactor network is higher farther from the anode surface. The magnitude of the redox gradient seems to correlate with current which is consistent with electron transport from cells in the biofilm to the anode, where electrons effectively diffuse from areas of high to low concentration, hopping between redox cofactors. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 7 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 chronoamperometry (49–51), and combined with availability of its genome sequence and genetic system (52), it makes possible the investigation of the mechanism of extracellular electron transport to a degree not yet possible with non-electrode-using systems. Understanding the processes that govern long-range biofilmelectrontransport from cellscomprising abiofilmtothe underlying anode surface has important implications foroptimi- zation of microbe-catalyzed electrode reactions, such as anode- coupledoxidationoforganicmatterforwastewatertreatmentand energytransformation(53–57)andcathode-coupledreductionof carbondioxidetoliquidfuelprecursors(58,59)inmicrobialfuel cellsandmicrobialelectrolysiscells.Itmayalsoprovidevaluable insights into the mechanism of long-range biological electron transportinenvironmentalprocessesnotinvolvingelectrodes. ARedoxGradientIs ExpectedtoAccompany Multistep ElectronHopping Apredictedfeatureoflong-range multistepelectronhoppingis the presence of a redox gradient, in which the local oxidation state of the biofilm decreases with increasing distance from the anode surface (14) (that is, the local concentration of electrons Fig.1. SEMofafullygrownWTG.sulfurreducensbiofilmgrownonagold residinginbiofilmcofactorsisexpectedtobehigherfartherfrom interdigitated microelectrode array (IDA). The edges of the array were the anode surface). This gradient is expected to result from re- maskedwithphotoresist,definingtheelectroactiveareawherethebiofilm duction of cofactors by cells distributed across the biofilm cou- grew,whichwasremovedduringpreparationforSEMimaging.Anunmasked pled to cellular oxidation of organic matter and oxidation of edgeofthearrayisshownatthebottom,wherealternatemicroelectrode cofactorsattheanodesurface,wherethepotentialappliedtothe bandscomprisingelectrode1areelectricallyconnected.(Scalebar:45μm.) anodedetermines the local oxidation state of the biofilminthe (Inset)SchematicrepresentationofaportionoftheIDAdepicting10of100 vicinity of the anode surface. This gradient is also expected to microelectrodebands(nottoscale;dimensionsprovidedinthetext). provide the driving force for electron transport as occurs for redox polymers (44), in which electrons effectively diffuse from electrodes as anodes at +0.300 V vs. Ag/AgCl [approximately areas of high to low concentration (from cells to the anode +0.500Vvs.standardhydrogenelectrode(SHE)]inmediacon- surface)byelectron transfer amongcofactors. taining excess acetate (10 mM) until a self-determined limiting Here,weprovideexperimentalevidencefortheexistenceofan intrabiofilmredoxgradientwithinactivelyrespiringG.sulfurredu- catalyticcurrentof50μA(25μAforeachelectrode)wasachieved, cens WT biofilms. Furthermore, the magnitude of the gradient corresponding to a biofilm thickness of 18 μm, on average, that seemstocorrelatewithcatalyticcurrentcoupledtoacetateoxida- was sufficiently thick to span the gap between adjacent in- tion in response to changing potential applied to the anode in terdigitated microelectrode bands (SI Materials and Methods). amannerconsistentwithmultistepelectronhopping.Inaddition, Two types of electrochemical measurements performed on ac- weprovideadditionalexperimentalevidenceindicatingthatelec- tivelyrespiringG.sulfurreducensWTbiofilmsgrownonIDAsare trontransportthroughanactivelyrespiringGeobacterbiofilmbe- presented here after the biofilms were first grown using both tweentwoelectrodesactingasanelectronsourceanddrainresults electrodes as anodes. In the first type (Fig. 2A), a potential is fromgenerationofaredoxgradientbetweentheelectrodesinre- applied only to electrode 1, which continues to act as an anode, sponsetothepotentialsappliedtotheelectrodes.Themagnitude whereaselectrode 2isatopen circuit andmonitorsthelocalox- of the gradient seems to depend on the electrode potentials in idation state of the biofilm in the vicinity of electrode 2 while amanneralsoconsistentwithmultistepelectronhopping(20).In electron transport