ebook img

DTIC ADA560663: Quasi-Ballistic Thermal Transport from Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-ray Beams PDF

0.72 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA560663: Quasi-Ballistic Thermal Transport from Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-ray Beams

LETTERS PUBLISHEDONLINE:8NOVEMBER2009|DOI:10.1038/NMAT2568 Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams MarkE.Siemens1*,QingLi1,RongguiYang2,KeithA.Nelson3,ErikH.Anderson4, MargaretM.Murnane1 andHenryC.Kapteyn1 Fourier theory of thermal transport considers heat transport the reduction in thermal flux for a nanoscale heat source, but as a diffusive process where energy flow is driven by a there is significant variation in their predictions17–19. One model, temperature gradient. However, this is not valid at length the ballistic–diffusive equation model17, provides clear insight by scalessmallerthanthemeanfreepathfortheenergycarriersin separating the size-dependent heat flux into contributions from amaterial,whichcanbehundredsofnanometresincrystalline ballisticanddiffusivecomponents,similartowhatisdoneinthe materials at room temperature. In this case, heat flow will case of rarefied gas20 or electron flow21. Figure2 illustrates the become ‘ballistic’—driven by direct point-to-point transport predictions of this model qualitatively: at large length scales, the ofenergyquanta1.Pastexperimentshavedemonstratedsize- thermaltransportisdominatedbytheFouriercomponent,butas dependentballisticthermaltransportthroughnanostructures thedimensionofthehotspotisreduced,ballistictransportbecomes such as thin films, superlattices, nanowires and carbon increasinglyimportant.Othermodelssuggestthatthetransportis nanotubes1–8. The Fourier law should also break down in the determinedbydifferenteffects,suchasnon-propagatingphonon caseofheatdissipationfromananoscaleheatsourceintothe modes22 and interface effects19. This extensive modelling effort bulk.However,despiteconsiderabletheoreticaldiscussionand has, however, taken place in an absence of real experimental directapplicationtothermalmanagementinnanoelectronics2, data with which to benchmark the models. Given the variations nano-enabled energy systems9,10 and nanomedicine11, this betweenthesemodels,quantitativeexperimentsareveryimportant, non-Fourier heat dissipation has not been experimentally bothforafundamentalunderstandingofthebasicandimportant observed so far. Here, we report the first observation and phenomenonofheatflow,andtobenchmarkmodelsofnanoscale quantitativemeasurementsofthistransitionfromdiffusiveto heattransferfornanosystemdesign. ballistic thermal transport from a nanoscale hotspot, finding In many practical nanosystems, an interface separates a small a significant (as much as three times) decrease in energy heatedregionfromaheat-sinksubstrate,andthethermalresistance transportawayfromthenanoscaleheatsourcecomparedwith of this interface must also be taken into account. The heat Fourier-lawpredictions. flow from the heated nanostructure, as shown in Fig.1a, can WhenheatflowsfromahotspotwithadimensionLsmallerthan then be characterized by an effective resistance acting at the themeanfreepathofphononsintheheatsinkΛ,energy-carrying interface—with contributions from both a ballistic correction to phononstravelballisticallyawayfromthesourceforasignificant theFourierlawandtheconventionalthermalboundaryresistance distance before experiencing collisions. However, in a Fourier (TBR) characterizing interfacial transport at bulk length scales. pictureofthermaltransport,heatflowisassumedtobediffusive TBRismeasuredinthinfilmsusingtime-resolvedopticalpump– (experiencingmanycollisions),withthethermalfluxqdetermined