ebook img

DTIC ADA541935: Heat-Treated Metal Phthalocyanine Complex as an Oxygen Reduction Catalyst for Non-Aqueous Electrolyte Li/air Batteries PDF

0.67 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA541935: Heat-Treated Metal Phthalocyanine Complex as an Oxygen Reduction Catalyst for Non-Aqueous Electrolyte Li/air Batteries

ElectrochimicaActa56 (2011) 4544–4548 ContentslistsavailableatScienceDirect Electrochimica Acta journal homepage: www.elsevier.com/locate/electacta Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries ShengS.Zhang∗,XiaomingRen,JeffreyRead U.S.ArmyResearchLaboratory,RDRL-SED-C,2800PowderMillRoad,Adelphi,MD20783-1197,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Inthisworkwestudyheat-treatedFeCu-phthalocyanine(FeCuPc)complexesasthecatalystforoxygen Received9December2010 reductioninnon-aqueouselectrolyteLi/aircellsbysupportingthecatalystonahighsurfaceareaKet- Receivedinrevisedform14February2011 jenblackEC-600JDcarbonblack.ItisshownthattheresultantFeCu/Ccatalystnotonlyacceleratesthe AAcvcaeilpatbelde 1on9lFineeb r2u6a rFyeb2r0u1a1ry 2011 ttwioon-aetlieocntroofnLir2eOd2uactsio“2nLoi2fOo2x→yge2nLia2sO“+OO22+”2.ILni+L+i/2aeir→ceLllis2,Ot2h”e,bcuattaalylssotcreadtaulcyezsespothlaercizhaetmioincaolnddisipscrhoaprogre- whilesimultaneouslyreducingthefractionofLi2O2inthefinaldischargedproducts.Ina0.2molkg−1 Keywords: Oxygenreduction LLii/SaOir3CcFe3lls7:w3i(twhtF.)eCpuro/Cpyslheonwecaatrbleoansatte0.2(PVC)h/tirgihs(e2r,2d,i2s-cthriaflrugeorvooeltthaygle)patho0s.2phmaAtecm(T−F2P)thealencttrhoolysetew,tihthe Electrocatalysis Metalphthalocyaninecomplex pristinecarbon.Bymeasuringthecharge-transferresistance(Rct)ofLi/aircellsattemperaturesranging Airelectrode between−30◦Cand30◦C,wedeterminetheapparentactivationenergyofthedischargeofLi/aircells Li/airbattery anddiscusstheeffectofFeCu/CcatalystontheoxygenreductioninLi/aircells. Published by Elsevier Ltd. 1. Introduction the rate-determining step to limit the discharge performance of Li/aircellswhenthedischargecurrentrateisincreased.Therefore, Li/air batteries are more complicated than the traditional moreeffectivecatalystsareneededtoincreasethepowercapabil- metal/airbatteriessincetheirdischargeproducts(Li O andLi O) ityofLi/aircells.TransitionmetalN -macrocyclecomplexeshave 2 2 2 4 are insoluble in non-aqueous electrolytes. During discharge, the longbeenknowntobehighlyactiveforthecatalyticreductionof Li O and Li O deposit and accumulate on the surfaces of a car- oxygen. However, these compounds are either soluble or chem- 2 2 2 bonaircathode,whicheventuallyblockstheaccessofoxygento icallyinstableinaqueousacidicoralkalineelectrolytesolutions. catalytic sites and halts the operation of the battery. Therefore, For these reasons, the technique of heat-treatment with carbon theamountthatthecarbonaircathodecanaccommodateforthe has been used to enhance catalytic activity and increase chemi- dischargeproductsdeterminesthespecificcapacityofLi/aircells calstabilityagainsttheaqueouselectrolyteenvironments[9–11]. [1–3].Toachievehighspecificcapacity,aliquid/solidtwo-phase