through the biofilm to electrode 1 coupled to thesesource-drainmeasurements,electrontransportisnotcoupled acetateoxidationisoccurring.Inthesecondtype(electrochemical toacetateoxidation,butrather,themorenegativeelectrode(the gatemeasurements)(Fig.2B),differentpotentialsareappliedto source) supplies the electrons that are conducted through the electrodes1and2,whichactasanelectrondrainandsourcewhile biofilmtothemorepositiveelectrode(thedrain).Comparisonof maintaining a constant potential difference between the electro- measurementsofbiofilmelectrontransporttoananodecoupledto des inducing electron transport between the electrodes through acetateoxidationwithmeasurementsofbiofilmelectrontransport theinterveningbiofilmthatisnotcoupledtoacetateoxidation. betweenasourceanddrainnotcoupledtoacetateoxidationindi- catesthatGeobacterbiofilmsseemtocontainanumberofcofactors Evidence for a Biofilm Redox Gradient During Catalytic Current able to participate in multistep electron hopping. The majority, Generation. Fig. 3A depicts catalytic (turnover) cyclic voltamme- however, do not seem able to participate in electron transport try(CV) recorded for electrode 1 while electrode 2 was at open coupledtoacetateoxidation,becausetheformalpotentialsaretoo circuit(Fig.2A).Here,onlythesetofmicroelectrodebandscom- negativetoacceptelectronsoriginatingfromacetate. prising electrode 1 was used to collect electrons resulting from acetateoxidation.TheCVexhibitsthesigmoid-shapedependency Results ofsteadystatecatalyticcurrentonappliedpotentialreportedfor Biofilm-ModifiedInterdigitatedMicroelectrodeArrays.Fig.1depicts fullgrownG.sulfurreducensbiofilms(19,20,36),consistentwithan an SEM image of a G. sulfurreducens WT biofilm grown on electrodecatalytic(EC)reactionscheme(61),inwhichareactant a gold interdigitated microelectrode array (IDA), an electrode (inthiscase,acetate)thatcannotbedirectlyoxidizedbyanelec- configuration developed to study conductive properties of poly- trode owing to poor kinetics is coupled to reduction of a redox merfilms(60).IDAsusedherearecomprisedof100parallel15- cofactorthatcanbereversiblyoxidizedbyanelectrode,suchasac- μm-wide × 0.48-cm-long gold microelectrode bands patterned typecytochrome(41).Thenegativedeviationincurrentobserved onto a glass slide separated by 15-μm-wide gaps. Every other duringtheanodicscanoftheexperimentalCVhasbeenpreviously bandiselectricallyconnectedattwooppositeedgesofthearray, noted,anditisattributedtopossibleinhibitionofacetateoxidation formingtwointerdigitatedelectrodes(electrode1andelectrode and/orpossibleaccumulationofelectronsincellsoccurringatthe 2), each comprised of 50 microelectrode bands, effectively sep- endofthecathodicscanandbeginningoftheanodicscan,whenthe arated by a single 15-μm-wide × 48-cm-long single serpentine- potentialappliedtoelectrode1 wasfairlynegative(20).Fig.3A, shapedgap(Fig.1,Inset).Thebiofilmwasgrownbypoisingboth InsetdepictsnonturnoverCV(recordedintheabsenceofacetate), 2of6 | www.pnas.org/cgi/doi/10.1073/pnas.1209829109 Snideretal. A and T (303 K) have their standard meanings. g is an empirical media factor invoked here to describe the degree of heterogeneity e- biofilm e- amongcofactorswithrespecttoformalpotential.Wheng=1,all of the cofactors have the same formal potential, and a smaller Electrode 1 Electrode 2 Electrode 1 Electrode 2 value of g indicates greater heterogeneity among cofactors, 0.300 V -0.463 V 0.300 V -0.463 V resulting in a wider potential range, over which the oxidation applied atm opeeasnu crierdcu it applied at mopeeansu criercduit state of the biofilm in the vicinity of the electrode surface changesfrombeingfully oxidizedtofullyreduced (14,62). B media InFig.3A,thebestfitoftheexperimentalCVtoEq.1based e- e- biofilm e- e- e- on matching the shape and midpoint potential (potential at whichi =i =2;E inFig.3A)isobservedforðEo′Þ =−0.458± Electrode 1 Electrode 2 Electrode 1 Electrode 2 0.0025cVat vs.LAg/AMgCl and g = 0.80 ± 0.1, consisteavngt with non- -0.475 V -0.575 V -0.475 V -0.575 V negligible heterogeneity among biofilm cofactors involved in applied applied applied applied multistep electron hopping during catalytic current generation when current is coupled to biofilm acetate oxidation. Fig. 3B Fig.2. Schematicdepictionofacross-sectionofbiofilm-coatedIDA.