probe methods such as transient thermoreflectance4,23 (TTR). bythetemperaturegradient(q∼∇T).Whenthereisasignificant However,thediffractionlimitforthevisibleprobelightlimitsthis energydensitychangeoveradistancelessthanΛ,thereisnolocal techniquetostructureswithlinewidthsgreaterthan∼1µm—too phononequilibriumandthereforetemperaturecannotbedefined, large in scale to observe ballistic size effects from a nanoscale as illustrated in Fig.1a. Under these circumstances, the Fourier heat source at room temperature. Using a specialized geometry law, which assumes local thermal equilibrium, overestimates the that allowed confined heating without a heterogeneous material thermaltransport1,12,13. interface, Sverdrup et al. used electrical resistance thermometry In the intermediate case when the hotspot dimension L to measure steady-state temperature distributions in a thin 5µm is of the order of Λ, transport is neither fully ballistic nor silicon membrane near a 300-nm-wide highly doped silicon diffusive. The full Boltzmann transport equation for phonons resistor. At temperatures below 200K, they observed a slight mustthenbesolvedtomodelthermaltransport1.Unfortunately, deviation from the prediction of Fourier heat conduction22. an analytical solution of the Boltzmann transport equation for However, this experiment did not allow for any systematic and real systems is usually impractical without some simplifying quantitativecomparisonbetweenexperimentandtheoryowingto assumptions, and numerical simulations vary widely in their the limitations posed by the sample geometry. More recent work prediction of the strength of this nanoscale hotspot effect14–16. did not observe any ballistic size effect at room temperature24. Severalphenomenologicalmodelshavebeenproposedtoexplain It is worth noting however, that all of these measurements were 1JILA,UniversityofColoradoatBoulder,Boulder,Colorado80309,USA,2DepartmentofMechanicalEngineering,UniversityofColorado,Boulder, Colorado80309,USA,3DepartmentofChemistry,MIT,Cambridge,Massachusetts02139,USA,4LawrenceBerkeleyLabsandCenterforX-rayOptics, Berkeley,California94720,USA.*e-mail:[email protected]. 26 NATUREMATERIALS|VOL9|JANUARY2010|www.nature.com/naturematerials ©2010 Macmillan Publishers Limited. All rights reserved. Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED JAN 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Quasi-ballistic thermal transport from nanoscale interfaces observed 5b. GRANT NUMBER using ultrafast coherent soft X-ray beams 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION University of Colorado,JILA and Department of REPORT NUMBER Physics,Boulder,CO,80309 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 5 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 NATUREMATERIALS LETTERS DOI:10.1038/NMAT2568 a L 1 b h Normaliz Sporoftb Xe-ray RReesssffflllooofffeeettttccc tttttXXXeeoo-- drCayCsD Λ e d tempera 120 μ m Dsoiffftr Xac-treadys Diffusive phonon Quasi-ballistic ture 120 μ m transport: Λ << L transport: Λ > L 0 Infrared pump c Ti:sapphire amplifier 2 kHz, 2 mJ, 25 fs Infrared pump beam Nanostructured Ni/sapphire sample Beam splitter Time-delay stage Soft X-ray probe beam Al filter CCD Hollow waveguide for HHG Toroidal mirror Figure1|Experimentalset-upformeasuringthermaltransportacrossananoscaleinterface.a,Schematicillustratingthedifferencebetweendiffusive andquasi-ballisticthermaltransportacrossaninterface.Whenthesizeoftheinterfaceislessthanthephononmeanpathinthesubstrate,theFourier diffusiveheatequationbreaksdown.b,SamplegeometryshowinginfraredlaserilluminationandsoftX-raydetectionscheme.c,Experimental geometry:aninfraredlaserbeamat800nmheatsthenanostructure,andasoftX-raybeamat29nmmonitorstheheatflowfromthenanostructureinto thesubstrate. done using steady-state techniques poorly suited to capturing Phonon-transport regime short-timescaleballisticdynamics. Ballistic Quasi-ballistic Diffusive In this work, we use a beam of ultrafast coherent soft 10 X-rays, at a wavelength of 29nm, to directly observe the csauohroreloianutgendddinnyagnnsa.omsBtiyrcusicntotuefrrefearuosnminanegtordsiccifaafllrleayctmhioeoanntiotsoforsuinorfgctedXiis-nprtaloayceliimtgshetnb,tuwilnke d to rFourier 8 can detect dynamic temperature changes more sensitively than ze would be possible using either ultrashort optical pulse probing mali 6 or steady-state measurements. This ultrafast short-wavelength nor rBallistic y terxapnesriiemnte-ndtiaflfrcaacptaiobnilitmyeththaotdalololowgsyursetpormesaepntosuatnnaenwolsycadleetvheelormpeadl stivit 4 rFourier + rBallistic si transportoverarangeofnanostructuresizes. al re Figure1aillustratesthedifferencebetweendiffusiveandballistic m 2 heattransfer,andFig.1b,cshowsthesamplegeometryandoverall Ther rFourier experimentalset-up.Periodicnickellineswithaheightof20nm, lengthof120µmandwithwidthsLvaryingfrom65to2,000nm 0 0.1 1 10 were fabricated on a sapphire substrate using electron beam Inverse Knudsen number = L /Λ lithography and a lift-off process (at a fixed linewidth-to-period ratioof25%).Anidenticalnickelnanostructurewaspreparedon Figure2|AnalyticalpredictionoftheFourierandballisticcomponentsof a fused-silica reference substrate. As discussed in Supplementary theresistivityforthermaltransportawayfromahalf-cylinderof SectionS1,comparedwithfusedsilica(whichhasanaveragedmean diameterL.WhenthelinewidthLismuchlargerthanthephononmean freepathforheat-carryingphononsof∼2nm),theaveragedmean freepathΛ,theFouriercomponent(blue)isthelargest,butforL<Λ,the free path of heat-carrying phonons in sapphire is of the order of ballisticresistivity(red)isdominant.Figure4showsthefirstmeasurement 100–150nmatroomtemperature.Allexperimentswerecarriedout oftheballisticcorrectiontotheFourierresistivity. atroomtemperatureandinhighvacuum(∼10−6torr).Thenickel lines were impulsively heated by ultrashort (25fs) pulses from a waveguidefilledwithargongas.Theresultingnonlinearinteraction high-power Ti:sapphire laser-amplifier system. Pump pulses at a betweentheintenselaserpulsesandtheatomsinthegasgenerates wavelength of 800nm were focused to a fluence of 2.5mJcm−2, odd harmonics of the driving laser frequency. Absorption of the in a spot roughly five times the size of the nanostructured nickel argongasandaluminiumfilters(usedtoblocktheresidual800nm sampletoensureuniformheating.Owingtothehightransmission light) eliminate all but the 25th, 27th and 29th harmonic orders, of the sapphire and fused-silica substrates at 800nm, only the with a spectrum peaked at 29nm. The full spatial coherence and nanostructurewasheated. short wavelength of the soft X-ray beams from the waveguide To probe the heat flow dynamics, an ultrafast, coherent soft makethemidealforhighlysensitiveinterferometricmeasurements X-ray beam is diffracted from the nanostructure at a variable of nanoscale surface deformation26. Furthermore, the very short pump–probe time delay. The soft X-ray beam is generated duration of the HHG pulses (sub-10fs; ref. 27) makes possible throughthehigh-orderharmonicgeneration(HHG)process25 by unprecedentedtemporalresolutionfordynamicsexperiments.The focusing∼1mJpulsesfromtheTi:sapphireamplifierintoahollow softX-rayharmonicsarerefocusedtoa∼100µmspotonthesample NATUREMATERIALS|VOL9|JANUARY2010|www.nature.com/naturematerials 27 ©2010 Macmillan Publishers Limited. All rights reserved. LETTERS