Downloaded from http://polymerphysics.net THEJOURNALOFCHEMICALPHYSICS133,124507(cid:2)2010(cid:3) Correlation of nonexponentiality with dynamic heterogeneity from four-point dynamic susceptibility (cid:2) t and its approximation (cid:2) t 4„ … T„ … C. M. Roland,1,a(cid:2) D. Fragiadakis,1 D. Coslovich,2 S. Capaccioli,3 and K. L. Ngai1 1NavalResearchLaboratory,Washington,DC20375-5342,USA 2InstitutfurTheoretischePhysik,TechnischeUniversitatWien,WiednerHauptstraße8-10,A-1040Wien, Austria 3DipartimentodiFisica,UniversitàdiPisa,LargoPontecorvo3,I-56127Pisa,Italy (cid:2)Received 9 June 2010; accepted 1August 2010; published online 24 September 2010(cid:3) Variouspropertiesofvitrifyingliquidsarecorrelatedwiththedispersityofthedynamics,thelatter reflected in the magnitude of the nonexponentiality parameter, (cid:2), describing the distribution of K relaxation times. These properties include the mean relaxation time, (cid:3)(cid:4), the fragility, and the dynamiccrossover.Thecorrelationswith(cid:2) areobservedinbothexperimentaldataandtheresults K frommoleculardynamicssimulationsonLennard-Jones(cid:2)LJ(cid:3)typesystems.Another,ratherobvious propertytocorrelatewith(cid:2) isthedynamicheterogeneity,whichcanbequantifiedfromthenumber K of molecules, Nc, dynamically correlated over a time span (cid:3)(cid:4). For a given LJ system, Nc can be rigorously calculated and we find that it does indeed correlate with (cid:2) over a range of K thermodynamic conditions. However, the analysis of experimental data for a broad range of real materials,whereinanapproximationisrequiredtoobtainN ,revealstheabsenceofanyrelationship c between N and (cid:2) among different materials. © 2010 American Institute of Physics. c K (cid:4)doi:10.1063/1.3481355(cid:5) I. INTRODUCTION Since the conventional description of the dynamics in- volves the correlation of a variable at two times (cid:2)for ex- Viscous liquids are sufficiently dense for molecules to ample, (cid:6)(cid:5)(cid:2)˜k,0(cid:3)(cid:5)(cid:2)˜k,t(cid:3)(cid:7), where (cid:5)is the density and ˜k is the exertareciprocalinfluence,andthesecorrelated,many-body wave-vector(cid:3), it follows that a four-point, time-dependent interactions distinguish the supercooled regime from the correlation function is required to describe dynamic much simpler dynamics at high temperature. The degree of heterogeneities.21,22 Thus, the susceptibility defined in terms intermolecular cooperativity varies spatially, with the dy- of spatial and temporal correlations, namiccorrelationspersistingovertimescalesontheorderof (cid:8) the relaxation time. Since dynamic heterogeneity is intrinsic (cid:6)(cid:2)t(cid:3)= (cid:6)(cid:5)(cid:2)r ,0(cid:3)(cid:5)(cid:2)r +r ,0(cid:3)(cid:5)(cid:2)r ,t(cid:3)(cid:5)(cid:2)r +r ,t(cid:3)(cid:7) dr , to the supercooled liquid state, it is an obvious quantity to 4 1 1 2 1 1 2 r1 2 characterize dynamic properties.1–4 One consequence of dy- (cid:2)1(cid:3) namic heterogeneity is deviation of the linear susceptibility from the Debye or exponential behavior, with the relaxation has a maximum at t(cid:9)(cid:3)(cid:4)that is proportional to Nc, the num- functionbecomingmoredispersivetoreflecttheheterogene- ber of correlating molecules22–24 ity of the local dynamic environments. A variety of experi- mental methods have been employed to demonstrate that N =max(cid:10)(cid:6)(cid:2)t(cid:3)(cid:11)(cid:12)(cid:6)max. (cid:2)2(cid:3) c 4 4 nonexponentialrelaxationresultsfromasuperpositionofdy- namicallydistinguishablecontributions.5Thisnonexponenti- Efforts to study dynamic heterogeneities have been stymied by the difficulty of determining (cid:6)(cid:2)t(cid:3) since conventional re- ality, commonly assessed from the magnitude of the Kohl- 4 rausch stretch exponent, (cid:2), is known to correlate with laxation spectroscopies yield the linear susceptibility. How- relaxation properties such Kas fragility6 and the dynamic ever, molecular dynamics simulations20,25–28 and multidi- crossover (cid:2)change in dynamics above T (cid:3).7Additionally, (cid:2) mensional NMR29–32 have been employed to obtain (cid:6)4(cid:2)t(cid:3) g K respectively for model particle systems and a few real mate- is related to phenomena such as rotational-translational decoupling8–11 and the confinement-induced enhancement of rials (cid:2)data for the latter limited to low temperatures(cid:3). molecularmobilities.12–14Thus,quantifyingthedynamichet- A development in quantifying dynamic heterogeneities in real materials was the derivation by Berthier et al.21 of erogeneity and nonexponentiality of liquids can provide in- (cid:6)(cid:2)t(cid:3) in terms of the temperature derivative of two-point lin- sight into the fundamental variables governing the dynamics 4 ear susceptibilities, (cid:7)(cid:2)t(cid:3), nearT .Indeed,modelsoftheglasstransitiongenerallyposit g (cid:13) (cid:14) a growing dynamic correlation length as causing the marked k k (cid:3)(cid:7)(cid:2)t(cid:3) 2 liantciroenasreesouflt(cid:3)s(cid:4)siungvgietrsitfyainngalltieqruniadtsiv15e–1v9ie(cid:2)awltphooiungt2h0(cid:3)r.ecentsimu- (cid:6)4(cid:2)t(cid:3)(cid:8) (cid:9)cBPT2(cid:6)T2(cid:2)t(cid:3)= (cid:9)cBPT2 (cid:3)T , (cid:2)3(cid:3) where (cid:9)c is the isobaric heat capacity change at T and k P g B a(cid:3)Electronicmail:[email protected]. is the Boltzmann constant. This offers the possibility of ob- 0021-9606/2010/133(cid:4)12(cid:2)/124507/4/$30.00 133,124507-1 ©2010AmericanInstituteofPhysics Downloaded 29 Oct 2010 to 132.250.22.10. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Correlation Of Nonexponentiality With Dynamic Heterogeneity From 5b. GRANT NUMBER Four-Point Dynamic Susceptibility X4(t) And Its Approximation XT(t) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Washington,DC,20375 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES The Journal Of Chemical Physics 133, 2010, Government or Federal Purpose Rights License. 14. ABSTRACT Various properties of vitrifying liquids are correlated with the dispersity of the dynamics, the latter reflected in the magnitude of the nonexponentiality parameter, K, describing the distribution of relaxation times. These properties include the mean relaxation time, , the fragility, and the dynamic crossover. The correlations with K are observed in both experimental data and the results from molecular dynamics simulations on Lennard-Jones LJ type systems. Another, rather obvious property to correlate with K is the dynamic heterogeneity, which can be quantified from the number of molecules, Nc, dynamically correlated over a time span. For a given LJ system, Nc can be rigorously calculated and we find that it does indeed correlate with K over a range of thermodynamic conditions. However, the analysis of experimental data for a broad range of real materials, wherein an approximation is required to obtain Nc, reveals the absence of any relationship between Nc and K among different materials. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 5 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 124507-2 Rolandetal. J.Chem.Phys.133,124507(cid:4)2010(cid:2) tainingthenumberofmoleculeswithcorrelateddynamicsin terms of readily accessible experimental quantities, k N (cid:2)T,P(cid:3)(cid:15) B T2(cid:10)max(cid:6)(cid:2)t,T,P(cid:3)(cid:11)2. (cid:2)4(cid:3) c (cid:9)cP(cid:2)P(cid:3) t T A number of works have appeared in which the (cid:6)(cid:2)t(cid:3) ap- T proximation was used to evaluate N for different c materials33,34 and different thermodynamic conditions.35 A comparisonofsimulationresultsfor(cid:6) and(cid:6) indicatedrea- 4 T sonable correspondence between the two methods for longer (cid:3)(cid:4).27 Conceptually the spatial extent and amplitude of the dy- namic correlations are expected to have a connection to the dispersion in the relaxation times since dynamic heterogene- ity is defined by molecular mobilities. By the same token properties that correlate with (cid:2) should also correlate with FIG.1. Kohlrauschexponentasafunctionoftheproductvariable(cid:5)5.07/T K forsimulatedLJparticles.Eachsymbolrepresentsadistinctstatepoint.Fits N andviceversa.Upuntilnow,anyrelationbetween(cid:2) and c K totheself-intermediatescatteringfunctionatlongertimeareshownfortwo N hasnotbeenevaluated.Inthispaper,weprovidethetest, temperaturesintheinset.SimulationdataarefromRef.28. c using simulations of the Kob–Andersen Lennard-Jones (cid:2)LJ(cid:3) mixture36 as a function of temperature T and density (cid:5). The nonexponentiality parameter (cid:2) is obtained from the self- (cid:5)(cid:10)/T in Ref. 28.Within the experimental error, (cid:2)K is invari- K ant for state points for which the scaling variable (cid:5)(cid:10)/T is intermediate scattering function and N from the four-point dynamicsusceptibility,(cid:6)(cid:2)t(cid:3).Correlatiocnbetween(cid:2) andN constant.InFig.2thesesame(cid:2)Kareplottedasafunctionof 4 K c (cid:3)(cid:2), and the results indicate that (cid:2) is a unique function of (cid:3)(cid:2) isassessedbycomparingthechangesofthesetwoquantities K on varying the thermodynamic conditions, i.e., at different for any thermodynamic condition in the regime where den- combinations of T and (cid:5).To test the correlation between (cid:2)K sityscalingholds.Thisconstancyof(cid:2)Kforallstatepointsat and N obtained from (cid:6) via Eq. (cid:2)4(cid:3), we use experimental any fixed (cid:3)(cid:4) has been shown from experimental data on c T data of 45 glass-formers including polymers, oxide glass- many glass-formers.39,40 formers, selenium, hydrogen bonded materials, and van der Tocomparedynamiccorrelationtononexponentiality,in Waals glass-formers. Fig.3(cid:6)maxisplottedversus(cid:2).Thecorrespondenceisgood 4 K and in accord with the usual interpretation of dynamic II. RESULTS heterogeneity—an increasing correlation (cid:2)larger Nc(cid:3) associ- ated with an increasing breadth of the relaxation function A. Correlation between stretching parameter (cid:3) and K (cid:2)smaller (cid:2)(cid:3). Also shown in Fig. 3 are the values of N N from (cid:2)max K c c 4 calculatedfrom(cid:6)(cid:2)t(cid:3)(cid:4)Eq.