Theheat-treatedtransitionmetalN -macrocyclecomplexeshave 4 reactionzonebetweentheliquidelectrolyteandsolidcatalyticsites beenconsideredasanexcellentcatalystfortheoxygenreduction isrequiredfortheLi/aircellstoachievethemaximumreactionarea inalkalinemetal/aircellsandfuelcells[9–15].Keepingthisknowl- andthelargestaccommodationcapacity[3].However,suchcells edgeinmind,inthisworkwestudytheeffectofoxygenreduction areintrinsicallylowpowersincediffusionofthedissolvedoxygen catalystonthedischargeperformanceofLi/aircellsbyselecting inliquidelectrolyteisslowandthedischargeproductscannotbe aheat-treatedironandcopperphthalocyanine(FeCuPc)complex removedfromthecatalyticsites.FortheselowpowerLi/aircells, asthecatalystandloadingitontoahighsurfaceareaKetjenblack thepristinecarbonwithoutanyothercatalystshasbeendirectly EC-600JDcarbonblack. usedasthecatalystfortheoxygenreduction[2–8]. Catalytic reduction of oxygen in Li/air battery takes place 2. Experimental through such three steps as: (1) dissolution of oxygen from gas phaseintoliquidelectrolyte,(2)diffusionofthedissolvedoxygen Ketjenblack EC-600JD carbon black (AkzoNobel) was used as intocatalyticsitesonthecarbonsurface,and(3)catalyticreduction thecontrolandsupportingcarbonforcatalyst.FeCu/Ccatalystwas ofoxygenintoLi O orLi O.Ofthem,thelaststepmightbecome 2 2 2 receivedfromActaS.p.A,Italy,whichwaspreparedbyfirstabsorb- ingaFeCuPccomplexsolutionontoKetjenblackEC-600JDcarbon blackandthenheatingthemixtureattemperaturesbetween800◦C ∗ and900◦Cinanargonatmosphere.ThefinalFeCu/Ccatalystcon- Correspondingauthor.Tel.:+13013940981,fax:+13013940273. E-mailaddress:[email protected](S.S.Zhang). tained1.5wt.%Feand1.7wt.%Cu,respectively,whichcorresponds 0013-4686/$–seefrontmatter.Published by Elsevier Ltd. doi:10.1016/j.electacta.2011.02.072 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 26 FEB 2011 2. REPORT TYPE 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Heat-Treated Metal Phthalocyanine Complex As An Oxygen Reduction 5b. GRANT NUMBER Catalyst For Non-Aqueous Electrolyte Li/air Batteries 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION U.S. Army Research Laboratory,RDRL-SED-C, 2800 Powder Mill REPORT NUMBER Road,Adelphi,MD,20783 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Electrochimica Acta 56 Feb 2011,pages 4544-4548 14. ABSTRACT In this work we study heat-treated FeCu-phthalocyanine (FeCuPc) complexes as the catalyst for oxygen reduction in non-aqueous electrolyte Li/air cells by supporting the catalyst on a high surface area Ketjenblack EC-600JD carbon black. It is shown that the resultant FeCu/C catalyst not only accelerates the two-electron reduction of oxygen as ?O2 + 2Li+ +2e→Li2O2?, but also catalyzes the chemical disproportionation of Li2O2 as ?2Li2O2→2Li2O+O2?. In Li/air cells, the catalyst reduces polarization on discharge while simultaneously reducing the fraction of Li2O2 in the final discharged products. In a 0.2 mol kg−1 LiSO3CF3 7:3 (wt.) propylene carbonate (PC)/tris(2,2,2-trifluoroethyl) phosphate (TFP) electrolyte, the Li/air cells with FeCu/C show at least 0.2V higher discharge voltage at 0.2mAcm−2 than those with pristine carbon. By measuring the charge-transfer resistance (Rct) of Li/air cells at temperatures ranging between −30 ◦C and 30 ◦C, we determine the apparent activation energy of the discharge of Li/air cells and discuss the effect of FeCu/C catalyst on the oxygen reduction in Li/air cells. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 6 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 S.S.Zhangetal./ElectrochimicaActa56 (2011) 4544–4548 4545 toa1:1molarratioofFetoCu.InthisworkwereferredtotheFeCu/C Table1 catalyst as a composite of the Ketjenblack carbon and FeCuPc Physicalpropertiesofcarbonmaterials,aircathodes,andLi/aircells. pyrolyticproducts.Usingthecarbonmaterialsabove,airelectrodes KetjenblackEC-600JD CuFe/C with a composition of 90wt.% carbon and 10wt.% polytetrafluo- BETsurface(m2g−1) 1413 751 roethylene(PTFE)werepreparedbymixingcalculatedamountsof Porevolume(cm3g−1) 2.06 1.23 carbonandPTFEemulsion(Teflon®,solidcontent=61.5%,DuPont Electrodeporevolumea(cm3g−1) 5.46 3.64 Co.)androllingthemixedpastetoformafree-standingcathode sheet.Theresultantaircathodesheet,equalingtoatotal2.88wt.% Li/aircell Controlcell CuFe/Ccell ofmetal(FeandCu)content,waspunchedintosmalldiskswithan CellOCV(V) 2.9166 3.331 areaof0.97cm2anddriedat100◦Cundervacuumforatleast8h. Cellimpedance((cid:2)) 270 226 A0.2molkg−1(m)LiSO3CF37:3byweightpropylenecarbonate a CalculatedbythesolventabsorptionmethodasdescribedinRef.[3]. (PC)/tris(2,2,2-trifluoroethyl)phosphate(TFP)electrolytewaspre- paredinanargon-filledglove-boxbymixingcalculatedamountsof LiSO CF (96%,Aldrich),PC(Ferro)andTFP,inwhichtheTFPwas 3 3 synthesizedin-houseasdescribedinRef.[16].Thiselectrolytewas selectedasitissuperiortoothercarbonate-basedelectrolytesin boththedissolutionkineticsandthesolubilityofoxygen[17,18]. Inadry-roomhavingadewpointofbelow−90◦C,Li/aircellswith anairwindowof0.97cm2wereassembledbystackingaLifoil,a Celgard®3500membrane,acarbonaircathode,aNimeshasthe currentcollector,andanairwindowinsequenceintoacoincellcap. Toactivatethecell,200(cid:2)Lofliquidelectrolytewasaddedthrough theair-window,followedbyapplyingavacuumfor20stoensure completewetting.Extraliquidelectrolytewasremovedbygently swipingafilterpaperonthetopoftheNimesh.Theelectrolyte- activatedcellwasclampedonacellholdertotestasaLi/aircell.The sameprocedureswerefollowedtoassemblethree-electrodecells exceptforusingtwopiecesofseparatorsandsandwichingasmall pieceofLifoilasthereferenceelectrodebetweenthesetwosepa- rators.Detaileddescriptionsonthecellconfigurationandassembly procedurecanbefoundinRef.[3]. An Arbin BT-2000 cycler was used for the discharge testing Fig.1. Current–timeresponseofLi/aircellswhena−0.8Vofconstantpotentialwas appliedtotheOCVofthecell.