ebook img

DTIC ADA541017: Rheological Study Of The Mixture Of Acetaminophen And Polyethylene Oxide For Hot-Melt Extrusion Application (PREPRINT) PDF

0.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA541017: Rheological Study Of The Mixture Of Acetaminophen And Polyethylene Oxide For Hot-Melt Extrusion Application (PREPRINT)

Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2011 2. REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Rheological Study Of The Mixture Of Acetaminophen And Polyethylene 5b. GRANT NUMBER Oxide For Hot-Melt Extrusion Application 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION US Army, ARDEC, RDAR-MEE-W,Propulsion Technology & Direct REPORT NUMBER Fire Branch,Picatinny Arsenal,NJ,07806 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT There is a growing interest of extrusion drug and polymer together to manufacture various solid dosages. In those cases, the drug?s release profiles are greatly affected by the miscibility of two materials. The goal of this study is to test the drug?s solubility in molten polymer and obtain the mixture?s rheological properties for the purpose of optimizing the extrusion process. The dynamic and steady viscosities of APAP?PEO mixture were determined using oscillatory and capillary rheometers. The curves of viscosity vs. drug loading generally have a ??V?? shape, and the minimal point gives the APAP?s solubility in PEO. The test results suggest that different dynamic methods lead to essentially the same solubility data. At high shear rates, the mixtures show shear thinning behavior and the viscosity becomes less sensitive to the drug loading. In other words, it is desirable to use a low shear rate in order to deduce the drug?s solubility in polymer from the viscosity data. On the other hand, viscosity data at high shear rates are more representative of the materials? rheological properties during extrusion 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 8 unclassified unclassified unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx ContentslistsavailableatScienceDirect European Journal of Pharmaceutics and Biopharmaceutics journal homepage: www.elsevier.com/locate/ejpb Research paper Rheological study of the mixture of acetaminophen and polyethylene oxide for hot-melt extrusion application Herman Suwardiea,⇑, Peng Wangb,c, David B. Todda, Viral Panchale, Min Yangd, Costas G. Gogosa,d aPolymerProcessingInstitute,Newark,UnitedStates bDepartmentofChemicalEngineering,UniversityofRhodeIsland,RI,USA cDepartmentofBiomedicalandPharmaceuticalSciences,UniversityofRhodeIsland,RI,USA dOttoYorkDepartmentofChemical,BiologicalandPharmaceuticalEngineering,NewJerseyInstituteofTechnology,Newark,USA ePropulsionTechnology&DirectFireBranch,USArmy,ARDEC,RDAR-MEE-W,PicatinnyArsenal,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Thereisagrowinginterestofextrusiondrugandpolymertogethertomanufacturevarioussoliddosages. Received9November2010 Inthosecases,thedrug’sreleaseprofilesaregreatlyaffectedbythemiscibilityoftwomaterials.Thegoal Acceptedinrevisedform16March2011 ofthisstudyistotestthedrug’ssolubilityinmoltenpolymerandobtainthemixture’srheologicalprop- Availableonlinexxxx ertiesforthepurposeofoptimizingtheextrusionprocess.ThedynamicandsteadyviscositiesofAPAP– PEOmixtureweredeterminedusingoscillatoryandcapillaryrheometers.Thecurvesofviscosityvs.drug Keywords: loadinggenerallyhavea‘‘V’’shape,andtheminimalpointgivestheAPAP’ssolubilityinPEO.Thetest Hot-meltextrusion resultssuggestthatdifferentdynamicmethodsleadtoessentiallythesamesolubilitydata.Athighshear Rheology rates,themixturesshowshearthinningbehaviorandtheviscositybecomeslesssensitivetothedrug Viscosity loading.Inotherwords,itisdesirabletousealowshearrateinordertodeducethedrug’ssolubility Viscoelasticity Solubility inpolymerfromtheviscositydata.Ontheotherhand,viscositydataathighshearratesaremorerepre- Rheometer sentativeofthematerials’rheologicalpropertiesduringextrusion. (cid:2)2011ElsevierB.V.Allrightsreserved. 