(cid:2)4(cid:3)(cid:5).Theagreementisgoodatlow T Previously it was shown28 from molecular dynamics temperaturesandhigherdensities,butotherwisetheapproxi- simulation of the Kob–Andersen binary mixture with par- mationunderestimatesthenumberofdynamicallycorrelated ticlesinteractingaccordingtoa12-6LJpotentialthatthefull particles. This agrees with previous simulation results com- t-dependence, and thus the maximum in (cid:6)4(cid:2)t(cid:3)(cid:2)=Nc(cid:3), were paring (cid:6)4(cid:2)t(cid:3) and (cid:6)T(cid:2)t(cid:3) as a function of temperature at zero invariantoverarelevantrangeofT and(cid:5)forstatepointsfor pressure.27 which the scaling variable (cid:5)(cid:10)/T is constant with (cid:10)=5.07. Moreover, the reduced relaxation time (cid:3)(cid:2), defined as the Kohlrausch decay time for the self-intermediate scattering function F (cid:2)k,t(cid:3) multiplied by(cid:5)1/3T1/2,37 is also invariant for s statepointsforwhich(cid:5)(cid:10)/T isconstant.Thus,thesamevalue ofthematerialconstant(cid:10)=5.07superposesboth(cid:6)maxand(cid:3)(cid:2) 4 of the system versus (cid:5)(cid:10)/T, which means that the number of dynamicallycorrelatedparticlesisauniquefunctionof(cid:3)(cid:2),at least in the regime where density scaling holds. Values of (cid:2) were obtained by nonlinear fitting of the K stretchedexponentialfunction(cid:7)(cid:2)t(cid:3)=(cid:7) exp(cid:2)−(cid:2)t/(cid:3)(cid:3)(cid:2)K(cid:3) tothe 0 long-time portion of F (cid:2)k,t(cid:3) at a reduced wave-vector k(cid:5)1/3 s =7.44 over the same range of T and (cid:5)as in Ref. 28. The fit was cut off at short times where the contribution of the fast initialdecayofF (cid:2)k,t(cid:3) becamesignificant;thatis,wherethe s shape of the curve begins to deviate from a stretched exponential.38 Representative fits are shown in the inset of Fig. 1. This figure shows (cid:2)K plotted as a function of (cid:5)(cid:10)/T FfrIoGm.2fi.tsKoofhlFra(cid:2)uksc,th(cid:3)eaxtploonnegnetratsimaef.unEcatciohnsoyfmtbhoelrerelapxraetsieonntstimaedidsetitnecrmtsitnaetde using (cid:10)=5.07, the same exponent superposing (cid:6)max versus point.SimulatsiondataarefromRef.28. 4 Downloaded 29 Oct 2010 to 132.250.22.10. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions 124507-3 Nonexponentialityanddynamicheterogeneity J.Chem.Phys.133,124507(cid:4)2010(cid:2) FIG.5. FragilitycorrespondingtodatainFig.4.Correlationcoefficientis FIG.3. N from(cid:6) (cid:4)Eq.(cid:2)2(cid:3)—opensymbols(cid:5)andfrom(cid:6) (cid:4)Eq.(cid:2)4(cid:3)—filled c 4 T indicated. symbols(cid:5)vstheKohlrauschexponentforLJparticles.Eachsymbolrepre- sents a distinct state point. Increasing dynamic heterogeneity is associated (cid:13) (cid:14) (cid:13) (cid:14) fwroitmhathberoraidgeorroduisspecraslicounlaotifornelaatxahtiigohnetrimteems.pTerhaetu(cid:6)rTesapapnrdoxliomwaetriodnednespitaiertss. N = kB (cid:2)K 2 dln(cid:3)(cid:4) 2, (cid:2)5(cid:3) SimulationdataarefromRef.28. c (cid:9)c e dlnT P where e is Euler’s number. One of the most common dy- B. Lack of correlation between (cid:3)K and Nc from (cid:2)T„t… namic properties of supercooled liquids is their fragility, m, approximation proportionaltotheapparentactivationenthalpyatT normal- g In Fig. 4 plotted versus (cid:2) is N calculated at T from ized by kBT; that is, m is proportional to the last factor in Eq. (cid:2)4(cid:3) using experimental meKasuremcents for 45 matgerials. brackets in Eq.