NATUREMATERIALS DOI:10.1038/NMAT2568 a al1.0 surfacestraincausedbythepatternedheatinggeneratestheSAW; gn L = 810 nm weconfirmthatthisisthesourceoftheoscillationsbycomparing n si Measured data themeasuredfrequencyofoscillationwiththeRayleighvelocityfor actio RReessiissttiivviittyy ((bbeuslkt vfiat)lu =e )2 =.1 2.0 SAWpropagationinthesubstrate28. diffr0.5 To interpret our results, we use an analysis similar to that Δ used for TTR measurements of interfacial thermal resistivity. To d ze extract the cooling dynamics of the nickel nanostructure from mali data shown in Fig.3, we implemented a multiphysics model Nor 0 includingthermaltransport,thermomechanicsandFresneloptical 0 2,000 4,000 6,000 8,000 propagation (see Supplementary Section S2). The model takes Time (ps) the full two-dimensional geometry into account. First, thermal b nal 1.0 transport across the interface is governed by the conservation of sig L = 350 nm energyacrossthesurface,wherex andy arealongandawayfrom ction MReesaisstuivreitdy d(baetast fit) = 2.9 thesurfacerespectively Δ d diffra0.5 Resistivity (bulk value) = 2.0 ρ h C dTNi(x,t)=−(TNi(x,t)−Ts(x,y=0,t)) ze Ni Ni Ni dt r ali Effective m or 0 N wherer istheinterfaceresistivitythatwillbemodifiedlater 0 2,000 4,000 6,000 to incluEdffeectibveallistic effects away from the interface, ρ and C Time (ps) Ni Ni arethedensityandvolumetricspecificheatinthenanostructure, c gnal 1.0 respectivelyand,TNi andTs arethetime-andposition-dependent on si L = 1M90ea nsmured data temperaturesinthenanostructureandsubstrate,respectively.Heat cti Resistivity (best fit) = 3.1 propagationismodelledbynumericallysolvingtheheatequation diffra 0.5 Resistivity (bulk value) = 2.0 Δ ∂T(x,y,t) k alized s ∂t =Css∇2Ts(x,y,t) (1) m or 0 N inthesubstratebeneathasinglenickellineusingperiodicboundary 0 1,000 2,000 3,000 4,000 conditionstoaccountfortheneighbouringlines.Inequation(1), Time (ps) k and C are the thermal conductivity and volumetric specific d nal 1.0 hseatofthsesubstraterespectively.Second,thermalexpansionofthe on sig L = M80e ansmured data substratesurface(cid:49)hsiscalculatedfromthethermoelasticequation cti Resistivity (best fit) = 4.4 assuming a stress-free interface29, which involves a weighted diffra 0.5 Resistivity (bulk value) = 2.0 summationoverthetemperaturedistributionateachpoint Δ d alize (cid:49)h(x)=2(1+νs)αs(cid:90) (cid:90) T(x ,y) ydxdy m s 3π 1 (x−x )2+y2 Nor 0 x1 y 1 0 500 1,000 1,500 2,000 where α is the coefficient of linear thermal expansion of the Time (ps) s substrateandν isPoisson’sratio.Thermalexpansionofthenickel s Figure3|NormalizeddynamicsoftX-raydiffractionsignalforNilineson lines is also accounted for using (cid:49)h (x)=α T (x). Finally, Ni Ni Ni sapphire.a–d,Nilinewidthsare810nm(a),350nm(b),190nm(c)and Fresnel optical propagation and diffraction from the resulting 80nm(d).Thesignalineachcaseconsistsofasharpriseowingto surface profile gives the relative signal contributions from the impulsivelaserheating,athermaldecayowingtointerfacialthermal nickellinesandthesubstrate.Weparameterizetheresultsofthis transportandanoscillationowingtosurfaceacousticwavepropagation. numericalmodelintermsofaneffectiveresistivityr thatacts Effective TheredandbluecurvesshowthefitusingtheFourierlawforthermal attheinterfaceandincludesbothconventionalthermalboundary transportinthesubstrateandeitherlarge-scaleinterfacialresistance resistivityandsize-dependentballisticeffectsinthesubstrateowing (blue)oramodifiedeffectiveinterfacialresistance(rEffective,unitsof to the confined heat source, and fit to the time-resolved thermal 10−9Km2W−1),whichaccountsforballisticeffectsfromananoscale decay data. We use the parameter resistivity (r, units