(1)Controlcellwithpristinecarbon,and(2)Li/aircell with a 1.5V cutoff voltage. Specific capacity of the cells was withFeCu/C. calculatedwithreferencetotheweightofcarbonintheaircath- ode.ASolartronSI1287ElectrochemicalInterfaceandaSI1260 basedonthefollowingreactions[21]: Impedance/Gain-PhaseAnalyzerwereusedforcyclicvoltammetry, polarization,andimpedancemeasurements.Impedancespectraof 2Li + O2→ Li2O2 OCV = 2.959V (1) thecellsweremeasuredatopen-circuitvoltage(OCV)infrequen- 4Li + O → 2Li O OCV = 2.913V (2) ciesrangingfrom0.01Hzto−106Hzbyapplyinganacperturbation 2 2 of0.10mVinamplitude.SincetheimpedancesofLi/aircellsare This phenomenon can be explained by the chemical struc- highly dependent of the depth-of-discharge (DOD) [3], the cells tureofFeCu/Ccatalyst.Manypublicationshavereportedthatthe weredischargedtothesameDODforeachcomparisonoftheelec- final chemical components of the heat-treated transition metal trochemicalproperties.Theconditionsforothertestsaredescribed N -macracyclecomplexesdependonthetemperatureofheating- 4 either in discussion or in related figure captions. Before each treatment [11–15]. The most acceptable conclusion is that the test, the cells rested for 2h to reach equilibrium of oxygen con- complex forms MN molecular moieties (where M represents a 4 centrations between the air cathode (catalytic sites) and the air transition metal) at temperatures of 500–700◦C, it further loses environment.Unlessnotedotherwise,thetestswerecarriedoutin nitrogentoformMN /MOmixturesattemperaturesof700–800◦C 2 thedryroomandatroomtemperature(22◦C). bycombiningoxygenatomsfromthefunctionalgroupsofthecar- bon edges, and finally converts all MN into MO at even higher 2 temperatures.SincethepresentFeCu/Cwasmadeat800–900◦C, 3. Resultsanddiscussion weconsiderthattheFeandCuinthecatalystarepresentmainly intheformofmetaloxides. 3.1. AircathodestructureandLi/aircell’sOCV Basedonthefactsdescribedabove,webelievethattheunusu- allyhighOCVoftheFeCu/CbasedLi/aircellsisduetothemetal KetjenblackEC-600JDisahighlybranchedcarbonblackconsist- oxides,ratherthantheO fromair.Tosupportourhypothesis,we 2 ingof30–100nmlongaggregates[19].Afterloadingwithcatalyst, conductedapolarizationexperimentontwoLi/aircellshavingthe thesurfaceareaandporevolumeofthecarbonaresignificantly samedepth-of-discharge(DOD).TheOCVandoverallimpedanceof reduced as shown in Table 1. This is because many of pores in thesetwocellsarelistedinTable1,andthepolarizationcurvesof Ketjenblack carbon were filled with the thermal decomposition thesetwocellswitha−0.8VconstantpotentialappliedtotheOCV products of FeCuPc, including metal oxides and pyrolytic carbon arecomparedinFig.1.ItisshowninTable1thattheFeCu/Ccellhas [20].Therefore,theFeCu/Caircathodehasmuchlowerporevolume lowerimpedancethanthecontrolcell(i.e.,226vs.270(cid:2)).Oncon- thanthepristinecarbonaircathode. trary,theFeCu/CcellhaslowercurrentintheI–tresponsecurve ItisinterestingtonotethatallnewlyassembledLi/aircellswith as indicated in Fig. 1, which disagrees with the ohmic rule. This FeCu/C have constantly about 0.3V higher OCV than those with conflictionsuggeststhattheinitialOCVoftheFeCu/Ccellcorre- thepristinecarbon.TheFeCu/CcellshaveanOCVrangingbetween spondsneithertoreaction(1)nortoreaction(2),insteaditreflects 3.35Vand3.50V,whichareevenhigherthanthetheoreticalOCV theOCVofthemetaloxidesthemselves.TheinitialOCVranging 4546 S.S.Zhangetal./ElectrochimicaActa56 (2011) 4544–4548 Fig.2. CyclicvoltammogramofthefirstcycleofnewlyassembledLi/aircells.