(cid:2)5(cid:3). It is well accepted thatm correlates with The N data were taken from Ref. 34 and (cid:2) are as reported the breadth of the relaxation time distribution; this has in thecoriginal papers (cid:2)references in Ref. 34K(cid:3). Since a larger even been quantified as m=250(cid:2)(cid:11)30(cid:3)−320(cid:2)K (cid:2)Ref. 6(cid:3) or m(cid:12)(cid:2)−2(cid:2)Ref.34(cid:3).Thisimpliesthatasmaller(cid:2) inEq.(cid:2)5(cid:3)is numberofdynamicallycorrelatedmoleculesshouldcoincide K K compensated by a larger fragility. The inference is that the withagreaterdispersityofrelaxationtimes,weexpectthese variationofN amongdifferentmaterialsisalmostentirelya quantities to be inversely related. However, a linear correla- c consequence of differences in (cid:9)c . Thus, both the form of tion of the data in Fig. 4 yields a Pearson correlation coeffi- P Eq.(cid:2)5(cid:3)andthedatainFig.4indicatethatthereisessentially cient R=−0.22, indicating an absence of dependence. If we no relationship between the dispersion of relaxation times replaceN bythecorrespondingmolarvolumeorthenumber c of chemical groups (cid:2)e.g., “beads” as defined by Stevenson and the degree of correlation of the dynamics as quantified and Wolynes41(cid:3), the correlation deteriorates further, with the using (cid:6)T(cid:2)t(cid:3). absolute value of R becoming smaller. Since (cid:2)K and m are correlated (cid:2)inversely(cid:3), it follows If(cid:7)(cid:2)t(cid:3)hastheKohlrauschform,toaverygoodapproxi- from the results in Fig. 4 that Nc and m would exhibit no mation Eq. (cid:2)4(cid:3) can be rewritten so that (cid:2) appears mutual dependence. Previously Berthier et al.21 examined K explicitly,34 data for 15 materials and concluded: “Dynamic correlations revealed by (cid:6)(cid:2)t(cid:3) increase weakly with fragility.” Extending T the data set threefold (cid:2)Fig. 5(cid:3) emphasizes the weakness of this putative correlation. Hong et al.42 recently reported that the dynamic heterogeneity length scale deduced from the frequency of the Boson peak for various polymers and mo- lecular liquids is not correlated with fragility.This is consis- tent with our results herein. Moreover, at T N from Eq. (cid:2)5(cid:3) g c shows an inverse proportionality to the configurational en- tropy (cid:2)assuming the latter is related to the heat capacity change at T (cid:3),34 which implies no correlation with (cid:2). g K III. CONCLUSIONS Wefindthatmax(cid:10)(cid:6)(cid:2)t(cid:3)(cid:11)correlateswith(cid:2) asTand(cid:5)are 4 K variedforagivensystem,andalthoughthe(cid:6) approximation T FIG.4. PlotofKohlrauschexponentvsNcobtainedfromthe(cid:6)T(cid:2)t(cid:3)approxi- is inaccurate away from Tg, using the latter to obtain Nc this mationfor45glass-formersatT andatmosphericpressure(cid:2)dataarefrom correlation with (cid:2) is maintained for a given material. The Ref.34(cid:3):polymers(cid:2)diamonds(cid:3),ogxideglass-formersandselenium(cid:2)circles(cid:3), problem arises whKen comparing different systems at their hydrogen bonded materials (cid:2)triangles(cid:3), and van der Waals glass-formers (cid:2)squares(cid:3).Theabsenceofcorrelationisindicatedbythesmallvalueofthe respective Tg. Different materials exhibit different Nc (cid:2)from Pearsonlinearcorrelationcoefficient. (cid:6)T(cid:3) for a given (cid:2)K because of differences in (cid:9)cP. The form Downloaded 29 Oct 2010 to 132.250.22.10. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions 124507-4 Rolandetal. J.Chem.Phys.133,124507(cid:4)2010(cid:2) ofEq.(cid:2)4(cid:3)obviatesthepossibilityofacorrelationofdynamic 9M.T.Cicerone,F.R.Blackburn,andM.D.Ediger,J.Chem.Phys. 102, heterogeneity with either (cid:2) or fragility. 471(cid:2)1995(cid:3). K 10M.D.Ediger,J.Non-Cryst.Solids 235–237,10(cid:2)1998(cid:3). Thus, it appears that short of abandoning the idea that a 11K.L.Ngai,J.Phys.Chem.B 103,10684(cid:2)1999(cid:3);Philos.Mag. 87,357 growing (cid:6)4 susceptibility implies more dispersive dynamics, (cid:2)2007(cid:3). it may be necessary to re-examine the assumptions underly- 12G.B.McKenna,J.Phys.IV 10,53(cid:2)2000(cid:3). ing (cid:6). Its derivation assumes that the contribution to the 13P.Scheidler,W.Kob,K.Binder,andG.Parisi,Philos.Mag.B 82,283 T (cid:2)2002(cid:3). nonlinear susceptibility from density fluctuations is signifi- 14K.L.Ngai,Philos.Mag.B 82,291(cid:2)2002(cid:3). cantly smaller than the effect of energy fluctuations.21 How- 15G.Biroli,J.-P.Bouchaud,K.Miyazaki,andD.R.Reichman,Phys.Rev. ever, for van der Waals molecular liquids, density and ther- Lett. 97,195701(cid:2)2006(cid:3). 16G.Tarjus,S.A.Kivelson,Z.Nussinov,andP.Viot,J.Phys.:Condens. mal energy exert about equal effects on the linear response, Matter 17,R1143(cid:2)2005(cid:3). and even for polymers the contribution from density is not 17P.G.DebenedettiandF.H.Stillinger,Nature(cid:2)London(cid:3) 410,259(cid:2)2001(cid:3). negligible.43Notethatdifferencesbetweentheexactandap- 18X. Y. Xia and P. G. Wolynes, Proc. Natl.Acad. Sci. U.S.A. 97, 2990 proximation values for N are larger for an LJ system than (cid:2)2000(cid:3). for simulated silica (cid:2)at lecast at higher T(cid:3),27 and indeed the 19G.AdamandJ.H.Gibbs,J.Chem.Phys. 43,139(cid:2)1965(cid:3). 20S.Karmakar,C.Dasgupta,andS.Sastry,Proc.Natl.Acad.Sci.U.S.A. densitycontributionisexpectedtobemoreimportantforthe 106,3675(cid:2)2009(cid:3). liquid than for the network glass-former. 21L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. Berthier et al.27 pointed out that the susceptibility can L’Hote,F.Ladieu,andM.Pierno,Science 310,1797(cid:2)2005(cid:3). 22D. Chandler, J. P. Garrahan, R. L. Jack, L. Maibaum, and A. C. Pan, change not only due to a growing length scale but also be- Phys.Rev.E 74,051501(cid:2)2006(cid:3). cause of the growth in the magnitude of the local fluctua- 23C. Donati, S. Franz, S. C. Glotzer, and G. Parisi, J. Non-Cryst. Solids tions.Whereas(cid:2) dependsonhowmuchtheindividual(cid:2)mo- 307–310,215(cid:2)2002(cid:3). K lecular(cid:3) time varies within this volume, greater differences 24C.Toninelli,M.Wyart,L.Berthier,G.Biroli,andJ.-P.Bouchaud,Phys. Rev.E 71,041505(cid:2)2005(cid:3). amongreorientationalratesdonotnecessarilyimplyalonger 25K.Vollmayr-Lee,W.Kob,K.Binder,andA.Zippelius,J.Chem.Phys. lengthscalefordecayofmutualcorrelations.Inotherwords, 116,5158(cid:2)2002(cid:3). howdifferenttwoquantitiesareisnotequivalenttohowfast 26N.Lačević,F.W.Starr,T.B.Schrøder,andS.C.Glotzer,J.Chem.Phys. their correlation decays. Nevertheless, it is not obvious how 119,7372(cid:2)2003(cid:3). 