1.Introduction the drying step and can produce large volume of units in a rela- tivelyshorttimeperiod.Itismoreenergyefficientthanhigh-shear Hot-meltextrusion(HME)hasbeenwidelyusedintheplastic granulation. Furthermore, the intensive mixing, a result of the and rubber industry to manufacture a broad variety of products. characteristicsoftheequipmentandelevatedprocessingtempera- Theprocessinvolvesmixingdifferentmaterialsusingascrewex- ture,leadstoauniformdispersion. truder at an elevated temperature and pumping the mixture Inthisstudy,therheologicalpropertiesofa mixtureofmodel throughadietoformaproductofdesiredshape.Recently,thepro- drug and a polymer excipient are systematically studied using cess has caught a great deal of interest from the pharmaceutical oscillatory and capillary rheometers. Thus, obtained rheological industry[1–5,13,14].Ithasbeenappliedtoextrudecombinations data not only can be used to optimize the extrusion process but ofdrugs,polymersandplasticizersintovarioussoliddosageforms also indirectly provide the drug’s solubility in polymer excipient, suchastablets,transdermalpatches,granules,capsulesandsoon. aselaboratedinthefollowingpartofthispaper.Generallyspeak- Muchofthepreviousresearchinteresthasbeenfocusedonuti- ing,ifapolymerandadrugformonephaseattheprocessingtem- lizingHMEtoimprovethedrug’sbioavailabilitythroughincreasing perature,notonlyamoreuniformproductcanbeobtained,itmay theactivepharmaceuticalingredient’s(API’s)dissolutionrateinan alsoleadtootherdesirableproductpropertiessuchasfasterdrug aqueous solution [2–5]. A large percentage of newly developed dissolutionrate.Havingthesolubilitydatacanminimizethetime chemical entities are poorly soluble, and HME is believed to be for trial-and-error experimentsand help to understand evolution oneofthemostpromisingmethodstoimprovethebioavailability ofthedrug’sphysicalstateduringtheHMEprocessandthestorage ofthoseAPIs.Inaddition,HMEoffersanumberofotheradvantages period.Despitetheobviousbenefitandgreatinterestofknowing comparedtothesolventmethodssuchasspraydrying:nosolvents thedrug’ssolubilityinpolymericexcipient,veryfewpreviouspa- are required and fewerprocessing steps are needed comparedto pershavediscussedhowtoexperimentallydeterminethesebasic thetraditionalprocessessuchaswetgranulation.HMEeliminates data.Differentialscanningcalorimetry(DSC)method[1]requires heatingamixturesamplefromroomtemperaturetothetempera- ⇑ tureofinterestatanextremelyslowratesothatthekineticsdoes Correspondingauthor.PolymerProcessingInstitute,Newark,NJ07102,USA. Tel.:+19736427947. not affect the solubility data obtained. As a result, a long testing E-mailaddress:[email protected](H.Suwardie). period is required, which may cause the thermal degradation of 0939-6411/$-seefrontmatter(cid:2)2011ElsevierB.V.Allrightsreserved. doi:10.1016/j.ejpb.2011.03.013 Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013 2 H.Suwardieetal./EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx thesample.Inthisstudy,wewilldeducethesolubilitydatafrom Two materials are stable at the testing temperature range. the mixture’s viscosity at different drug loadings, which only re- Thermal stability data can be found in one of our recently quiresrelativelyconvenientandfasttestonviscosity. publishedpapers[15]. To understand why the drug’s solubility in polymer can be derived from the mixture’s viscosity, let us consider a series of API–polymermixtureswithdifferentdrugloadingsequilibratedat 3.Experimental atemperaturelowerthanthedrug’smeltingpoint,buthigherthan thepolymer’smelting/softeningpoint.Ifthedrugandthepolymer 3.1.Oscillatoryrheometer formasolution,theviscosityofthemixturedecreaseswiththedrug loading because the dissolved small drug molecules increase the RheometricMechanicalSpectrometerRMS-800fromRheometric mobilityofthepolymerchainandthefreevolumeamongpolymer Scientific (now TA Instruments) was used to determine the molecules.Abovethesolubilitylimit,themixtureconsistsofsolid dynamic properties such as G0 (elastic modulus), G00 (viscous drugparticlesandadrug–polymersolution.Inthetwo-phasere- modulus)andg⁄(dynamicviscosity)ofPEOanditsmixturewith gion,thedependenceofthemixture’sviscosityonthedrugloading Acetaminophen.RMS-800isastrain-controlledandSMT(Separate can be explained by the Einstein’s theory [6]. Assuming the Motor Transducer) rheometer. Samples were compounded in dispersedsolidparticlesaresingle-sizedspheres,thereducedvis- Brabendermixerand thenmoldedat120(cid:3)Cintodisks.A sample cosityg/g ofthemixtureincreaseswithvolumefractionvofthe disk of 25mm in diameter and 1mm in thickness was loaded o dispersedphase,asdescribedbythefollowingequation. betweentwoparallelplatesforeachtest. Dynamic frequency sweeps were conducted at constant tem- g=g ¼1þ2:5v ð1Þ peratures(80,100,120and140(cid:3)C).Astrainof10%,withinthelin- o earviscoelasticregionofthematerials,wasappliedtoallsamples, Herein,gistheviscosityofthemixtureandg istheviscosityofthe except 5% strain for 50% APAP. The sample was subjected to a o puresolventormoltenpolymerinourstudy.Eq.(1)suggeststhat strainwithfrequencyvaryingfrom100to0.1rad/s. the viscosity of the mixture will increase with the amount of the Dynamic time sweep was conducted at a constant frequency drugparticleswhenthesolubilitylimitispassed.Theslopeofthe of1Hz(6.28rad/s).Astrainof10%,withinthelinearviscoelastic curveofg/g vs.visdependentonfactorssuchastheshapeofpar- region of the material, is applied to all samples except 5% strain o ticlesandthepotentialparticle–particleandparticle–solventphys- for 50% APAP. Each sample was subjected to 1800s time icalinteractions.Inotherwords,theslopemayvaryfrom2.5given sweep. here. Dynamic temperature ramp was conducted at a constant fre- Insummary,iftheviscosityofadrug–polymermixtureisplot- quencyof1Hz(6.28rad/s).Astrainof10%,withinthelinearvisco- tedagainstthedrugconcentration,theslopeisexpectedtobeneg- elastic region of the materials, was applied to all samples. The ativebelowthesolubilitylimitandchangestopositivebeyondthe samplewascooleddownfrom140(cid:3)Ctothelowestpossibletem- limit.Thecriticalpointonthecurvegivesthedrug’ssolubilityin perature with 2(cid:3)C/min cooling rate. Herein, the lowest tempera- the polymeric excipient. The similar phenomenon has been ob- tureisdecidedbythetorquelimitoftherheometer. servedinblowingagent-polymersystems[7]. For all the aforementioned tests, the sample was loaded at a Acetaminophen(APAP)andpolyethyleneoxide(PEO)werecho- constanttemperatureof 140(cid:3)C and then quicklycooled downto senasthemodeldrugandpolymer,respectively.Theviscositiesat thetestingtemperatures.PurePEOandvariousconcentrationsof different APAP concentrations and various temperatures were Acetaminophen in PEO were tested during the experiments (10, determined by a series of dynamic and steady rheological tests. 