(1) Controlcellwithpristinecarbon,and(2)Li/aircellwithFeCu/C.Experimentcondi- tpiootnesn:ttihalestceasntnwinagspraetrefoorfm0.e1dmoVnsa−t1h.rTehee-eploetcetnrotidaelscceallnbneintwgesteanrt2e.d2Vfroamndc4e.l3l’sVOaCtVa Fig.4. DynamicpolarizationofLi/aircellsat0.01mAs−1.(1)Controlcellwithpris- tinecarbon,and(2)Li/aircellwithFeCu/C. asindicatedbythesoliddotsinthefigure,firstdownwardtolowpotentialandthen upwardtohighpotential. 3.3. DischargecharacteristicofLi/aircells Fig.3showstheeffectofFeCu/Ccatalystonthedischargeperfor- between3.35Vand3.50VoftheFeCu/Ccellsisinagreementwith manceofLi/aircells.Inconsecutivedischarge(Fig.3a),theFeCu/C thoseobservedfromtheLi/CuOandLi/Fe O cells[22,23]. 2 3 cell shows about 0.2V higher voltage than the control cell. This observation agrees with the cyclic voltammetric results as dis- cussed in Fig. 2, and it is attributed to the reduced polarization 3.2. CyclicvoltammogramofLi/aircells by FeCu/C catalyst. Another significant difference in the voltage curvesbetweentwocellsisthatthecatalyzedcellexhibitsasec- Fig.2comparescyclicvoltammogramsofthefirstcycleoftwo ondvoltageplateaustartingat∼1.7V.Inearlywork[20],wehave Li/aircells.Itisshownthatthereductionofoxygenstartsat2.94V concludedthatthissecondvoltageplateauisduetothecatalyst- vs.Li/Li+intheFeCu/Ccell,whileat2.80Vinthecontrolcell.This inducedsolventdecomposition.Ifsubtractingthecapacityofthe oxygenreductioncorrespondstoreaction(1)andthe0.14Vhigher secondvoltageplateau,wecanfindthatthespecificcapacityofthe shiftinthereductionpotentialisattributedtothecatalyticeffect FeCu/Ccellisalittlelowerthanthecontrolcell.Thisresultagrees ofFeCu/C.Furthermore,theFeCu/Ccellshowsmuchhigherreduc- withthefactthattheFeCu/Chaslessporevolumethanthepristine tioncurrentsthanthecontrolcell.ThisfactrevealsthattheFeCu/C carbonasindicatedinTable1. catalystreducespolarizationintheLi/aircell.Itappearsthatthe Similarresultsareobservedfromintermittentdischargeexcept FeCu/C also catalyzes the oxidation of Li2O2, i.e., the reversal of that the specific capacities are significantly higher than those reaction (1), as indicated by a broad oxidization current peak at obtainedfromtheconsecutivedischarge(compareFig.3aandb). ∼3.8Vvs.Li/Li+whenthepotentialisscannedbackfrom2.2V.In Thereasonforthisphenomenonisunderstandablesinceininter- the control cell, the similar oxidation peak seems not to appear mittent discharge the rest between two discharges allows more untilthepotentialisincreasedto4.1V.Inaddition,thecontrolcell oxygen to diffuse into the catalytic sites. On the other hand, the showsapairofsomehowreversiblecurrentpeaksbetween3.3V catalytic effect of FeCu/C on the oxygen reduction in Li/air cells and3.9V.Thesecurrentsmaybeassociatedwiththeoxygenradi- alsocanbeverifiedbythedynamicpolarizationexperiment(see calintermediatesformedduringtheoxidationofLi2O2,whichare Fig.4).Inwholetestedcurrentrange,theFeCu/Ccelloutperforms consideredtoberesponsibleforthedecompositionofcarbonate thecontrolcellandtheimprovementseemstoincreasewiththe solvents[24,25]. current. Fig.3. DischargecharacteristicofLi/aircellsina(a)consecutivedischargeand(b)intermittentdischarge.(1)Controlcellwithpristinecarbon,and(2)Li/aircellwithFeCu/C. Experimentconditions:bothdischargesuseda0.2mAcm−2currentdensity.Inintermittentdischarge,thecellrestedfor2hafterevery50mAhg−1discharge. S.S.Zhangetal./ElectrochimicaActa56 (2011) 4544–4548 4547 Fig.5. OCVrecoveryofLi/aircellsatdifferentdepth-of-discharge.(a)At50mAhg−1,(b)at300mAhg−1,(c)at600mAhg−1,and(d)at900mAhg−1.(1)Controlcellwith pristinecarbon,and(2)Li/aircellwithFeCu/C. 3.4. RoleofFeCu/CcatalystinOCVrecovery FeCu/Cpowder,respectively,wasadded.Asaresult,theFeCu/C powdercausedviolentdecompositionofH O accompaniedby 2 2 Fig. 5a–d compares OCV recovery of two Li/air cells at differ- numerousoxygenbubbles,whilethepristinecarboncausedno ent DOD. A general trend is that the OCV recovery slows down change. with an increase in the DOD. This is because the insoluble and non-conductivedischargeproducts(Li2O2andLi2O)depositonthe TheabovetwoexperimentssuggestthattheFeCu/Calsocat- carbonsurface,whichformsapassivationlayertosuppressthedif- alyzethechemicaldisproportionationofLi O as: 2 2 fusionofoxygenintothecatalyticsites.ForacellwithhighDOD, 2Li O → 2Li O + O (3) longer time is required for the diffusion of oxygen into the cat- 2 2 2 2 alyticsitessincethepassivationlayergrowswithDODandsince The faster OCV recovery of FeCu/C cell in Fig. 5a–d can be theOCVcannotgetstableuntiltheequilibriumofoxygenconcen- well explained by reaction (3) as follows: when the discharge is trationsbetweentheaircathode(catalyticsites)andtheelectrolyte halted,theLi O incontactwiththeFeCu/Ccatalyticsitesunder- 2 2 isachieved.Fig.5b–dindicatesthata2hrestisnotsufficientfor goes reaction (3) to release O . Since the reaction occurs right 2 thefullOCVrecoveryalthoughthesecellseventuallycanrecover on the Li O /catalyst interface, the released O can be immedi- toalmostsameOCV(∼3.0V),asrepresentedbyreaction(1)(not 2 2 2 atelyutilizedtoestablishtheequilibriumofoxygenconcentrations showninFig.5). betweenthecatalyticsitesandtheelectrolyte,whichresultsina AnotherinterestingphenomenonisthattheFeCu/Ccellshows fasterOCVrecovery.Ontheotherhand,thefasterOCVrecoveryof fasterOCVrecoverythanthecontrolcell.Tounderstandthis,we theFeCu/CcellsuggeststhattheFeCu/Ccatalystmightnotaffect conductedthefollowingtwoexperiments: thefurtherreductionofLi O asshownbyreactionbelow: 2 2 Li O +2Li++2e → 2Li O (4) 2 2 2 1. Discharge two cells with pristine carbon and FeCu/C, respec- tively, to the same capacity, and then dip the discharged air ThediscussionaboveindicatesthattheFeCu/Cnotonlyaccel- cathodesinto1mLdeionizedwater.Inthisprocess,theLi O eratesthetwo-electrontransferreaction(1),butalsocatalyzesthe 2 2 formed in discharging was reacted with water to form H O non-redoxreaction(3).Sincethelatterisasolid/solidtwo-phase 2 2 and LiOH. Upon the end of reaction, the same amount of reactionthatonlycanoccurintheinterfacebetweenthecatalyst KMnO4/H2SO4 solution was added into the clear solution to sitesandLi2O2phase,thecatalyticactivityofFeCu/Conreaction(3) roughlydeterminetheamountofH O .Asaresult,wefound isnotaseffectiveasonreaction(1).Duetothecatalyticeffecton 2 2 thatthecolorofKMnO4 disappearedimmediatelyinthesolu- reaction(3)andthedifficultyinoxidizingelectrochemicallyLi2O tionwithpristinecarbon,whilethatinthesolutionwithFeCu/C toLi2O2andoxygen,theFeCu/Ccatalystmaynotbeagoodchoice decoloredslowlyandthecolorcouldnotdisappearcompletely forthecatalystofrechargeableLi/airbatteries. evenintheend.Theseresultsindicatethatinthesamecapac- itiestheFeCu/CcellproduceslessLi O ascomparedwiththe 3.5. ImpedanceanalysisonLi/aircells 2 2 pristinecarboncell. 2. DissolvesmallamountofcommercialLi O powderintodeion- In previous work [3], we have shown that the impedance of 2 2 izedwater.WhentheLi O wascompletelydissolvedtoform a Li/air cell is changed greatly with the cell’s DOD. Therefore, in 2 2 H O , the clear solution was split into two parts, to which the present work two identical Li/air cells were assembled and 2 2 smallamountofpristineKetjenblackEC-600JDcarbonblackand discharged to the same DOD, followed by measuring impedance 4548 S.S.Zhangetal./ElectrochimicaActa56 (2011) 4544–4548 and41.4kJmol−1fortheFeCu/Ccell.Attemperaturesbelow10◦C, theapparentactivationenergyis86.1kJmol−1forthecontrolcell and 69.1kJmol−1 for the FeCu/C cell. These results indicate that theFeCu/Ccatalystcaneffectivelyreducetheapparentactivation energyofLi/aircells. 4. Conclusions Based on the results of this work, the following conclusions canbemade:(1)theunusuallyhighOCVofthenewlyassembled Li/aircellswithFeCu/CcatalystcorrespondstotheOCVofcatalyst itself,ratherthantotheoxygenreduction,(2)theFeCu/Ccatalyst notonlyacceleratesthetwo-electronoxygenreduction,butalso catalyzes the non-redox Li O disproportionation. In Li/air cells, 2 2 theformerreducescell’spolarizationandthelatterincreasesOCV recoveryrate,(3)sincethecatalyticdisproportionationofLi O is 2 2 Fig.6. ImpedancespectraofLi/aircells,inwhichtwocellsareidenticalinthesize asolid/solidtwo-phasereactionoccurringintheinterfacebetween andweightoftheaircathodeandinthecell’sDOD(100mAhg−1).(1)Controlcell thecatalyticsitesandLi O particles,thecatalyticeffectofFeCu/C withpristinecarbon,and(2)Li/aircellwithFeCu/C. 2 2 onitisnotaseffectiveasonthetwo-electronoxygenreduction, and (4) the FeCu/C catalyst can effectively reduce the apparent activationenergyforthedischargeofLi/aircells. Acknowledgements TheauthorswouldliketothankDr.K.XuforhissupplyofTFP solventandDr.D.TranforhisassistanceinBETmeasurement. References [1] K.M.Abraham,Z.Jiang,J.Electrochem.Soc.143(1996)1. [2] J.Read,J.Electrochem.Soc.149(2002)A1190. [3] S.S.Zhang,D.Foster,J.Read,J.PowerSources195(2010)1235. [4] S.D.Beattie,D.M.Manolescu,S.L.Blair,J.Electrochem.Soc.156(2009)A44. [5] X.H.Yang,P.He,Y.Y.Xia,Electrochem.Commun.11(2009)1127. [6] J.Xiao,D.Wang,W.Xu,D.Wang,R.E.Williford,J.Liu,J.G.Zhang,J.Electrochem. Soc.157(2010)A487. [7] C.Tran,X.Q.Yang,D.Qu,J.PowerSources195(2010)2057. [8] C.K.Park,S.B.Park,S.Y.Lee,H.Lee,H.Jang,W.I.Cho,Bull.KoreanChem.Soc.31 (2010)3221. [9] E.Yeager,Electrochim.Acta29(1984)1527. [10] B.Wang,J.PowerSources152(2005)1. Fig.7. ArrheniusplotoftheexchangecurrentofLi/aircells.(1)Controlcellwith [11] V.Neburchilov,H.Wang,J.J.Martin,W.Qu,J.PowerSources195(2010)1271. [12] D.A.Scherson,S.L.Gupta,C.Fierro,E.Yeager,M.Kordesch,J.Eldridge,R.Hoff- pristinecarbon,and(2)Li/aircellwithFeCu/C. man,Electrochim.Acta28(1983)1205. [13] K.Sawai,N.Suzuki,J.Electrochem.Soc.151(2004)A682. toexaminetheeffectofFeCu/Ccatalystontheoxygenreduction. [14] A.L.Bouwkamp-Wijnoltz,W.Visscher,J.A.R.vanVeen,E.Boellaard,A.M.van Fig.6showsimpedancespectraoftwocellsmeasuredataDODof derKraan,S.C.Tang,J.Phys.Chem.B106(2002)12993. 100mAhg−1.Itisshownthattheimpedancespectracontaintwo [15] TR.eSs.a1ra0k(o2n0s0r9i,)S5.8S9u.thirakun,S.Charojrochkul,T.Vilaithong,J.Ceram.Process. overlappedsemicircles,inwhichthesemicircleathighfrequencies [16] K.Xu,M.S.Ding,S.S.Zhang,J.L.Allen,T.R.Jow,J.Electrochem.Soc.150(2003) relatestothedischargedproductlayerandthatatlowfrequencies A161. [17] S.S.Zhang,J.Read,J.PowerSources196(2011)2867. correspondstothechargetransferofcellreaction.Therefore,an [18] S.S.Zhang,K.Xu,J.Read,J.PowerSources196(2011)3906. equivalentcircuitasshownintheinsetcanbeusedtofittheelec- [19] AkzoNobel,ProductDataSheetonKetjenblackEC-600JDcarbonblack. tricalelementsoftheimpedancespectra.Sincethediameterofthe [20] X. Ren, S.S. Zhang, D. Tran, J. Read, J. Mater. Chem. (2011), doi:10.1039/C0JM04170J. semicircleatlowfrequenciescorrespondstothecharge-transfer [21] CalculatedfromthestandardGibbsfreeenergies,ChemistryWebBook,NIST resistance(Rct)ofthecellreaction[26,27],theexchangecurrent StandardReferenceDatabase,http://webbook.nist.gov/chemistry/. (io)o(cid:2)fthe(cid:3)Li/aircellscanbecalculatedusingequationbelow[28]: [[2223]] PS..PKoadnhzaakjeic,kTy.,InBa.Sdcar,oTs.aMti,aJt.sPuomwuerraS,oNu.rScoesno1y6a(m19a8a,5A)3.0Y9a.mada,M.Takano,R. RT 1 Kannoa,J.PowerSources146(2005)323. io= nF R (5) [24] F.Mizuno,S.Nakanishi,Y.Lotani,S.Yokoishi,H.Iba,Electrochemistry78(2010) ct 403. whereRisthegasconstant,FistheFaradayconstant,andTisthe [25] K.Takechi,E.Sudo,T.Inaba,F.Mizuno,H.Nishikoori,T.Shiga,218thECSMeet- ing,2010(Abs#586). temperature.Arrheniusplotsoftheexchangecurrentsfortwocells [26] S.S.Zhang,K.Xu,T.R.Jow,Electrochim.Acta49(2004)1057. areshowninFig.7,fromwhichtheapparentactivationenergyof [27] S.S.Zhang,K.Xu,T.R.Jow,Electrochem.Solid-StateLett.5(2002)A92. theLi/aircellsisestimatedasfollow:attemperaturesabove10◦C, [28] A.J.Bard,L.R.Faulkner,ElectrochemicalMethods,Wiley,NewYork,1980,p. theapparentactivationenergyis50.2kJmol−1forthecontrolcell 213.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.