27L.Berthier,G.Biroli,J.-P.Bouchaud,W.Kob,K.Miyazaki,andD.R. the amplitude of the fluctuations would not be manifested in Reichman,J.Chem.Phys. 126,184503(cid:2)2007(cid:3). the magnitude of (cid:2)K, although in the model of Wolynes,18 28D.CoslovichandC.M.Roland,J.Chem.Phys. 131,151103(cid:2)2009(cid:3). different glass-formers are distinguished by the range of ac- 29K.Schmidt-RohrandH.W.Spiess,Phys.Rev.Lett. 66,3020(cid:2)1991(cid:3). 30S. A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, and H. W. tivation barriers within their correlation volume, rather than Spiess,J.Non-Cryst.Solids 307–310,208(cid:2)2002(cid:3). by the size of the latter. Clearly, further work on real mate- 31M.T.Cicerone,F.R.Blackburn,andM.D.Ediger,Macromolecules 28, rialsmeasuredbytechniquessuchasmultidimensionalNMR 8224(cid:2)1995(cid:3). is required in order to better assess the relationship between 32U.Tracht,M.Wilhelm,A.Heuer,H.Feng,K.Schmidt-Rohr,andH.W. Spiess,Phys.Rev.Lett. 81,2727(cid:2)1998(cid:3). the relaxation time dispersion and N , and the utility of the c 33C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. (cid:6)(cid:2)t(cid:3) approximation in quantifying the latter. T Biroli,J.-P.Bouchaud,F.Ladieu,D.L’Hôte,andG.Tarjus,Phys.Rev.E 76, 041510 (cid:2)2007(cid:3); C. Dalle-Ferrier, S. Eibl, C. Pappas and C. Alba- Simionesco,J.Phys.:Condens.Matter 20,494240(cid:2)2008(cid:3). ACKNOWLEDGMENTS 34S.Capaccioli,G.Ruocco,andF.Zamponi,J.Phys.Chem.B 112,10652 (cid:2)2008(cid:3). The work at NRLwas supported by the Office of Naval 35D. Fragiadakis, R. Casalini, and C. M. Roland, J. Phys. Chem. B 113, Research. D.F. thanks the National Research Council for a 13134(cid:2)2009(cid:3). 36W.KobandH.C.Andersen,Phys.Rev.E 51,4626(cid:2)1995(cid:3). postdoctoral fellowship. 37Althoughtheeffectismodestinthesupercooledregime,theuseof(cid:3)(cid:2)is derived from the strict applicability of the scaling relation to reduced 1H.Sillescu,J.Non-Cryst.Solids 243,81(cid:2)1999(cid:3). quantities, see W. G. Hoover and M. Ross, Contemp. Phys. 12, 339 2M.D.Ediger,Annu.Rev.Phys.Chem. 51,99(cid:2)2000(cid:3). (cid:2)1971(cid:3). 3R.Richert,J.Phys.:Condens.Matter 14,R703(cid:2)2002(cid:3). 38C. M. Roland, K. L. Ngai, and L. J. Lewis, J. Chem. Phys. 103, 4632 4H.Andersen,Proc.Natl.Acad.Sci.U.S.A. 102,6686(cid:2)2005(cid:3). (cid:2)1995(cid:3). 5R. Bohmer, R. V. Chamberlin G. Diezemann, B. Geil, A. Heuer, G. 39C.M.Roland,R.Casalini,andM.Paluch,Chem.Phys.Lett. 367,259 Hinze,S.C.Kuebler,R.Richert,B.Schiener,H.Sillescu,H.W.Spiess, (cid:2)2003(cid:3). U.Tracht,andM.Wilhelm,J.Non-Cryst.Solids 235–237,1(cid:2)1998(cid:3). 40K.L.Ngai,R.Casalini,S.Capaccioli,M.Paluch,andC.M.Roland,J. 6R.Böhmer,K.L.Ngai,C.A.Angell,andD.J.Plazek,J.Chem.Phys. Phys.Chem.B 109,17356(cid:2)2005(cid:3). 99,4201(cid:2)1993(cid:3). 41J.D.StevensonandJ.G.Wolynes,J.Phys.Chem.B 109,15093(cid:2)2005(cid:3). 7R. Casalini, K. L. Ngai, and C. M. Roland, Phys. Rev. B 68, 014201 42L.Hong,P.D.Gujrati,V.N.Novikov,andA.P.Sokolov,J.Chem.Phys. (cid:2)2003(cid:3). 131,194511(cid:2)2009(cid:3). 8F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B: Condens. 43C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Matter 88,195(cid:2)1992(cid:3). Prog.Phys. 68,1405(cid:2)2005(cid:3). Downloaded 29 Oct 2010 to 132.250.22.10. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions