Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) August 2011 Journal Article Post Print March 2008 – June 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In House BOUNDS FOR EIGENVALUES OF ARROWHEAD MATRICES AND THEIR APPLICATIONS TO HUB MATRICES AND WIRELESS 5b. GRANT NUMBER N/A COMMUNICATIONS 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d. PROJECT NUMBER WCNA Lixin Shen, and Bruce Suter 5e. TASK NUMBER PR 5f. WORK UNIT NUMBER OJ 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Air Force Research Laboratory/Information Directorate Syracuse University REPORT NUMBER Rome Research Site/RITB Department of Mathematics 525 Brooks Road Syracuse NY 13244 N/A Rome NY 13441 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory/Information Directorate N/A Rome Research Site 26 Electronic Parkway 11. SPONSORING/MONITORING Rome NY 13441 AGENCY REPORT NUMBER AFRL-RI-RS-TP-2011-7 12. DISTRIBUTION AVAILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #: 88ABW-2009-2757. Date Cleared: 23 June 2009. 13. SUPPLEMENTARY NOTES © 2009 L. Shen. EURASIP Journal on Advances in Signal Processing, Vol. 2009, No. 12-Article ID-379402. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This work is copyrighted. One or more of the authors is a U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is joint owner of the work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright owner. 14. ABSTRACT This paper considers the lower and upper bounds of Eigenvalues of arrow-head matrices. We propose a parameterized decomposition of an arrowhead matrix which is a sum of a diagonal matrix and a special kind of arrowhead matrix whose Eigenvalues can be computed explicitly. The Eigenvalues of the arrowhead matrix are then estimated in terms of Eigenvalues of the diagonal matrix and the special arrowhead matrix by using Weyl’s theorem. Improved bounds of the Eigenvalues are obtained by choosing a decomposition of the arrowhead matrix which can provide best bounds. Some applications of these results to hub matrices and wireless communications are discussed. 15. SUBJECT TERMS Matrix Calculus, Signal Processing, MIMO System, Wireless Communications, Eigenvalue 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON ABSTRACT OF PAGES Bruce Suter a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) UU 13 U U U N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 HindawiPublishingCorporation EURASIPJournalonAdvancesinSignalProcessing Volume2009,ArticleID379402,12pages doi:10.1155/2009/379402 Research Article Bounds for Eigenvalues of Arrowhead Matrices and Their Applications to Hub Matrices and Wireless Communications LixinShen1andBruceW.Suter2 1DepartmentofMathematics,SyracuseUniversity,Syracuse,NY13244,USA 2AirForceResearchLaboratory,RITC,Rome,NY13441-4505,USA CorrespondenceshouldbeaddressedtoBruceW.Suter,[email protected] Received29June2009;Accepted15September2009 RecommendedbyEnricoCapobianco This paper considers the lower and upper bounds of eigenvalues of arrow-head matrices. We propose a parameterized decomposition of an arrowhead matrix which is a sum of a diagonal matrix and a special kind of arrowhead matrix whose eigenvaluescanbecomputedexplicitly.Theeigenvaluesofthearrowheadmatrixarethenestimatedintermsofeigenvaluesof thediagonalmatrixandthespecialarrowheadmatrixbyusingWeyl’stheorem.Improvedboundsoftheeigenvaluesareobtained bychoosingadecompositionofthearrowheadmatrixwhichcanprovidebestbounds.Someapplicationsoftheseresultstohub matricesandwirelesscommunicationsarediscussed. Copyright©2009L.ShenandB.W.Suter. This is an open access article distributed under the Creative Commons Attribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. 