m2KW−1) heatsource(red).Thedeviationbetweenthetwofitsincreaseswith ratherthantheresistance(R,unitsKW−1),asthelatterdependson decreasinglinewidth. thecontactareaofthenanostructuredinterface. To qualitatively understand the nature of the ballistic thermal usingagrazing-incidencetoroidalmirror.TheHHGbeamreflected transport,wemodifiedthemodelproposedbyChenforheatflow anddiffractedfromthenanostructureisthenrecordedusingaCCD from a nanoscale sphere into an infinite substrate13, which sepa- (charge-coupleddevice)camera(Fig.1b). ratelycalculatesthediffusiveandballisticcontributionstothetotal ThechangeinsoftX-rayprobediffractionasafunctionofdelay flux17. We implemented the model using a cylindrical geometry aftertheinfraredheatingpulseforvaryingnickellinewidthisshown and extracted the resistivity, which is inversely proportional to in Fig.3. The signal decays as the heat in the nickel nano-lines the heat flux. Details of our model are given in Supplementary dissipatesintothesubstrate.Therateofthisthermaldecaydepends Section S3. The results, shown in Fig.2, illustrate the nature of onthethermaltransportacrossthenickel/substrateinterfaceandin the quasi-ballistic heat-transfer effect as a function of the inverse thesubstrate.Therapidoscillationsinthesignalareduetosurface Knudsen number L/Λ. For linewidths larger than the mean free acoustic wave (SAW) propagation in the nanostructure. Periodic path,theresistivitypredictedbytheFourierlawdominatesandthe 28 NATUREMATERIALS|VOL9|JANUARY2010|www.nature.com/naturematerials ©2010 Macmillan Publishers Limited. All rights reserved. NATUREMATERIALS LETTERS DOI:10.1038/NMAT2568 7 of the average phonon mean free paths of Λ =2nm (upper FS limit of ∼5nm beyond which a good fit is no longer possible) –1W) Fused-silica substrate andΛ =120±10nm.AsdiscussedaboveandinSupplementary 2 mK 6 SectionSaS4,thesevaluescomparewelltotheexpectedvalueofΛ. ¬910 5 of Opuhronmoenasutrraenmsepnotrstdefrmomonstaratneatnhoastctahleephheyasticaslofuurncdeamcaenntables x vity r(Interface 4 Sapphire substrate wtfurhneheedilceephrnaspgtthotrho:oLpsdco→asbleeysLotc+fhotahnΛtesF.ihdToeeuharretiinesegorffuterarcactnmievstepionorbiermesticlusaatmrinvgiebthreyetcchaootaerrnrdreetchcrtteeeigodpinhobonyinnrmoethqnoiumsdirceeialna1s3nge, e resisti 3 rBC issho(1w+nΛas/tLh)e,wrehdicdhasihsetdhelinexepienriFmige.n4t.alTdheispeimndpelniecsethwaetohbesaetrfvloedw, c erfa 2 fromananoscaleheatsourcesmallerthanthephononmeanfree nt pathcanbethoughtofasemergingfromalargerspotcorresponding e i ctiv 1 rTBR rTBR tothesizeofthephononmeanfreepathinthesubstrate. e This is the first direct and systematic measurement of quasi- Eff ballisticthermaltransporteffectsfromananoscaleheatedregion. 0 We observe the breakdown of conventional Fourier heat con- 100 1,000 duction from interfaces smaller than the phonon mean free path Interface contact size L (nm) Λ. We find excellent agreement between the experimental data Figure4|Measuredeffectivethermalresistivityfornickel andananalyticalmodelthatdeterminesthethermaltransportby nanostructuresofwidthLdepositedonfused-silicaandsapphire summingtheballisticanddiffusivecontributions,anddemonstrate substrates.Theblueandreddottedhorizontallinesshowthelarge-scale that the Fourier law can still be used if corrected with an extra resistivityrTBRfordatafromthefused-silicaandsapphiresubstrates.The size-dependent resistance, proportional to the Knudsen number blueandreddashedcurvesshowmodelpredictionsfortheballistic Λ/L, accounting for ballistic effects. Ballistic effects are expected resistivitycorrectionrBC∼Λ/L,withΛFS=2nmandΛSa=120nm, to get even stronger as nanostructures shrink in size or for sili- respectively.Theerrorbarsindicatethestandarddeviationinthefits con substrates with even longer mean free paths (Λ ∼250nm). Si tothedata. Theseexperimentsthusadvancetheunderstandingofheat-transfer fundamentals,andareimportantforthedesignandmanipulation ballistic resistivity is negligible. However, when the dimension of ofnanoscalethermaltransportincircuits,thermoelectrics,photo- theheatedinterfaceiscomparabletoorsmallerthanthephonon voltaicsandotherstructuresofinterestinnanotechnology. mean free path in the substrate, the Fourier law significantly Received22July2009;accepted6October2009; under-predictstheresistivity(orover-predictstheheatflux).The under-prediction in the Fourier law is given by r /r , so publishedonline8November2009 Ballistic Fourier we introduce a ballistic correction resistivity rBC proportional to References this ratio (and therefore proportional to Λ/L), as shown by the 1. Chen,G.,Borca-Tasciuc,D.&Yang,R.G.Nanoscaleheattransfer. red line in Fig.2. The Fourier resistivity, rFourier, is automatically EncyclopediaNanosci.Nanotechnol.7,429–459(2004). accountedforinournumericalmodelforheatpropagationinthe 2. Pop,E.,Sinha,S.&Goodson,K.E.Heatgenerationandtransportin substrate(equation(1)).Wecombinetheballisticcorrectionwith nanometer-scaletransistors.Proc.IEEE94,1587–1601(2006). 3. Capinski,W.S.etal.Thermal-conductivitymeasurementsofGaAs/AlAs the size-independent thermal boundary resistivity for transport superlatticesusingapicosecondopticalpump-and-probetechnique. acrosstheinterfacetogetaneffectiveresistivitygivenby Phys.Rev.B59,8105–8113(1999). 4. Ju,Y.S.&Goodson,K.E.Phononscatteringinsiliconfilmswiththicknessof r =r +r order100nm.Appl.Phys.Lett.74,3005–3007(1999). Effective TBR BC 5. Chen,R.etal.Thermalconductanceofthinsiliconnanowires.Phys.Rev.Lett. 101,105501(2008). Inouranalyses,weextracttheeffectiveresistivityr foreach Effective 6. Chiritescu,C.etal.Ultralowthermalconductivityindisordered,layeredWSe 2 linewidthfromthebestfits(minimizedrootmeansquarederror) crystals.Science315,351–353(2007). toourdata.Bydefinition,largelinewidthmeasurementsonboth 7. Hochbaum,A.I.etal.Enhancedthermoelectricperformanceofroughsilicon samplesyieldthelarge-scalevaluesofthermalboundaryresistivity nanowires.Nature451,163–167(2008). r (equivalent to TTR measurements of thermal boundary 8. Chang,C.W.,Okawa,D.,Garcia,H.,Majumdar,A.&Zettl,A.Breakdown TBR ofFourier’slawinnanotubethermalconductors.Phys.Rev.Lett.101, resistanceonthinfilms),asshownbythehorizontaldottedlines 075903(2008). inFig.4.TheballisticcorrectionrBCisgivenbythedeviationofthe 9. Poudel,B.etal.High-thermoelectricperformanceofnanostructuredbismuth measured resistivity at a given linewidth from the resistivity r antimonytelluridebulkalloys.Science320,634–638(2008). TBR measuredatlargelinewidthsL.Thebestfitstothedatashownin 10. Lee,J.etal.Electrical,thermal,andmechanicalcharacterizationofsilicon microcantileverheaters.J.Microelectromech.Syst.15,1644–1655(2006). Fig.3(redlines)demonstratethatthemeasuredinterfaceresistivity 11. Hamad-Schifferli,K.,Schwarts,J.J.,Santos,A.T.,Zhang,S.G.& increasesastheheatedregiongetssmaller.Themeasuredvaluesof Jacobson,J.M.RemoteelectroniccontrolofDNAhybridizationthrough rEffective,rTBR and rBC for both sapphire and fused-silica substrates inductivecouplingtoanattachedmetalnanocrystalantenna.Nature415, are shown in Fig.4. We measure a small deviation from r for 152–155(2002). TBR thefused-silicasubstrate,becausetheaveragedphononmeanfree 12. Mahan,G.D.&Claro,F.Nonlocaltheoryofthermalconductivity.Phys.Rev.B pathinfused silicaΛ ∼2nmismuch shorterthanthesmallest 38,1963–1969(1988). FS 13. Chen,G.Nonlocalandnonequilibriumheatconductioninthevicinityof nickellinewidths.However,inthecaseofheattransferfromnanos- nanoparticles.J.HeatTransfer118,539–545(1996). tructuresdepositedonsapphiresubstrates,theextractedresistivity 14. Yang,R.G.,Chen,G.,Laroche,M.