(A)Anode/ depicts the concomitantly measured open circuit potential for opencircuitexperimentinwhichelectrode1isusedasananodethatcollects electrons coupled to cellular oxidation of acetate throughout the biofilm, electrode 2, E2, which did not collect electrons since at open circuit,butvariedintimeinresponsetoE .Here,E reflectsthe whereaselectrode2isatopencircuitandtherefore,doesnotacceptelectrons; 1 2 however,itisusedtomeasureoxidationstateofthebiofilminthevicinityof oxidation state of redox cofactors in the vicinity of electrode 2, ceolemctprroidsieng2.eWlehctirtoedaerr1owcosuinpdleicdattoeflceulxluolafrthoexidelaetciotrnonosftaocemtaictreoethlercoturogdheoubtanthdes ðthXeOnxÞEz=20;=2.−F0o.r46e3xaVm,pinled,icwathienngtEh1at>re−do0x.3cVof,acfotorrswihnicthheicvaitc=iniiLty, biofilmcontinuouslysuppliedbydiffusionfromadjacentmedia.Aspecificcaseis of electrode 2 are partially reduced based on Fig. 3A (Inset), al- shown,inwhichthepotentialappliedtoelectrode1is+0.300Vandtheopen though they are fully oxidized in the vicinity of electrode 1 (40). circuitpotentialmeasuredatelectrode2is−0.463Vbasedontheresultsdepicted If electron exchange between redox cofactors and electrode 2 is iintiFsiogn.l3yB4.4In%thoixsicdaizsee,dwinhivleicitnhietyboioffiellemctirsofduelly2o(Fxiigd.iz3eBd).i(nBv)iEcliencittyroocfheelmecitcraoldgeat1e, feaascth,tvhaelnueðXoOfxÞEz=.0;2Ficga.n3aBlsaolsboeddeepteicrtmsiðnXedÞfromEaqn.d2ð(Xj=2Þ)for OGY experimentinwhichdifferentpotentialsareappliedtoelectrodes1and2while 2 Ox z=0;1 Ox z=0;2 OL BI maintaininga constantpotentialoffset between the electrodes,resulting in O electrontransportthroughthebiofilmfromthemorenegativeelectrode(elec- CR tronsourceiselectrode2)tothemorepositiveelectrode(electrondrainisElec- * MI tron1),whichisindicatedbywhitearrows.Aspecificcaseisshown,inwhichthe potentialappliedtoelectrode1is−0.475Vandthepotentialappliedtoelec- trode2is−0.575V,resultinginthelargestconductedcurrentbasedontheresults A depictedinFig.5A.Unlessotherwisenoted,potentialsarevs.Ag/AgCl. Y R T S MI wherecurrentisattributedtochangingtheoxidationstateofredox E H cofactorsinthebiofilm(i.e.,pseudocapacitance)(19,39,40)and C multiplevoltammetricpeaksindicatepossiblepresenceofmultiple redoxcofactorsspanningarangeinformalpotentials.Overlaidon tothecathodicvoltammetricscanarefitsbasedonEq.1derivedby modelingcatalyticcurrentgenerationbyaGeobacterbiofilmasan EC reaction scheme (61), in which electron transport occurs by multistepelectronhopping(20)(Eq.1): (X ) ox 0,1 B icat = iLðXOxÞz=0;1: [1] E 2 Here,steadycatalyticcurrentmeasuredatelectrode1coupledto biofilm acetate oxidation, i , scales in proportion to the local cat (X ) biofilm oxidation state in the vicinity of electrode 1, ðX Þ ox 0,2 Ox z=0;1 (portionofcofactorsthatdirectlyexchangeelectronswithelectrode 1thatareintheoxidizedformwherezisdistancefromtheelec- trodesurface),andthemaximumcatalyticcurrent,i (Fig.3A,39.3 L μA),whichoccurswhenðX Þ =1.i isdependentontheIDA geometry,growthstateoftOhxezb=i0o;1film(1L9),concentrationofredox cofactors in the biofilm, and rate constant for electron exchange between adjacent cofactors (14). If electron exchange between electrode1andcofactorsattheelectrodesurfaceisfast(20),then ðX Þ can be determined from the potential applied to elec- troOdxez1=,0;E1 ,byamodifiedversionoftheNernstEquation(Eq.2): Fig.3. Anode/opencircuitexperiment.(A)Catalytic(turnover)CVrecordedby 1 (cid:1) nF(cid:3) (cid:4) (cid:5) (cid:6)(cid:7) stchaondnicinsgcapno)taenndtibaalcokfteole+c0tr.3o0d0eV1(aatno0.d0i0c2scVa/ns),frwohmer+e0a.s30e0lecVtrtood−e02.7is5a0tVop(cean- exp gRT Ej− Eo′ avg circuit(asteriskindicatescathodicscan).Catalyticcurrent,icat,resultsfromthe ðXOxÞz=0;j=1+exp(cid:1)gnF(cid:3)E −(cid:4)Eo′(cid:5) (cid:6)(cid:7): [2] ecelellcutlraornatcreatnastpeoorxtidtoatmioincrtoherloeuctgrhooduetbthanedbsiocfiomlmp.rTishinegxealxeisctcroordrees1pocnodusptleodthtoe RT j avg potentialappliedtoelectrode1.FitsarebasedonEq.1.(A,Inset)Nonturnover CVofelectrode1at0.002V/srecordedinabsenceofacetate,revealingvol- j=1indicateselectrode1,whereðEo′Þ istheweightedaverage tammetricpeaksattributabletobiofilmredoxcofactors(sameaxisscales).(B, avg rightaxis)Potentialmeasuredforelectrode2vs.potentialappliedtoelectrode of formal potentials of cofactors that participate in multistep 1.(B,leftaxis)Correspondingbiofilmoxidationstateinthevicinityofelectrode ealteicmtreobnethwoepepninag,confaicstotrheannduemlebcetrroodfee1le(cntr=on1s)(t3ra6n),safenrdreFd,Rat, c1a,lðcXuOlaxtÞez=d0;u1s,inagndEqe.le2c.trode2,ðXOxÞz=0;2,vs.potentialappliedtoelectrode1 Snideretal. PNASEarlyEdition | 3of6 calculated using Eq. 2 from E (applied to electrode 1) and E 1 2 (measured at electrode 2) vs. E using values for ðEo′Þ and g 1 avg determined from Fig. 3A. Comparison of Fig. 3A with B reveals that,forallinstancesinwhichcatalyticcurrentoccurs,ðX Þ is Ox z=0;1 higher than ðX Þ , indicative of a redox gradient extending Ox z=0;2 acrossthegapseparatingadjacentmicroelectrodebands(i.e.,the effective concentration of electrons residing in cofactors in the vicinityofelectrode2ishigherthaninthevicinityofelectrode1). Furthermore,increasingcatalyticcurrentcoincideswithincreasing difference between ðX Þ andðX Þ , and the maximum Ox z=0;1 Ox z=0;2 catalyticcurrentcoincideswiththemaximumdifferencebetween thesevalues,consistentwithelectrontransporttoelectrode1during catalytic current generation that is redox gradient-driven. It is im- portanttonotethelackofanegativedeviationinE andtherefore, 2 ðX Þ observed during the anodic voltammetric scan as ob- Ox z=0;2 servedfori ,indicatingthatthenegativedeviationobservedfori cat cat appearsnottobeassociatedwithextracellularelectrontransport. Evidence for a Biofilm Redox Gradient Using Electrochemical Gate Measurements. Figs. 4 and 5 depict results of experiments in whichpotentialsareappliedtobothelectrodesthatarechanged inunisonwhilemaintainingaconstant0.1Voffsetbetweenthem (i.e., electrochemical gate measurements) (60), where the dif- ferent electrode potentials establish different values for ðX Þ Ox z=0;1 and ðX Þ . Fig. 4A depicts dependency of the resulting Ox z=0;2 A Fig.5. Electrochemicalgateexperimentrecordedunderturnovercondition no Acetate (withacetatepresent).(A)Becauseeachelectrodealsoactsasananode,the resultingcurrentmeasuredatelectrode1(drain)isthesumofcatalyticcurrent andconductedcurrentoutofthebiofilm,andatelectrode2(source)isthesum ofcatalyticcurrentandconductedcurrentintothebiofilm,plottedherevs. potentialappliedtoeachelectrode.Electrodepotentialswerescannedat0.002 B V/swhilemaintainingelectrode2atafixed−0.100Voffsetvs.electrode1.(A, Inset)CVrecordedforthetwoelectrodessimultaneouslywithoutanoffsetsuch thaticon=0forbackgroundsubtractionoficatforeachofelectrode(sameaxis scales).(B)icon vs.Eavg afterbackgroundsubtractingicat.Qualitativefitsare (X ) basedonEq.3(sameasinFig.4A). ox 0,1 (X ) conducted current, icon, recorded under nonturnover condition ox 0,2 afteracetateremovaltotheaverageofthepotentialsappliedtothe electrodes,E =ðE +E Þ=2.Here,currentwasmeasuredatboth avg 1 2 electrodes,wherenegativecurrentindicateselectrontransferfrom no Acetate themorenegativeelectrode(electrode2,electronsource)intothe biofilm,whereaspositivecurrent,asinthecaseofananode,indi- cates electron transfer out of the biofilm to the more positive electrode(electrode1,electrondrain).Themagnitudeofcurrent measuredateither electrode,i ,isattributedto electrontrans- con port through the biofilmbetween adjacent microelectrode bands Fig.4. Electrochemicalgateexperimentrecordedundernonturnovercon- comprising electrodes1 and2 that isnot coupledto acetateoxi- dition(noacetatepresent).(A)Conductedcurrent,icon;vs.averagepotential dation.ComparisonofFig.4AwithFig.3A(Inset)indicatesthat applied to electrodes 1 and 2,Eavg. Electrode potentials were scanned at current due to pseudocapacitance is a negligible contribution to 0.002V/swhilemaintainingelectrode2(electronsource)atafixed−0.100V i .DepictedinFig.4Aarefitstoi vs.E basedonEq.3, offsetvs.electrode1(electrondrain).FitsarebasedonEq.3.(B)Thecor- con con avg respondingplotofðXOxÞz=0;1andðXOxÞz=0;2vs.EavgwascalculatedusingEq. h i ð2X.OAxÞrrz=o0w;2sisintdhiecagtreeattheest,corensduilttiionngiwnhtehneldairfgfeersetnvcaelubeeotwfiecoenn. ðXOxÞz=0;1 and icon= iM ðXOxÞz=0;1−ðXOxÞz=0;2 ; [3] 4of6 | www.pnas.org/cgi/doi/10.1073/pnas.1209829109 Snideretal. thatfollowsdirectlyfromequation21intheworkbyStrycharz- the presence of redox gradient that drives electron transport Glaven et al. (14, 63), which is based on multistep electron throughthebiofilmtoelectrode1whensuchelectrontransport hopping.Herei isthemaximumcurrentthatcanbeconducted is coupled to cellular acetate oxidation. In the second type M throughthebiofilmthatisdependentonthesameparametersas (electrochemical gate measurements), different potentials are 1iL.anTdheðXcoOnxÞdz=it0i;o2n=at0,wthhiechcoicnondi=tioiMnactanwhoiccchurthisewmhaegnnðitXuOdxeÞzo=f0;1th=e asopuprlcieed, rtoesepleeccttirvoedlye,sw1hailnedm2,awinhtaicinhinacgtaascaonnsetalencttrpoontednrtaiianladnifd- redox gradient between adjacent microelectrode bands is maxi- ference between the electrodes. The applied potentials directly mized(44).Thebestfitsbasedonpeakpotentialandpeakwidth determinethelocaloxidationstateofthebiofilminthevicinityof atone-halfheightareobtainedforEavg =−0.528±0.0025Vand eachoftheelectrodes.Theresultingcurrentconductedthrough g =0.47± 0.01,indicatingthatredoxmediatorsinvolvedingen- the biofilm between the electrodes is interpreted to reflect gen- erationoficonbymultistepelectronhoppingareconsiderablymore erationofredoxgradientbetweentheelectrodesinresponseto heterogeneous and have a considerably more negative average theappliedpotentialsthatisnotcoupledtoacetateoxidation. formalpotentialthanredoxcofactorsinvolvedingenerationoficat. Asshownhereforaliving,activelyrespiringG.sulfurreducens Previousmodeling(20)indicatesthatredoxcofactorsinvolvedin WTbiofilm,electrochemicalgatemeasurementsresultinacom- generation of icat cannot have formal potentials that are more pletely reversible current peak spanning the formal potentials of negative than the midpoint potential of the catalytic CV (EM, biofilmredoxcofactorsasobservedforredoxpolymersknownto −0.458 ± 0.0025 V vs. Ag/AgCl) (Fig. 3A), which is ultimately engageinmultistepelectronhopping(60).Thepeakinconducted constrainedbytheoxidationpotentialofacetate(−0.49Vvs.Ag/ current lies more negative than expected based on the midpoint AgCl).Assuch,themajorityofredoxcofactorsabletoparticipate potential ofthecatalyticcurrent-potential dependency(Fig. 3A), in multistep electron hopping not coupled to acetate oxidation anditisbroaderthanexpectedforasingletypeofredoxcofactor, resulting in icon cannot participate in multistep electron hopping suggestingthatmultipletypesofredoxcofactorspossessingdifferent that is coupled to acetate oxidation resulting in icat, because the oxidationpotentialscanbeaccessedbyelectronsdrivenbythecon- supply of electrons during icon generation is not constrained in ductingcurrent,icon,thatarenotinvolvedincatalyticcurrentgen- potential[thatis,thesourceelectrodecansupplyelectronsintothe eration,i (39,40).WTG.sulfurreducenscontainsgenesencoding biofilmwithhigherpotentialenergy(atamorenegativepotential) formorectahtan50multihemecytochromes(64)inadditiontothose Y thanthoseelectronsoriginatingfromacetateoxidation]. cytochromesidentifiedtobeimportantinestablishingbiofilmsgrown OG onFEiga.vg4BdedteerpmicitnsedthefrodmepeEnqd.en2cyusoinfgðXthOexÞzb=e0s;1t-fiatndpaðrXaOmxÞezt=e0r;2s ocannapnaosdseesle(3ct6r,o6n5s)b;uthtearreefonroet,ritecisruniotetdsufroprrcisaitnaglytthicatcusorrmeneto.fthem ROBIOL from Fig. 4A. As expected for redox gradient-driven electron MIC transport, an appreciable icon occurs only when there is an ap- Implications preciable difference between ðX Þ and ðX Þ , and the Ox z=0;1 Ox z=0;2 The results of our electrochemical gate measurements directly largest i coincides with the largest difference in these values con contradictresultsrecentlyreportedintheworkbyMalvankaretal. (44, 60). Calculated values of ðX Þ andðX Þ based on Eq.2,forwhichiconislargest,areO0x.3z2=0a;1nd0.74,Orxesz=p0e;2ctively,the (b2a3c)te,rwbhioicfihlmatstrniobtutteosmlounltgis-rteapngeeleecltercotnrohnoptrpainnsgpbourttttohraonuginhtrGinesoic- RY largest difference between these values that can be achieved “metallic-like” conductivity of PilA-pili (23). According to their ST g(Eiv1en=t−h0e.407.180V0,VE2o=ffs−et0.m57a8inVta)infoerdgb=etw0.e4e7n. the electrodes Fmiogsd.e4l,Ahaonwde5vAers,htohueldcbuerrseingtm–pooidt-esnhtaiapleddeapnednndoetnpcyeadkeepdi-cstheadpeidn CHEMI Fig. 5A depicts results of measurements performed in an (63). The nature of Geobacter biofilm conductivity is contested identicalmannerasthosemeasurementsdepictedinFig.4Abut becauseofalackofdirectevidenceforcytochromespatialdistri- underturnovercondition.Whenacetateispresent,icon issuper- butionwithinthebiofilmECMordirectstructuralevidenceforthe imposedontoi (Fig.5B),becauseeachelectrodealsoactsasan cat proposed conductive PilA-pili conclusively supporting either anode.Toafirstapproximation,i canbebackgroundsubtracted cat a model for multistep electron hopping or metallic-like conduc- usingCV,inwhichthepotentialsofbothelectrodesarechanged tivitymodel(21,66–67).BecauseoftheroleofPilA-piliinbiofilm inunisonwithnopotentialoffsetbetweenthem,resultinginonly formation(22)aswellascytochromesecretion(9,52)andextra- i ateachoftheelectrodes(Fig.5A,Inset).Fig.5Bdepictsresults cat cellularlocalization(32),wesubscribetothesuppositionthatPilA- ofthissubtractionprocess,wheretheresidualicat observedresults piliareimportantforGeobacterbiofilmstructureandcytochrome presumably from competition among cofactors in electron trans- organization (52), and like in other biological systems (2), redox portassociatedwithi andi .Regardless,Fig.5Bindicatesthat cat con proteins are the primary charge carriers. The results also raise i dependsonthepotentialsappliedtobothelectrodesinnearly con questions regarding the thermodynamics of electron transport btheelsoacmaleizmedantonearwrehleantivaecleytastmeailslpproersteinotn,soufggtheestibnigofithlmatidcairtemctalyy throughsuchbiofilms. betweenadjacentmicroelectrodebands. MaterialsandMethods Discussion IDAs were fabricated in house using standard procedures. Two electrode Two types of electrochemical measurements performed on G. experiments were performed under anaerobic conditions (80:20 N2:CO2) sulfurreducens WT biofilms grown on IDAs are presented here. usingabiopotentiostat(AFCBP1;PineInstruments),counterelectrode(graph- Inthefirsttype,apotentialisappliedonlytoelectrode1,which ite rod), and reference electrode (Ag/AgCl, 3 M KCl; CH Instruments) in freshwater medium. G. sulfurreducens strain DL1 (51573; ATCC) was main- continues to act as an anode. The applied potential directly determinesthelocaloxidationstateofthebiofilminthevicinity tainedinfreshwatermediacontaining40mMfumarateand10mMsodium acetateasdescribedpreviously(14,20,68,69).Electrochemicalcellscontaining of electrode 1. In contrast, electrode 2 is at open circuit, such 10mMacetatewereinoculatedwithlog-phaseG.sulfurreducensstrainDL1 that its potential reflectsthe local oxidation state ofthe biofilm (3%vol/volinoculum,OD=0.4–0.6;51573;ATCC),whileIDAelectrodes1and in the vicinity of electrode 2 that is indirectly influenced by the 2weremaintainedat+0.300Vvs.Ag/AgCl.Detailsoftheexperimentalpro- potentialappliedtoelectrode1.Thedifferenceintheelectrode ceduresareprovidedinSIMaterialsandMethods. potentials when catalytic current is generated at electrode 1 is interpreted to reflect a difference in local oxidation state of ACKNOWLEDGMENTS.FundingwasprovidedbytheNavalResearchLabo- the biofilm in the vicinity of each of the electrodes, indicating ratoryandOfficeofNavalResearchGrantN00014-10-WX20463. 1. GrayHB,WinklerJR(2010)Electronflowthroughmetalloproteins.BiochimBiophys 3. Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65(1): Acta1797:1563–1572. 1–11. 2. GrayHB, WinklerJR (1996) Electron transfer in proteins.Annu Rev Biochem 65: 4. HartshorneRS,etal.(2009)Characterizationofanelectronconduitbetweenbacteria 537–561. andtheextracellularenvironment.ProcNatlAcadSciUSA106:22169–22174. Snideretal. PNASEarlyEdition | 5of6 5. HartshorneRS,etal.(2007)CharacterizationofShewanellaoneidensisMtrC:Acell- 38.JainA,GazzolaG,PanzeraA,ZanoniM,MarsiliE(2011)Visiblespectroelectrochemial surfacedecahemecytochromeinvolvedinrespiratoryelectrontransporttoextracel- characterizationofGeobactersulfurreducensbiofilmsonopticallytransparentin- lularelectronacceptors.JBiolInorgChem12:1083–1094. diumtinoxideelectrode.ElectrochimActa56:10776–10785. 6. ClarkeTA,etal.(2011)Structureofabacterialcellsurfacedecahemeelectroncon- 39.Liu Y, Kim H, Franklin RR, Bond DR (2011) Linking spectral and electrochemical duit.ProcNatlAcadSciUSA108:9384–9389. analysistomonitorc-typecytochromeredoxstatusinlivingGeobactersulfurreducens 7. RegueraG,etal.(2005)Extracellularelectrontransferviamicrobialnanowires.Na- biofilms.ChemPhysChem12:2235–2241. ture435:1098–1101. 40.LiuY,BondDR(2012)Long-distanceelectrontransferbyG.sulfurreducensbiofilms 8. SummersZM,etal.(2010)Directexchangeofelectronswithinaggregatesofan resultsinaccumulationofreducedc-typecytochromes.ChemSusChem5:1047–1053. evolvedsyntrophiccocultureofanaerobicbacteria.Science330:1413–1415. 41.MilloD,etal.(2011)Insituspectroelectrochemicalinvestigationofelectrocatalytic 9. CologgiDL,Lampa-PastirkS,SpeersAM,KellySD,RegueraG(2011)Extracellular microbialbiofilmsbysurface-enhancedresonanceRamanspectroscopy.AngewChem reductionofuraniumviaGeobacterconductivepiliasaprotectivecellularmecha- IntEdEngl50:2625–2627. nism.ProcNatlAcadSciUSA108:15248–15252. 42.BusalmenJP,Esteve-NuñezA,BernáA,FeliuJM(2010)ATR-SEIRAscharacterizationof 10.El-NaggarMY,etal.(2010)ElectricaltransportalongbacterialnanowiresfromShe- surfaceredoxprocessesinG.sulfurreducens.Bioelectrochemistry78:25–29. wanellaoneidensisMR-1.ProcNatlAcadSciUSA107:18127–18131. 43.VirdisB,HarnischF,BatstoneDJ,RabaeyK,DonoseBC(2012)Non-invasivecharac- 11.El-NaggarMY,GorbyYA,XiaW,NealsonKH(2008)Themoleculardensityofstatesin terizationofelectrochemicallyactivemicrobialbiofilmsusingconfocalRamanmi- bacterialnanowires.BiophysJ95:L10–L12. croscopy.EnergyEnvironSci5:7017–7024. 12.PirbadianS,El-NaggarMY(2012)Multistephoppingandextracellularchargetransfer 44.DaltonEF,etal.(1990)Chargetransportinelectroactivepolymersconsistingoffixed inmicrobialredoxchains.PhysChemChemPhys,10.1039/C2CP41185G. molecularredoxsites.ChemPhys141:143–157. 13.PolizziNF,SkourtisSS,BeratanDN(2012)Physicalconstraintsonchargetransport 45.KatakisI,HellerA(1992)L-alpha-glycerophosphateandL-lactateelectrodesbasedon throughbacterialnanowires.FaradayDiscuss155:43–62. theelectrochemical“wiring”ofoxidases.AnalChem64:1008–1013. 14.Strycharz-GlavenSM,SniderRM,Guiseppi-ElieA,TenderLM(2011)Ontheelec- 46.ForsterRJ,WalshDA,ManoN,MaoF,HellerA(2004)Modulatingtheredoxprop- trical conductivity of microbial nanowires and biofilms. Energy Environ Sci 4: ertiesofanosmium-containingmetallopolymerthroughthesupportingelectrolyte 4366–4379. andcross-linking.Langmuir20:862–868. 15.NielsenLP,Risgaard-PetersenN,FossingH,ChristensenPB,SayamaM(2010)Electric 47.HellerA(1992)Electricalconnectionofenzymeredoxcenterstoelectrodes.JPhys currentscouplespatiallyseparatedbiogeochemicalprocessesinmarinesediment. Chem96:3579–3587. Nature463:1071–1074. 48.HodakJ,EtcheniqueR,CalvoEJ,SinghalK,BartlettPN(1997)Layer-by-layerself-as- 16.LovleyDR,etal.(2011)Geobacter:Themicrobeelectric’sphysiology,ecology,and semblyofglucoseoxidasewithapoly(allylamine)ferroceneredoxmediator.Lang- practicalapplications.AdvancesinMicrobialPhysiology,edRobertKP(Academic, muir13:2708–2716. London),Vol59,pp1–100. 49.SchrottGD,BonanniPS,RobuschiL,Esteve-NuñezA,BusalmenJP(2011)Electro- 17.NevinKP,LovleyDR(2000)Lackofproductionofelectron-shuttlingcompoundsor chemicalinsightintothemechanismofelectrontransportinbiofilmsofGeobacter solubilizationofFe(III)duringreductionofinsolubleFe(III)oxidebyGeobactermet- sulfurreducens.ElectrochimActa56:10791–10795. allireducens.ApplEnvironMicrobiol66:2248–2251. 50.Esteve-NunezA,BusalmenJP,BernáA,Gutiérrez-GarránC,FeliuJM(2011)Oppor- tunitiesbehindtheunusualabilityofGeobactersulfurreducensforexocellularres- 18.Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing micro- organismsthatharvestenergyfrommarinesediments.Science295:483–485. pirationandelectricityproduction.EnergyEnvironSci4:2066–2069. 51.BonanniPS,SchrottGD,RobuschiL,BusalmenJP(2012)Chargeaccumulationand 19.Strycharz-GlavenSM,TenderLM(2012)Studyofthemechanismofcatalyticactivityof G.sulfurreducensbiofilmanodesduringbiofilmgrowth.ChemSusChem5:1106–1118. electrontransferkineticsinGeobactersulfurreducensbiofilms.EnergyEnvironSci5: 6188–6195. 20.StrycharzSM,etal.(2011)Applicationofcyclicvoltammetrytoinvestigateenhanced catalyticcurrentgenerationbybiofilm-modifiedanodesofGeobactersulfurreducens 52.RichterLV,SandlerSJ,WeisRM(2012)TwoisoformsofGeobactersulfurreducensPilA strainDL1vs.variantstrainKN400.EnergyEnvironSci4:896–913. htraavnesfdeirs,tianncdtrboiloefislimnpfoilrumsabtiioogne.nJeBsiasc,tceyrtiooclh1r9o4m:2e55lo1c–a2l5iz6a3t.ion,extracellularelectron 21.BondDR,Strycharz-GlavenSM,TenderLM,TorresCI(2012)Onelectrontransport throughGeobacterbiofilms.ChemSusChem5:1099–1105. 53.LiuH,RamnarayananR,LoganBE(2004)Productionofelectricityduringwastewater 22.iRnegGueeorbaaGct,eertsuall.fu(2rr0e0d6u)cBeinosfiflmuealncedllns.aAnopwplirEenpvirroodnuMctiiocrnobleioadls72to:73in4c5r–e7a3s4e8d.current t2r2e8a1t–m2e2n8t5.using a single chamber microbial fuel cell. Environ Sci Technol 38: 54.Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) 23.MalvankarNS,etal.(2011)Tunablemetallic-likeconductivityinmicrobialnanowire networks.NatNanotechnol6:573–579. Pwraotdeur.ctTiorenndosfBbiiooteencherngoyl2a2n:d47b7i–o4c8h5e.micalsfromindustrialandagriculturalwaste- 24.DingYHR,etal.(2006)Theproteomeofdissimilatorymetal-reducingmicroorganism 55.RozendalRA,HamelersHVM,RabaeyK,KellerJ,BuismanCJN(2008)Towardsprac- Geobactersulfurreducensundervariousgrowthconditions.BiochimBiophysActa ticalimplementationofbioelectrochemicalwastewatertreatment.TrendsBiotechnol 1764:1198–1206. 26:450–459. 25.DingYHR,etal.(2008)ProteomeofGeobactersulfurreducensgrownwithFe(III) 56.LoganBE,etal.(2006)Microbialfuelcells:Methodologyandtechnology.EnvironSci oxideorFe(III)citrateastheelectronacceptor.BiochimBiophysActa1784:1935–1941. Technol40:5181–5192. 26.LeangC,CoppiMV,LovleyDR(2003)OmcB,ac-typepolyhemecytochrome,involved 57.TenderLM(2011)Frommudtomicrobialelectrodecatalystsandconductivenano- inFe(III)reductioninGeobactersulfurreducens.JBacteriol185:2096–2103. materials.MRSBull36:800–805. 27.MehtaT,CoppiMV,ChildersSE,LovleyDR(2005)Outermembranec-typecyto- 58.MalikS,etal.(2009)Aself-assemblingself-repairingmicrobialphotoelectrochemical chromesrequiredforFe(III)andMn(IV)oxidereductioninGeobactersulfurreducens. solarcell.EnergyEnvironSci2:292–298. ApplEnvironMicrobiol71:8634–8641. 59.RabaeyK,RozendalRA(2010)Microbialelectrosynthesis—revisitingtheelectrical 28.QianXL,RegueraG,MesterT,LovleyDR(2007)EvidencethatOmcBandOmpBofGeobacter routeformicrobialproduction.NatRevMicrobiol8:706–716. sulfurreducensareoutermembranesurfaceproteins.FEMSMicrobiolLett277:21–27. 60.NatanMJ,WrightonMS(2007)Chemicallymodifiedmicroelectrodearrays.Progress 29.InoueK,etal.(2010)PurificationandcharacterizationofOmcZ,anouter-surface, inInorganicChemistry,edLippardSJ(Wiley,NewYork),Vol37,pp391–494. octahemec-typecytochromeessentialforoptimalcurrentproductionbyGeobacter 61.BardAJ,FaulknerLR(2001)ElectrochemicalMethods:FundamentalsandApplications sulfurreducens.ApplEnvironMicrobiol76:3999–4007. (Wiley,NewYork). 30.InoueK,etal.(2011)Specificlocalizationofthec-typecytochromeOmcZatthe 62.PickupPG,KutnerW,LeidnerCR,MurrayRW(1984)Redoxconductioninsingleand anodesurfaceincurrent-producingbiofilmsofGeobactersulfurreducens.Environ bilayerfilmsofredoxpolymer.JAmChemSoc106:1991–1998. MicrobiolRep3:211–217. 63.MalvankarNS,TuominenMT,LovleyDR(2012)Commenton“Onelectricalconduc- 31.RollefsonJB,StephenCS,TienM,BondDR(2011)Identificationofanextracellular tivityofmicrobialnanowiresandbiofilms”byS.M.Strycharz-Glaven,R.M.Snider,A. polysaccharidenetworkessentialforcytochromeanchoringandbiofilmformationin Guiseppi-ElieandL.M.Tender,EnergyEnvironSci,2011,4,4366.EnergyEnvironSci5: Geobactersulfurreducens.JBacteriol193:1023–1033. 6247–6249. 32.LeangC,QianX,MesterT,LovleyDR(2010)Alignmentofthec-typecytochrome 64.MethéBA,etal.(2003)GenomeofGeobactersulfurreducens:Metalreductionin OmcSalongpiliofGeobactersulfurreducens.ApplEnvironMicrobiol76:4080–4084. subsurfaceenvironments.Science302:1967–1969. 33.QianX,etal.(2011)BiochemicalcharacterizationofpurifiedOmcS,ac-typecyto- 65.NevinKP,etal.(2009)Anodebiofilmtranscriptomicsrevealsoutersurfacecompo- chromerequiredforinsolubleFe(III)reductioninGeobactersulfurreducens.Biochim nentsessentialforhighdensitycurrentproductioninGeobactersulfurreducensfuel BiophysActa1807:404–412. cells.PLoSOne4:e5628. 34.FrickeK,HarnischF,SchröderU(2008)Ontheuseofcyclicvoltammetryforthestudy 66.Strycharz-GlavenSM,TenderLM(2012)Replytothe“Commenton‘Onelectrical ofanodicelectrontransferinmicrobialfuelcells.EnergyEnvironSci1:144–147. conductivityofmicrobialnanowiresandbiofilms’”byN.S.Malvankar,M.T.Tuo- 35.SrikanthS,MarsiliE,FlickingerMC,BondDR(2008)Electrochemicalcharacterization minenandD.R.Lovley,EnergyEnviron.Sci.,2012,5,DOI:10.1039/c2ee02613a.En- ofGeobactersulfurreducenscellsimmobilizedongraphitepaperelectrodes.Bio- ergyEnvironSci5:6250–6255. technolBioeng99:1065–1073. 67.RichardsonDJ,etal.(2012)The‘porin–cytochrome’modelformicrobe-to-mineral 36.RichterH,etal.(2009)CyclicvoltammetryofbiofilmsofwildtypeandmutantGeo- electrontransfer.MolMicrobiol85:201–212. bactersulfurreducensonfuelcellanodesindicatespossiblerolesofOmcB,OmcZ,typeIV 68.BondDR,LovleyDR(2003)ElectricityproductionbyGeobactersulfurreducensat- pili,andprotonsinextracellularelectrontransfer.EnergyEnvironSci2:506–516. tachedtoelectrodes.ApplEnvironMicrobiol69:1548–1555. 37.MarsiliE,SunJ,BondDR(2010)VoltammetryandgrowthphysiologyofGeobacter 69.CaccavoF,Jr.,etal.(1994)Geobactersulfurreducenssp.nov.,ahydrogen-andace- sulfurreducensbiofilmsasafunctionofgrowthstageandimposedpotential.Elec- tate-oxidizingdissimilatorymetal-reducingmicroorganism.ApplEnvironMicrobiol troanalysis22:865–874. 60:3752–3759. 6of6 | www.pnas.org/cgi/doi/10.1073/pnas.1209829109 Snideretal.