1.Introduction recently in [5–8] such that the constructed arrowhead matrix has the pregiven eigenvalues and other additional In this paper we develop lower and upper bounds for requirements. arrowhead matrices. A matrix Q ∈ Rm×m is called an Our motivation to study lower and upper bounds of arrowheadmatrixifithasaformasfollows: arrowheadmatricesisfromKungandSuter’srecentworkon ⎡ ⎤ the hub matrix theory [9] and its applications to multiple- D c Q=⎣ ⎦, (1) inputandmultipleoutput(MIMO)wirelesscommunication ct b systems.Amatrix,sayA,isahubmatrixwithmcolumnsifits firstm−1columns(callednonhubcolumns)areorthogonal where D ∈ R(m−1)×(m−1) is a diagonal matrix, c is a vector to each other with respect to the Euclidean inner product in Rm−1, andb is a real number. Here the superscript and its last column (called hub column) has a Euclidean “t” signifies the transpose. The arrowhead matrix Q is norm greater than any other columns. Subsequently, it was obtained by bordering the diagonal matrix D by the vector shown that the Gram matrix of A, that is, Q = AtA, is c and the real number b. Hence, sometimes the matrix an arrowhead matrix and its eigenvalues could be bounded Q in (1) is also called a symmetric bordered diagonal by the norms of the columns of A. As pointed out in matrix. In physics, arrowhead matrices have been used to [9–11], the eigenstructure of Q determines the properties describe radiationless transitions in isolated molecules [1] of wireless communication systems. This motivates us to andoscillatorsvibrationallycoupledwithaFermiliquid[2]. reexaminestheseboundsoftheeigenvaluesofQandmakes Numerically efficient algorithms for computing eigenvalues them sharper. In [9], the hub matrix theory is also applied and eigenvectors of arrowhead matrices were discussed in to the MIMO beamforming problem by comparing k of m [3]. The properties of eigenvectors of arrowhead matrices transmittingantennaswiththelargestsignal-to-noiseratio, werestudiedin[4],andasanapplicationoftheirresults,an including the special case where k = 1 which corresponds alternative proof of Cauchy’s interlacing theorem was given toatransmittinghub.Therelativeperformanceofresulting there.Theexistenceofarrowheadmatriceswasinvestigated systemcanbeexpressedastheratioofthelargesteigenvalue 1 2 EURASIPJournalonAdvancesinSignalProcessing of the truncated Q matrix to the largest eigenvalue of the Lemma1. LetQ∈Rm×mbeanarrowheadmatrixoftheform Q matrix. Again, it was previously shown that these ratios (1),whereD =diag(d1,d2,...,dm−1)∈R(m−1)×(m−1),b∈R, couldbeboundedbytheratiosofnormsofcolumnsofthe andc=(c1,c2,...,cm−1)∈Rm−1.Then associatedhubmatrix.Sharperboundswillbepresentedin Section4. m(cid:15)−1 m(cid:9)−1(cid:16)(cid:16) (cid:16)(cid:16)2m(cid:15)−1 The well-known result on the eigenvalues of arrowhead det(λI−Q)=(λ−b) (λ−dk)− (cid:16)cj(cid:16) (λ−dk). matrices is the Cauchy interlacing theorem for Hermitian k=1 j=1 k=1 matrices [12]. We assume that the diagonal elements dj, k=/ j (6) j = 1,2,...,m−1, of the diagonal matrix D in (1) satisfy therelationd1 ≤ d2 ≤ ··· ≤ dm−1.Letλ1,λ2,...,λm bethe eigenvalues of Q arranged in increasing order. The Cauchy The proof of this result can be found in [5, 13] and thereforeisomittedhere. interlacingtheoremsaysthat WhenthediagonalmatrixD in(1)isazeromatrix,the λ1≤d1≤λ2≤d2≤···≤dm−2≤λm−1≤dm−1≤λm. (2) followingresultisfollowedfromLemma1. When the vector c and the real number b in (1) are taken Corollary2. LetQ ∈ Rm×m beanarrowheadmatrixhaving intoconsideration,alowerboundofλ andanupperbound thefollowingform: 1 of λm were developed by using the well-known Gershgorin ⎡ ⎤ theorem(see,e.g.,[3,12]),thatis, 0 c Q=⎣ ⎦, (7) ⎧ ⎫ ct b ⎨ m(cid:9)−1 ⎬ λm<max⎩d1+|c1|,...,dm−1+|cm−1|,b+ i=1|ci|⎭, (3) wherec isavectorinRm−1 andb isarealnumber.Thenthe ⎧ ⎫ eigenvaluesofQare ⎨ m(cid:9)−1 ⎬ λ1>min⎩d1−|c1|,...,dm−1−|cm−1|,b− |ci|⎭. (4) (cid:13) (cid:13) i=1 b− b2+4(cid:4)c(cid:4)2 b+ b2+4(cid:4)c(cid:4)2 λ1(Q)= 2 , λm(Q)= 2 , Accurate bounds of eigenvalues of arrowhead matrices are of great interest in applications as mentioned before. λi(Q)=0, fori=2,...,m−1. The main results of this paper are presented in Theorems (8) 11and12fortheupperandlowerboundsofthearrowhead matrices. It is also shown in Corollary13 that the resulting Proof. ByusingLemma1,wehave boundsaretighterthanin(2),(3),and(4). (cid:17) (cid:18) Therestofthepaperisoutlinedasfollows.InSection2, det(λI−Q)=λm−2 λ2−bλ−(cid:4)c(cid:4)2 . (9) wewillintroducenotationandpresentseveralusefulresults on the eigenvalues of arrowhead matrices. We give our main results in Section3. In Section4, we revisit the lower Clearly,λ=0isazeroofdet(λI−Q)withmultiplicitym−2. and upper bounds of the ratio of eigenvalues of arrowhead The z(cid:19)eros of the quadratic poly(cid:19)nomial λ2 −bλ−(cid:4)c(cid:4)2 are matrices associated with hub matrices and wireless com- (b − b2+4(cid:4)c(cid:4)2)/2 and (b + b2+4(cid:4)c(cid:4)2)/2, respectively. munication systems [9], and subsequently, we make those Thiscompletestheproof. boundsshaperbyusingtheresultsinSection3.InSection5, we compute the bounds of arrowhead matrices using the Inwhatfollows,amatrixQhavingaformin(7)iscalled developed theorems via three examples. Conclusions are aspecialarrowheadmatrix.Thefollowingcorollary(also,see giveninSection6. [3])isadirectresultfromLemma1. 