&Taur,Y.Simulationofnanoscale atthesmallestlinewidthsismorethanthreetimeshigherthanthe multidimensionaltransientheatconductionproblemsusingballistic-diffusive large-scale value. The blue dotted and red dashed lines in Fig.4 equationsandphononBoltzmannequation.J.HeatTransfer 127, showthepredictedresistivityvaluesr (withr =r −r 298–306(2005). Effective BC Effective TBR 15. Saha,S.K.&Shi,L.Moleculardynamicssimulationofthermal proportional to Λ/L) based on the analytical ballistic–diffusive transportatananometerscaleconstrictioninsilicon.J.Appl.Phys.101, model(Fig.2).Thebestfitstotheexperimentaldatagiveestimates 074304(2007). NATUREMATERIALS|VOL9|JANUARY2010|www.nature.com/naturematerials 29 ©2010 Macmillan Publishers Limited. All rights reserved. LETTERS NATUREMATERIALS DOI:10.1038/NMAT2568 16. Panzer,M.A.&Goodson,K.E.Thermalresistancebetweenlow-dimensional 28. Siemens,M.etal.High-frequencysurfaceacousticwavepropagation nanostructuresandsemi-infinitemedia.J.Appl.Phys.103,094301(2008). innanostructurescharacterizedbycoherentextremeultravioletbeams. 17. Chen,G.Ballistic-diffusiveheat-conductionequations.Phys.Rev.Lett.86, Appl.Phys.Lett.94,093103(2009). 2297–2300(2001). 29. Vicanek,M.,Rosch,A.,Piron,F.&Simon,G.Thermaldeformationofa 18. Volz,S.&Chapuis,P.O.Increaseofthermalresistancebetweenananostructure solid-surfaceunderlaserirradiation.Appl.Phys.A59,407–412(1994). andasurfaceduetophononmultireflections.J.Appl.Phys.103,034306(2008). 19. Prasher,R.Predictingthethermalresistanceofnanosizedconstrictions. Acknowledgements NanoLett.5,2155–2159(2005). 20. Hasegawa,M.&Sone,Y.Rarefiedgasflowthroughaslit.Phys.FluidsA3, ThisworkwasfinanciallysupportedbytheDOEDivisionofChemicalSciences, 466–477(1991). Geosciences,andBiosciencesandtheNationalScienceFoundationEngineering 21. Wexler,G.Sizeeffectandnon-localBoltzmanntransportequationinorifice ResearchCenterforExtremeUltravioletScienceandTechnology. anddiskgeometry.Proc.Phys.Soc.Lond.89,927–941(1966). R.Y.acknowledgessupportfromNSF/CAREER(#0846561)andAFOSR/DCT 22. Sverdrup,P.G.,Sinha,S.,Asheghi,M.,Uma,S.&Goodson,K.E.Measurement (#FA9550-08-1-0078)programmes. ofballisticphononconductionnearhotspotsinsilicon.Appl.Phys.Lett.78, 3331–3333(2001). Authorcontributions 23. Cahill,D.G.Analysisofheatflowinlayeredstructuresfortime-domain M.E.S.,R.Y.,Q.L.,M.M.M.andH.C.K.,plannedtheexperiment.Thesamples thermoreflectance.Rev.Sci.Instrum.75,5119–5122(2004). weredesignedandfabricatedbyE.H.A.ExperimentswerecarriedoutbyM.E.S.andQ.L. 24. Etessam-Yazdani,K.,Asheghi,M.&Hamann,H.Proc.HT2007-32868, Allauthorsdiscussedtheresults,analysedthedataandcontributedto ASME-JSME(ThermalEngineeringSummerHeatTransferConference) manuscriptpreparation. 349–356(2007). 25. Rundquist,A.etal.Phase-matchedgenerationofcoherentsoftX-rays.Science Additionalinformation 280,1412–1415(1998). 26. Tobey,R.etal.Ultrafastextremeultravioletholography:Dynamicmonitoring Theauthorsdeclarenocompetingfinancialinterests.Supplementaryinformation ofsurfacedeformation.Opt.Lett.32,286–288(2007). accompaniesthispaperonwww.nature.com/naturematerials.Reprintsandpermissions 27. Miaja-Avila,L.etal.Laser-assistedphotoelectriceffectfromsurfaces. informationisavailableonlineathttp://npg.nature.com/reprintsandpermissions. Phys.Rev.Lett.101,113604(2008). CorrespondenceandrequestsformaterialsshouldbeaddressedtoM.E.S. 30 NATUREMATERIALS|VOL9|JANUARY2010|www.nature.com/naturematerials ©2010 Macmillan Publishers Limited. All rights reserved.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.