2.NotationandBasicResults Corollary3. LetQ beanm×marrowheadmatrixgivenby (1),whereD =diag(d1,d2,...,dm−1)∈R(m−1)×(m−1),b∈R, The identity matrix is denoted by I. The notation andc=(c1,c2,...,cm−1)∈Rm−1.Letusdenotetherepetition diag(a1,a2,...,an)representsadiagonalmatrixwhosediag- ofthenumberdj inthesequence{di}im=−11bykj.Ifk j ≥2,then onalelementsarea1,a2,...,an.Thedeterminantofamatrix dj istheeigenvalueofQwithmultiplicitykj−1. A is denoted by det(A). The eigenvalues of a symmetric matrixA∈Rn×narealwaysorderedsuchthat Proof. When the integer kj ≥ 2, the result follows from Lemma1 since (λ − dj)kj−1 is a factor of the polynomial λ1(A)≤λ2(A)≤···≤λn(A). (5) det(λI−Q). For a v(cid:13)ec(cid:14)tor a ∈ Rn, its Euclidean norm is defined to be Corollary 4. Let Q be an m × m arrowhead matrix given (cid:4)a(cid:4):= ni=1|ai|2. by (1), whereD = diag(d1,d2,...,dm−1) ∈ R(m−1)×(m−1), Thefirstresultisaboutthedeterminantofanarrowhead b ∈ R, and c = (c1,c2,...,cm−1) ∈ Rm−1. Suppose that the matrixandisstatedasfollows. lastk ≥ 2diagonalelementsdm−k,dm−k+1,...,dm−1 ofD are 2 EURASIPJournalonAdvancesinSignalProcessing 3 identicalanddistinctfromthefirstm−k−1diagonalelements entriesofthevectorcin(1)arenonzero.Thereasonforthis d1,d2,...,dm−k−1ofD.Defineanewmatrix assumptionisthefollowing.Supposethatcj,the jthentryof ⎡ ⎤ c,isnonzero,itcanbeeasilyseenfromLemma1thatλ−dj d1 c(cid:20)1 isafactorofdet(λI −Q);thatis,dj isoneofeigenvaluesof ⎢ ⎥ ⎢⎢⎢⎢ ... ... ⎥⎥⎥⎥ Qa.mTahtreixrewmhaiicnhinigseoibgteanivnaelduebsyosfimQpalryedtheleetsianmgethaestjhthosreoowf Q(cid:20) :=⎢⎢ d c(cid:20) ⎥⎥ (10) and column ofQ . In summary, for any arrowhead matrix, ⎢ m−k−1 m−k−1⎥ ⎢ ⎥ wecanfindeigenvaluescorrespondingtorepeatedvaluesin ⎢⎣ dm−k c(cid:20)m−k ⎥⎦ Dorassociatedwithzeroelementsincbyinspection. c(cid:20) ··· c(cid:20) c(cid:20) b In this paper, we call a matrix Q in (1) irreducible if 1 m−k−1 m−k the diagonal elements d1,d2,...,dm−1 of Q are distinct and w(cid:13)(cid:14)ith c(cid:20)j = cj for j = 1,2,...,m − k − 1 and c(cid:20)m−k = all elements of c are nonzero. By using Corollary4 and the mj=−m1−k|cj|2.ThentheeigenvaluesofQarethatofQ(cid:20)together above discussion, this arrowhead matrix can be reduced to withdm−k withmultiplicityk−1. anirreducibleone. aPnrododf.isStiinnccetfrnoummnbuermsbdemrs−dk,1d,dm2−,k.+.1.,,.d.m.,−dkm−1−,1waerheavideentical c(R1oe)nmsisaidrakevree5dc.t;oItnhraint[4iCs,,mi9t−]a1,l.loWHweesrcmtahniattidacinrinecattrhlryeocwmohanetsratidrxuQcmtoamftratihnceeysf(oraremrael ⎛ ⎞ symmetric)arrowheadmatricesdenotedbyQ(cid:20) fromQ.The m(cid:15)−1(λ−di)=⎜⎜⎜⎝m(cid:15)−k(λ−di)⎟⎟⎟⎠(λ−dm−k)k−1, j≤m−k−1, darieagtohneaelxealcetmlyesnatms eofasthtehsoesesyomfmQ.etTrihceavrercotworhec(cid:20)aidnmQ(cid:20)actoriucleds i=1 i=1 i=/ j i=/ j bechosenas m(cid:9)−1 (cid:16)(cid:16)(cid:16)cj(cid:16)(cid:16)(cid:16)2m(cid:15)−1(λ−di) c(cid:20)=(±|c1|,±|c2|,...,±|cm−1|). (13) j=m−k i=1 i=/ j In such a way, there are 2m−1 such symmetric arrowhead =⎛⎝ m(cid:9)−1 (cid:16)(cid:16)(cid:16)cj(cid:16)(cid:16)(cid:16)2⎞⎠⎛⎝m−(cid:15)k−1(λ−di)⎞⎠(λ−dm−k)k−1. mevaetrryicseusc.hBseycmaumseetdreict(aλrIr−owQh)ea=dmdeatt(rλixI −Q(cid:20)Qh(cid:20)a)sbtyhLeeimdemnatic1a,l j=m−k i=1 eigenvalueswithQ.Thisisthereasonwhywejustconsider (11) theeigenvaluesofrealarrowheadmatricesinthispaper. By(6)inLemma1,wehave Thefollowingwell-knownresultbyWeyloneigenvalues of a sum of two symmetric matrices is used in the proof of det(λI−Q) ourmaintheorem. =(λ−b)m(cid:15)−1(λ−di)−m(cid:9)−1(cid:16)(cid:16)(cid:16)cj(cid:16)(cid:16)(cid:16)2m(cid:15)−1(λ−di) Tmhaetroirceesm.L6et(uWseayssl)u.mLeetthFatathnedeGigebnevatlwuoesmof×F,mG,saynmdmFe+trGic i=1 j=1 i=1 i=/ j havebeenarrangedinincreasingorder.Then ⎛ ⎞ =⎜⎜⎜⎝(λ−b)m(cid:15)i=−1k(λ−di)−m(cid:9)j=−1k(cid:16)(cid:16)(cid:16)c(cid:20)j(cid:16)(cid:16)(cid:16)2m−(cid:15)i=k1−1(λ−di)⎟⎟⎟⎠(λ−dm−k)k−1 λλjj((FF++GG))≤≥λλii((FF))++λλjj−−ii++1m((GG)),, ffoorrii≤≥jj., ((1154)) i=/ j (cid:17) (cid:18) =det λI−Q(cid:20) ·(λ−dm−k)k−1. Proof. See[14,page62]or[12,page184]. (12) To apply Theorem6 for estimating eigenvalues of an Clearly, if λ is an eigenvalue of Q, then λ is either an irreducible arrowhead matrix Q, we need to decompose Q eigenvalue of Q(cid:20) or dm−k. Conversely,d m−k is an eigenvalue intoasumoftwosymmetricmatriceswhoseeigenvaluesare ofQwithmultiplicityk−1andtheeigenvaluesofQ(cid:20)arethat relatively easy to be computed. Motivated by the structure ofQ.Thiscompletestheproof. ofthearrowheadmatrixandtheeigenstructureofaspecial arrowheadmatrix(see,Corollary2),wewriteQintoasum ByusingCorollaries3and4,tostudytheeigenvaluesof ofadiagonalmatrixandaspecialarrowheadmatrix. Q,wemayassumethatthediagonalelementsd1,d2,...,dm−1 To be more precisely, let Q ∈ Rm×m be an irreducible of Q are distinct when we study the eigenvalues of Q in arrowheadmatrixasfollows: (1).Sinceeigenvaluesofsquarematricesareinvariantunder ⎡ ⎤ similaritytransformations,wecanwithoutlossofgenerality D c arrange the diagonal elements to be ordered so that d < Q=⎣ ⎦, (16) 1 ct d d2 < ··· < dm−1. Furthermore, we may assume that all m 3 4 EURASIPJournalonAdvancesinSignalProcessing where dm ∈ R, D = diag(d1,d2,...,dm−1) with 0 ≤ d1 < for j =1,2,...,m.ByCorollary2,wehave d2 <···<dm−1 ≤dm,andcisavectorinRm−1.Foragiven ρ∈[0,1],wewrite λ1(S)=s, λm(S)=t, λj(S)=0, for j =2,...,m−1, (23) Q=E+S, (17) wheresandtaregivenby(21). where ⎡ ⎤ E=diag(cid:29)d1,d2,...,dm−1,ρdm(cid:30), S=⎣c0t (cid:29)1−cρ(cid:30)dm(1⎦8.) UpperBounds. Byλj((1Q4))≤inλTih(Eeo)r+emλm6+,j−wi(eSh)ave (24) Therefore, we can use Theorem6 to give estimates of the foralli≥ j.Clearly,foragiven j, eigenvalues of Q via those of E and S. To number the ! eigenvaluesofE,weintroducethefollowingdefinition. λj(Q)≤min λi(E)+λm+j−i(S) . (25) i≥j Definition7. Foranumberρ∈[0,1],wedefineanoperator Tρ that maps a sequence {di}mj=1 satisfying 0 ≤ d1 < d2 < M0,oarnedptre≥ci0se,lwy,eshinacvee{d(cid:20)i}mi=1ismonotonicallyincreasing,s≤ ··· < dm−1 ≤ dm toanewsequence{d(cid:20)i}mj=1 := Tρ({di}mj=1) ! accordingtothefollowingrules:ifρdm ≤d1,thend(cid:20)1 :=ρdm λ1(Q)≤min d(cid:20)1+t,d(cid:20)2,...,d(cid:20)m−1,d(cid:20)m+s and d(cid:20)j+1 := dj for j = 1,...,m−1; if ρdm > dm−1, then ! d(cid:20)j := dj for j = 1,...,m−1 and d(cid:20)m := ρdm; otherwise, =min d(cid:20)1+t,d(cid:20)2,d(cid:20)m+s , dtj(cid:20)hj=e:r=ejed+xji1sft,os.r.a.n,jm=in−t1e,g1.e..r.,j0j0s,ud(cid:20)cjh0+1th:a=t dρjd0m<,aρnddmd(cid:20)≤j+1d:j0=+1,dtjhfeonr λj(Q)≤min d(cid:20)j+t,d(cid:20)j+1,...,d(cid:20)m!=min d(cid:20)j+t,d(cid:20)j+1!(26) 0 Theorem 8. Let Q ∈ Rm×m be an irreducible arrow- for j =2,...,m−1,and head matrix having a form of (16), where D = diag(d1,d2,...,dm−1)with0 ≤ d1 < d2 < ··· < dm−1 ≤ dm, λm(Q)≤λm(E)+λm(S)=d(cid:20)m+t. (27) and c is a vector in Rm−1. For a given ρ ∈ [0,1], define {d(cid:20)i}mj=1:=Tρ({di}mj=1).Then,onehas Inconclusion,(19)holds. ⎧ ! ⎪⎪⎪⎪⎨min d(cid:20)1+t,d(cid:20)2,d(cid:20)!m+s , if j =1, LowerBounds. By(15)inTheorem6,wehave,foragiven j, λj(Q)≤⎪⎪⎪⎪⎩md(cid:20)min+td(cid:20),j+t,d(cid:20)j+1 , iiff2j =≤mj ≤, m−1, λj(Q)≥mi≤ajx λi(E)+λj−i+1(S)!. (28) (19) Hence, ⎧ ⎪⎪⎪⎪⎨d(cid:20)1+ s, ! if j =1, λ1(Q)≥λ1(E)+λ1(S)=d(cid:20)1+s, ! ! λj(Q)≥⎪⎪⎪⎪⎩mmaaxx dd(cid:20)(cid:20)1j−+1,td,(cid:20)dj(cid:20)m+−s1,,d(cid:20)m+s!, iiff2j =≤mj ≤, m−1, λj(Q)≥max d(cid:20)j+s,d(cid:20)j−1,...,d(cid:20)1 =max d(cid:20)j+s,d(cid:20)j−1(29) (20) for j =2,...,m−1,and where ! s= (cid:29)1−ρ(cid:30)dm−(cid:13)(cid:29)1−ρ(cid:30)2dm2 +4(cid:4)c(cid:4)2, λm(Q)≥max d(cid:20)m+s,d(cid:20)m−1,...,d(cid:20)2!,d(cid:20)1+t (30) 2 =max d(cid:20)m+s,d(cid:20)m−1,d(cid:20)1+t . (cid:13) (21) (cid:29) (cid:30) (cid:29) (cid:30) t= 1−ρ dm+ 1−ρ 2dm2 +4(cid:4)c(cid:4)2. As we can see from Theorem8, the lower and upper 2 boundsoftheeigenvaluesforQarefunctionsofρ∈[0,1]for Proof. Foragivennumberρ ∈ [0,1],wesplitthematrixQ the given irreducible matrix Q. In other words, the bounds into a sum of a diagonal matrix E and a special arrowhead ofeigenvaluesvarywiththenumberρ.Particularly,whenwe matrixSaccordingto(17),whereEandSaredefinedby(18). chooseρ beingtheendingpoints,thatis,ρ = 0andρ = 1, Clearly,weknowthat we can give an alternative proof of interlacing eigenvalues theorem for arrowhead matrices (see, e.g., [12, page 186]). λj(E)=d(cid:20)j (22) Thistheoremisstatedasfollows. 4 EURASIPJournalonAdvancesinSignalProcessing 5 Theorem9(Interlacingeigenvaluestheorem). LetQ∈Rm×m Proof. InTheorem8,theupperboundsoftheeigenvaluesof be an irreducible arrowhead matrix having a form in (16), Qin(19)aredeterminedbyd(cid:20)j, j = 1,2,...,m,ands andt whereD = diag(d1,d2,...,dm−1)with0 ≤ d1 < d2 < ··· < in(21).Theycanbeviewedasfunctionsofρin[0,1].That dm−1 ≤dm,andc isavectorinRm−1.LettheeigenvaluesofQ is,theupperboundsoftheeigenvaluesofQarefunctionsof bedenotedby{λj}mj=1withλ1≤λ2≤···≤λm.Then ρintheinterval[0,1].Therefore,weareabletofindoptimal bounds of the eigenvalues of Q by choosing proper ρ. The λ1≤d1≤λ2≤d2≤···≤dm−2≤λm−1≤dm−1≤λm. upperboundsonλj(Q)for j =1,2≤ j ≤m−1,and j =m (31) in(34)arediscussedseparately. Proof. By using (19) withρ = 0 in Theorem8, we have UpperBoundofλ (Q). From(19),wehave λj ≤ dj for j = 1,2,...,m−1. By using (20) withρ = 1 1 ! in Theorem8, we obtain λj ≥ dj−1 for j = 2,3,...,m. λ1(S)≤min d(cid:20)1+t,d(cid:20)2,d(cid:20)m+s , (35) Combiningthesetwopartstogetheryieldsourresult. where d(cid:20)k, s, and t are functions of ρ on the interval The proof of the above result shows that we could [0,1]. In this case, we consider ρ in the following four haveimprovedlowerandupperboundsforeacheigenvalue subintervals: [0,d1/dm], [d1/dm,d2/dm], [d2/dm,dm−1/dm], opnfaexraatnmseiecrttreierodnρu.ciinbl[e0,a1r]r.owOhueramdaminatrreisxubltys wfinildlibneggaivnenopintimthael ad(cid:20)n1d+[tdm=−1/df4m(ρ,1),],d(cid:20)r2es=pecdti1v,ealyn.dFod(cid:20)rmρ+∈s [=0,df11/(dρm).],Fwoer hρav∈e [d1/dm,d2/dm],wehaved(cid:20)1+t = d1+ f2(ρ),d(cid:20)2 = ρdm,and 3.MainResults d(cid:20)m +s = dm−1 + f1(ρ). For ρ ∈ [d2/dm,dm−1/dm], we have d(cid:20)1+t =d1+ f2(ρ),d(cid:20)2 =d2,andd(cid:20)m+s=dm−1+ f1(ρ).For Associated with the arrowhead matrix Q in Theorem8, we ρ ∈ [dm−1/dm,1],wehaved(cid:20)1+t = d1+ f2(ρ),d(cid:20)2 = d2,and definefourfunctions fi,i=1,2,3,4,ontheinterval[0,1]as d(cid:20)m+s= f3(ρ).Hence follow: " (cid:13) # mind(cid:20) =d , f1(cid:29)ρ(cid:30):= 12 (cid:29)1−ρ(cid:30)dm− (cid:29)1−ρ(cid:30)2dm2 +4(cid:4)c(cid:4)2 , ⎧ ρ∈[0,1"] 2 # 1 & ’ Obvfffi234o(cid:29)(cid:29)(cid:29)uρρρs(cid:30)(cid:30)(cid:30)ly:::,===ρρ12dd"mm(cid:29)1++s−=ff12ρ(cid:29)(cid:29)f(cid:30)ρρ(cid:29)d(cid:30)(cid:30)ρm,.(cid:30)+, (cid:13)(cid:29)1t−=ρ(cid:30)f2(cid:29)dρm2(cid:30)+, 4(cid:4)c(cid:4)2#, ((3323)) mρ∈iVn(cid:17)d(cid:20)m+s(cid:18)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ddddmmmm−−−−1111++++ ffff1111"""ddddddddmmmm12mm−−#11,,##,, iiiiffffVVVV ====&&&0ddddd,dmmm12dmd−,,m11ddd,dmm21,m−’’1,,’, 1 2 ⎧ & ’ twiniohtnehTrseehfpesi,rafiono=oldlfo1tow,fa2iron,eu3ggr,io4mvb,eisanseinrsbivymrae(tpsi2oul1enl)t,s.ba.buotuqtuimteounsoetfounliacsitwyeowfiflulnsece- (cid:17) (cid:18) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨df21(+0),f2"dd2#, iiffVV ==&0dd,1dd,m1dd2,’, Lf3emaTnmdheaf4p10rao.reoTfinhocefrfetuhanissicntleigomonnmstfah1eiasinnodtmerfi2vttabelod[t.0h,a1r]e.decreasingwhile mρ∈iVn d(cid:20)1+t =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dd1++ ff2"(1d)dmm,m−1#, iiffVV ==&&dddmmm2−,1d,dmm1m−’1.’, 1 2 d m Theorem 11. Let Q be an irreducible arrowhead matrix (36) defined by (16) and satisfying all assumptions in Theorem8. ThentheeigenvaluesofQareboundedaboveby Since 0 > f1(d1/dm) > f1(d2/dm) > f1(dm−1/dm), f2(0) ≥ ⎧ $ " #% dm>d1,and f2(d2/dm)> f2(dm−1/dm)> f2(1)>0,wehave ⎪⎪⎪⎪⎪⎪⎨min d1,dm−1+ f1 ddmm−1 , if j =1, λ1(Q)≤min$d1,dm−1+ f1"ddm−1#%. (37) λj(Q)≤⎪⎪⎪⎪⎪⎪⎩ddmj,−1+ f2"ddm−1#, iiff2j =≤mj ≤. m−1, UpperBoundofλj(Q),for2≤ j ≤m−1. F!rmom(19),wehave m (34) λj(Q)≤min d(cid:20)j+t,d(cid:20)j+1 . (38) 5 6 EURASIPJournalonAdvancesinSignalProcessing Inthiscase,weconsiderρlyinginthefollowingfoursubin- Theorem 12. Let Q be an irreducible arrowhead matrix tervals:[0,dj−1/dm],[dj−1/dm,dj/dm],[dj/dm,dj+1/dm],and defined by (16) and satisfying all assumptions in Theorem8. [dj+1/dm,1],respectively.Forρ ∈[0,dj−1/dm],wehaved(cid:20)j + ThentheeigenvaluesofQareboundedbelowby wH[thda=eevjn+ehd1c/adej(cid:20)d−vjm1e+,+d1(cid:20)tj]f=,2+(wρfte)4(ahρ=na)dvaednd(cid:20)jddj(cid:20)++j1d(cid:20)+j=+f2t1(dρ==j).dFdaojnj.rdF+ρod(cid:20)r∈f2j+ρ([1ρd∈)j=−a[1nd/dρjd/dmdd(cid:20)mm,jd+.,1djF/jod=+rm1/]dρd,jmw+∈1]e., λj(Q)≥⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ddm1a++x,ff1d""j−ddd1m11,d##j,,+ f1(ddmj )-, iiifff2jj ==≤1mj,≤. m−1, 1 2 d m mind(cid:20)j+1=dj, (45) ρ∈[0,1] Proof. In Theorem8, the lower bounds of the eigenvalues ⎧ ( ) * + (cid:17) (cid:18) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ddjj−−11++ ff22(ddddjjmm−−11),, iiffVV ==*0dd,jm−dd1jm−,1ddmj,+, [eooa0inffg,deQt1hn]tev.iianTneluhi(g(ee2e2sr0n1e)ofv)o.afarlArueQe,seswdwbeeyoetfeacdrrQhmiedoaioanibrnseleiednTgftuhboneypfiocrdornt(cid:20)iepjdom,enorjs1pρ2=ot.i,fmTt1ρhah,el2einb,lod.ow.tuih.s,encermudsisb,nsooitaouefnnrntdvhdsaiessl mρ∈iVn d(cid:20)j+t =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ddjj++ ff22((1d)d,jm+1), iiffVV ==**ddddmjj−,1d,d1jm++1.+, gLiovwenerfBoroujn=d1of,2λ1≤(Qj).≤λF1m(roQ−m)1≥(,2ad0(cid:20)n1)d,+wjse=.hmavein(45),separa(t4el6y). m (39) In this case, we consider ρ lying in the following two subintervals: [0,d1/dm] and [d1/dm,1]. For ρ ∈ [0,d1/dm], Therefore, d(cid:20)1+s= f3(ρ).Forρ∈[d1/dm,1],wehaved(cid:20)1+s=d1+f1(ρ). Hence , ( ) - λj(Q)≤min dj−1+ f2 ddjm−1 ,dj . (40) (cid:17) (cid:18) ⎧⎪⎪⎪⎪⎨d1+ f1"ddm1#, ifV =&0,ddm1’, Sincedj−1+ f2(dj−1/dm) = f4(dj−1/dm) > f4(0) ≥ dm ≥ dj, mρ∈aVx d(cid:20)1+s =⎪⎪⎪⎪⎩d1+ f1"dd1#, ifV =&dd1,1’. (47) weget m m Itleadsto λj(Q)≤dj. (41) "d # λ (Q)≥d + f 1 . (48) 1 1 1 d m UpperBoundofλm(Q). From(19)wehave LowerBoundofλ (Q). From(20),wehave 2 λm(Q)≤d(cid:20)m+t. (42) ! λ (Q)≥max d(cid:20),d(cid:20) +s . (49) 2 1 2 Forρ ∈ [0,dm−1/dm],wehaved(cid:20)m+t = dm−1+ f2(ρ)while In this case, we consider ρ lying in the following three forρ∈[dm−1/dm,1],wehaved(cid:20)m+t= f4(ρ): subintervals: [0,d1/dm], [d1/dm,d2/dm], and [d2/dm,1]. For ⎧ " # & ’ ρ ∈ [0,d1/dm],wehaved(cid:20)1 = ρdm,d(cid:20)2+s = d1+ f1(ρ).For mρ∈iVn(cid:17)d(cid:20)m+t(cid:18)=⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ddmm−−11++ ff22"ddddmmmm−−11#,, iiffVV ==&0d,dmdm−dm1m−,11’,. ρρHe∈∈nc[[edd,21//ddmm,,1d]2,/dwme],hwamveeahxd(cid:20)ad1(cid:20)v1e==d(cid:20)1dd11=,andd1,d(cid:20)d2(cid:20)2++ss==df23(+ρ)f.1(Fρo)r. (43) ρ∈V ⎧ & ’ Hence, "d # (cid:17) (cid:18) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨d1+ f1("0d), # ifV =&0d,ddm1d,’ (50) Thiscompletestλhme(pQro)o≤f.dm−1+ f2 dmm−1 . (44) mρ∈aVx d(cid:20)2+s =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dd2++ ff1"ddm22#,, iiffVV ==&ddm12,,1d’m2. , 2 1 d d m m 6 EURASIPJournalonAdvancesinSignalProcessing 7 Theseleadto ρ∈[dm−1/dm,1],wehaved(cid:20)1+t =d1+ f2(ρ),d(cid:20)m−1 =dm−1, d(cid:20)m+s= f3(ρ).Hence $ " #% d λ (Q)≥max d ,d + f 2 . (51) 2 1 2 1 dm max d(cid:20)m−1=dm−1, ρ∈[0,1] ⎧ & ’ LowerBoundofλλjj((QQ)),3≥≤mjax≤ dm(cid:20)j−−1,1d(cid:20).j+Frso!m. (20),weha(v5e2) (cid:17) (cid:18) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ddmm−−11++ ff11("0dd),1#, iiffVV==&0dd,1dd,m1ddm,−2’, m m m aItaennnrddtvha[idl(cid:20)sdsj:cj/+a[ds0mes,,,dw1=j]−e.2c/Fdodojnm−rs1]iρ,d+e[∈rdfρ1j−[(l0ρ2y,/)idd.nmjgF−,o2idn/rdj−tρmh1]/e,d∈fmwol]el[,odhw[ja−divn2je−/gd1dt/(cid:20)mhdj−,rmd1e,ej−d=s1ju//dddbmmijn−]]2-,, mρ∈aVx d(cid:20)m+s =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ddmm−+1+f1(f11"),ddmm−2#, iiffVV==&&ddddmmm−−21,,d1dm’m,−1’, m w[ρHdee∈jn−h1c[a/edvdjem/d,d(cid:20)mdj−,j/11d]m,=w],eρwdhemahvaeavnde(cid:20)djd−(cid:20)d1j(cid:20)−j=1+=dsjd−=j1−a1ndadjn−dd1(cid:20)jd+(cid:20)+j+fs1s(=ρ=)d.fjF3+(oρr)f1.ρ(Fρo∈)r. (cid:17) (cid:18) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨dd1++ ff2""dddm11##,, iiffVV ==&&0d,1dd,m1d’m,−2’, 1 2 d d d max d(cid:20) +t = m m m mρ∈aVx(cid:17)d(cid:20)j+s(cid:18)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ddddjjjj−−++11mρ++ff∈11aV((xff11ddd((dd(cid:20)0mjjj−d)d)),1jm−,,=2)d,j−1iiii,ffffVVVV ====****0dddddd,jjjmm−−dd,21j1m−,,+2dddd+.mjjm−,+1+, , Sf2iρn(∈dcVλemm−0(2Q>/1d)mf1≥)(0>m)fa>2x⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩($dddf1md11(m−d++1−1//1ffdd,22md""mm))dd,ddmm+>wmm−−e21ff11h##((a1,,dv)me,−diiff21/VV+dm==f)2"a&&ndddddmdd1mmmm−−#f221%(,,d.1d1’dm/.md−m1((55)’76,>)) m m (53) Sinced1+ f2(d1/dm)= f4(d1/dm)> f4(0)≥dm,weget " # d Sincedj−1>dj−1+ f1(0)>dj−1+ f1(dj−2/dm),wehave λm(Q)≥d1+ f2 d1 . (58) m , ( )- λj(Q)≥max dj−1,dj+ f1 ddj . (54) Thiscompletestheproof. m Corollary 13. Let Q be an irreducible arrowhead matrix defined by (16) and satisfying all assumption in Theorem8. LowerBoundofλm(Q). From(20),wehave ThenupperandlowerboundsoftheeigenvaluesofQobtained byTheorems11and12aretighterthanthosegivenby(2),(3), ! and(4). λm(Q)≥max d(cid:20)1+t,d(cid:20)m−1,d(cid:20)m+s . (55) Proof. Since Inthiscase,weconsiderρlyinginthefollowingthreesubin- $ " #% d tervals: [0,d1/dm], [d1/dm,dm−2/dm], [dm−2/dm,dm−1/dm], min d1,dm−1+ f1 dm−1 ≤d1, (59) and [dm−1/dm,1]. For ρ ∈ [0,d1/dm], we have d(cid:20)1 + t = m f4(ρ), d(cid:20)m−1 = dm−2, d(cid:20)m + s = dm−1 + f1(ρ). For ρ ∈ thentheupperboundfortheeigenvalueλ (Q)givenby(34) [d1/dm,dm−2/dm],wehaved(cid:20)1+t=d1+ f2(ρ),d(cid:20)m−1 =dm−2, inTheorem11istighterthanthatby(2).T1heupperbounds d(cid:20)m+s=dm−1+ f1(ρ).Forρ∈[dm−2/dm,dm−1/dm],wehave fortheeigenvaluesλj(Q), j =2,...,m−1,providedby(34) d(cid:20)1+t =d1+ f2(ρ),d(cid:20)m−1 =ρdm,d(cid:20)m+s=dm−1+ f1(ρ).For inTheorem11arethesameasthoseby(2). 7 8 EURASIPJournalonAdvancesinSignalProcessing Notethat0≤d1<···<dm−1≤dm;theright-handside 4.HubMatrices of (3)withb =dmis Using the improved upper and lower bounds for the ⎧ ⎫ ⎨ m(cid:9)−1 ⎬ arrowheadmatrix,wewillnowexaminetheirapplicationsto max⎩d1+|c1|,...,dm−1+|cm−1|,b+ |ci|⎭ hub matrices and MIMO wireless communication systems. i=1 Theconceptofthehubmatrixwasintroducedinthecontext (60) ofwirelesscommunicationsbyKungandSuterin[9]andit m(cid:9)−1 =dm+ |ci|. isreexaminedhere. i=1 Definition17. AmatrixA∈Rn×miscalledahubmatrix,ifits Sf2in(dcem−(cid:4)1c/(cid:4)dm)≤=(cid:14)f4im(=d−1m1−|c1i/|d,md)m,w+eh(cid:4)ac(cid:4)ve = f4(1), and dm−1 + tfiorsetamch−o1thcoerluwminths(rceaslpleedctntoonhthuebEcoulculimdenasn)ainrenoerrthporogdouncatl and its last column (called hub column) has its Euclidean m(cid:9)−1 & "d #’ "d # normgreaterthanorequaltothatofanyothercolumns.We dm+ |ci|− dm−1+ f2 dm−1 ≥ f4(1)− f4 dm−1 >0, assumethatallcolumnsofAarenonzerosvectors. i=1 m m (61) We denote the columns of a hub matrix A by a1,a2,...,am.Vectorsa1,a2,...,am−1areorthogonaltoeach andthentheupperboundofλm(Q)from(34)inTheorem11 other. We further assume that 0 < (cid:4)a1(cid:4) ≤ (cid:4)a2(cid:4) ≤ ··· ≤ istighterthanthatfrom(3). (cid:4)am(cid:4). In such case, we callA an ordered hub matrix. Our Nowweturntothelowerboundsofλj(Q).Since interest is to study the eigenvalues ofQ = AtA, the Gram matrixA.Inthecontextofwirelesscommunicationsystems, , ( )- d Qisalsocalledthesystemmatrix.ThematrixQhasaform max dj−1,dj+ f1 dj ≥dj−1 (62) asfollows: m ⎡ ⎤ for j =2,...,m−1and ⎢ (cid:4)a1(cid:4)2 (cid:6)a1,am(cid:7) ⎥ ⎢ ⎥ "d # ⎢⎢ (cid:4)a2(cid:4)2 (cid:6)a2,am(cid:7) ⎥⎥ d1+ f2 dm1 ≥dm>dm−1, (63) Q=⎢⎢⎢⎢ ... ... ⎥⎥⎥⎥. ⎢ ⎥ ⎢ ⎥ we know that the lower bounds for the eigenvalues λj(Q), ⎢⎣ (cid:4)am−1(cid:4)2 (cid:6)am−1,am(cid:7)⎥⎦ tjha=nt2h,o.s.e.,bmy,(2p)r.ovided by (45) inTheorem12 are tighter (cid:6)am,a1(cid:7) (cid:6)am,a2(cid:7) ··· (cid:6)am,am−1(cid:7) (cid:4)am(cid:4)2 (66) Remark 14. When c in (16) is a zero vector, by using Theorems 11 and 12, we haved j ≤ λ(Q) ≤ dj, that is, Clearly,QisanarrowheadmatrixassociatedwithA. λ(Q) = dj.Inthissense,thelowerandupperboundsgiven An important way to characterize properties of Q is in inTheorems11and12aresharp. termsofratiosofitssuccessiveeigenvalues.Tothisend,the ratiosarecalledeigengapofQwhicharedefined[9]tobe Remark 15. When Q in Theorems 11 and 12 has size of i2d×en2ti,ctahle.Aucptpuearllay,nfdrolomwTerhbeooruenmdss1o1fiatnsdea1c2hweeighenavvealueare EGi(Q)= λmλ−m(−i−i(1)Q(Q) ) (67) " # $ " #% d d d + f 1 ≤λ (Q)≤min d ,d + f 1 , for i = 1,2,...,m−1. Following the definition in [9], we 1 1 d 1 1 1 1 d 2 2 definetheithhub-gapofAasfollows: " # " # (64) d d d + f 1 ≤λ (Q)≤d + f 1 . . . 1 2 d 2 1 2 d .a .2 2 2 HGi(A)= (cid:4)ma−(i−(cid:4)1)2 (68) m−i Clearly,wehave "d # "d # fori=1,2,...,m−1. λ (Q)=d + f 1 , λ (Q)=d + f 1 . (65) The hub-gaps of A will allow us to predict the eigen- 1 1 1 d 2 1 2 d 2 2 structureofQ.Itwasshownin[9]thatthelowerandupper ThiscanbeverifiedbycalculatingtheeigenvaluesQdirectly. boundsofEG1(Q)[9]aregivenbythefollowing: Remark 16. For the lower bound of the smallest eigenvalue HG1(A)≤EG1(Q)≤(HG1(A)+1)HG2(A). (69) ofanarrowheadmatrix,noconclusioncanbemadeforthe tightnessoftheboundsbyusing(4)and(45)inTheorem12. Theseboundsonlyinvolvenonhubcolumnshavingthetwo Anexamplewillbegivenlater(seeExample22inSection5). largest Euclidean norms and the hub column of A. Using 8 EURASIPJournalonAdvancesinSignalProcessing 9 the results in Theorems 11 and 12, we obtain the following Proof. Wefirstneedtoshow bounds: (cid:17) (cid:18) f (cid:17)(cid:4)a (cid:4)2/(cid:4)a (cid:4)2(cid:18) (cid:4)am(cid:4)2 < f4 (cid:4)a1(cid:4)2/(cid:4)am(cid:4)2 . (76) 4 1 m (cid:4)a (cid:4)2 (cid:4)a (cid:4)2 m−1 m−1 (cid:4)a (cid:4)2 m−1 (cid:17) (cid:18) Clearly,thisistruebecauseof (71).Nextweneedtoshow f (cid:4)a (cid:4)2/(cid:4)a (cid:4)2 ≤EG (Q)≤ 4 m−1(cid:17) m (cid:18)!. (cid:17) (cid:18) 1 max (cid:4)am−2(cid:4)2, f3 (cid:4)am−1(cid:4)2/(cid:4)am(cid:4)2 f4 (cid:4)am−1(cid:17)(cid:4)2/(cid:4)am(cid:4)2 (cid:18)! (70) max (cid:4)am−2(cid:4)2, f3 (cid:4)am−1(cid:4)2/(cid:4)am(cid:4)2 (77) ( ) Obviously,theseboundsarenotonlyrelatedtotwononhub (cid:4)a (cid:4)2 (cid:4)a (cid:4)2 < m +1 m−1 . columns with the largest Euclidean norms and the hub (cid:4)a (cid:4)2 (cid:4)a (cid:4)2 columnofAbutalsorelatedtothenonhubcolumnhaving m−1 m−2 the smallest Euclidean norm and interrelationship between Tothisend,itissufficetoprove all nonhub columns and the hub column of A. As we ( ) eshxpouecldtebde, ttihgehtleorwtehrananthdouseppiner(6b9o)u.TnodsproofveEGth1i(sQst)atienm(e7n0t), f4 (cid:4)(cid:4)aam−(cid:4)1(cid:4)22 <(cid:4)am(cid:4)2+(cid:4)am−1(cid:4)2. (78) m wegivethefollowinglemmafirst. Thisisexactly(72).Theproofiscomplete. Lemma18. Leta1,a2,...,am bethecolumnsofahubmatrix Awith0<(cid:4)a1(cid:4)≤(cid:4)a2(cid:4)≤···≤(cid:4)am−1(cid:4)≤(cid:4)am(cid:4).Then Thelowerboundin(70)canberewrittenintermsofthe f4(cid:29)ρ(cid:30)>(cid:4)am(cid:4)2 forρ∈(0,1], (71) hubgapofAasfollows: ( ) (cid:17) (cid:18) ⎡ 1 ⎤ 2 f4 (cid:4)(cid:4)aamm−(cid:4)1(cid:4)22 <(cid:4)am(cid:4)2+(cid:4)am−1(cid:4)2. (72) f4 (cid:4)(cid:4)a1a(cid:4)m2−/1(cid:4)(cid:4)a2m(cid:4)2 = 12HG1(Q)⎢⎣1+231+ (cid:4)4a(cid:4)mc(cid:4)(cid:4)24⎥⎦. (79) Proof. FromLemma10,weknow,forρ∈(0,1], The upper bound in (70) can be rewritten in terms of the (cid:13) hubgapofAasfollows: f4(cid:29)ρ(cid:30)> f4(0)= (cid:4)am(cid:4)2+ (cid:4)a2m(cid:4)4+4(cid:4)c(cid:4)2 >(cid:4)am(cid:4)2, (73) f (cid:17)(cid:4)a (cid:4)2/(cid:4)a (cid:4)2(cid:18) 4 m−1(cid:17) m (cid:18)! (cid:14) where(cid:4)c(cid:4)2= im=−11|(cid:6)ai,am(cid:7)|2.Theinequality(71)holds.By max (cid:4)am−2(cid:4)2, f3 (cid:4)am−1(cid:4)2/(cid:4)am(cid:4)2 thedefinitionof f ,showingtheinequality(72)isequivalent (cid:17) (cid:18) 4 toproving f4 (cid:4)am−1(cid:4)2/(cid:4)am(cid:4)2 ≤ (cid:4)a (cid:4)2 (cid:4)c(cid:4)2≤(cid:4)am(cid:4)2(cid:4)am−1(cid:4)2. (74) m−2 1 = (HG (A)+1)HG (A) Thisistruebecause 2 1 2 1 2 (cid:4)am(cid:4)2≥m(cid:9)j=−11...a1j...2(cid:16)(cid:16)(cid:16)/aj,am0(cid:16)(cid:16)(cid:16)2 + 12(HG1(A)−1)HG2(A)2231+ (cid:17)(cid:4)am(cid:4)24−(cid:4)c(cid:4)(cid:4)a2m−1(cid:4)2(cid:18)2. (75) (80) m(cid:9)−1 1 (cid:16)(cid:16)/ 0(cid:16)(cid:16)2 (cid:4)c(cid:4)2 ≥ j=1(cid:4)am−1(cid:4)2(cid:16) aj,am (cid:16) = (cid:4)am−1(cid:4)2. TocomparetheseboundstoKungandSuter[9],set(cid:4)c(cid:4)2 = 0,andtheboundsforEigGap (Q)in(70)become 1 Thefirstinequalityofaboveisfromtheorthogonalityofaj, j =1,...,m−1whilethesecondinequalityisfrom(cid:4)a (cid:4)≤ HG1(A)≤EG1(Q)≤HG1(A)HG2(A). (81) 1 (cid:4)a2(cid:4)≤···≤(cid:4)am−1(cid:4).Thiscompletestheproof. Under these conditions, the lower bound agrees with Kung andSuterwhiletheupperboundistighter. Thefollowingresultholds. Let A ∈ Rn×m be an ordered hub matrix. Let A(cid:20) ∈ Proposition 19. Let Q in (66) be the arrowhead matrix Rn×k be a hub matrix obtained by removing the first n−k associated with a hub matrix A. Assume that 0 < (cid:4)a (cid:4) < nonhub columns of A with the smallest Euclidean norms. 1 (cid:4)a2(cid:4) < ··· < (cid:4)am−1(cid:4) ≤ (cid:4)am(cid:4), where aj, j = 1,...,m This corresponds to the MIMO beamforming problem by arecolumnsofA.ThentheboundsoftheEG (Q)in(70)are comparing k of m transmitting antennas with the largest 1 tighterthanthosein(69). signal-to-noise ratio (see [9]). The ratio λk(Q(cid:20))/λm(Q) with 9