20,25,30,35,40and50wt.%). ThereducedviscositywasplottedasafunctionofAPAPconcentra- Steadyratesweepwasconductedfrom0.01to101/swith5s tionandtemperature.Foreachtemperature, thecriticalpointon delay and 5s measurement times. PEO with 10, 20, 30, 40 and thecurveofviscosityvs.drugloadinggivesthesolubilityofAPAP 50wt.%wasselectedforthetests. atthattemperature. 3.2.Capillaryrheometer 2.Materials The steady viscosities of PEO and mixtures of three different Acetaminophen,withacommercialnameofparacetamol,was APAP concentrations, 10, 20 and 30wt.%, were determined at suppliedbySpectrumQualityProducts,Inc.(Gardena,CA90428). 100, 120 and 140(cid:3)C using an Instron capillary rheometer. The It has a formula of C H O with the molecular weight of 156.17. other two concentrations, 40 and 50%, were determined at 120 8 9 2 Its density at 25(cid:3)C is 1.293g/cc, and it has a melting point of and140(cid:3)C.Thebarreldiameteris9.5mm.Thestainlesssteeldie 168(cid:3)C. The molecular structure of Acetaminophen is shown in has a length of 30mm and a diameter of 1mm. The crosshead Fig.1. speedfrom0.5to500mm/minwasappliedtocovermoderateto Poly(ethyleneoxide)wassuppliedbyDowChemicalCompany. high shear rates. The drug was mixed with the polymer in the Theglasstransitionis(cid:2)67(cid:3)C,andthemeltingpointis65(cid:3)C.The Brabender Torque Rheometer at 120(cid:3)C and 45rpm for 10min. average molecular weight is about 100,000g/gmol. Its density is Themixturewasthencompressedforapproximately8mintoform 1.113g/ccat25(cid:3)C,andtheviscosityof5%solutioninwaterisin athinsheetviacompressionmoldingat120(cid:3)C.Thesheetwascut the range of 12–50 cP at 25(cid:3)C. The molecular structure is given intosmallpiecestobefedintothebarrel. inFig.1. 3.3.Differentialscanningcalorimetry ThermalanalysisofPEO–APAPsystemwasconductedwithDSC Q-100 from TA Instrument. Three to five milligrams sample of PEO–APAPmixturewasfromthesamemixturespreparedforrhe- ological characterization. The sample underwent heat–cool cycle Fig. 1. The molecular structure of acetaminophen (left) and polyethylene oxide (right). from0to100(cid:3)Cwith10(cid:3)C/minheatingandcoolingrate. Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013 H.Suwardieetal./EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx 3 4.Resultsanddiscussion Table1 G0/G00crossoverofPEO–APAPmixtures. 4.1.Viscoelasticproperties wt.%ofAPAP Crossoverfrequency(rad/s)atvarioustemperatures((cid:3)C) 140 120 100 80 Dynamicfrequencysweepiscommonlyusedtodeterminethe 0 N.A. 82.2 47.4 25.6 viscoelasticpropertiesofthematerials.Fig.2showsthedatafrom 10 N.A. N.A. 86.0 44.8 dynamic frequency sweep of PEO at 140(cid:3)C. The Fig. clearly dis- 20 N.A. N.A. 91.8 47.5 plays that G00 (viscous modulus) is always higher than G0 (elastic 30 N.A. N.A. 93.0 45.1 modulus) at all frequencies investigated, indicating that PEO 40 N.A. N.A. N.A. 44.2 50 N.A. N.A. 88.6 49.0 behaves and flows like a viscous material at this particular temperature. Fig.3depictstheviscoelasticbehaviorofPEOat80(cid:3)C.G0andG00 crossoveratfrequencyof25.6rad/s,abovewhichthematerialbe- Forthemixturesattemperaturesof100(cid:3)Cand80(cid:3)C,theaddi- havesmorelikeasolid. tionofAPAPincreasestheG0/G00 crossoverfrequencyuptocertain Table 1 lists the G0/G00 crossover points for pure PEO and the criticalvalue,afterwhichthecrossoverfrequencydecreaseswith mixturesatdifferenttemperaturesandconcentrations.Thecross- theincreasingdrugloading.Thecriticaldrugloadingisthedrug’s over frequency of pure PEO decreases as the temperature de- solubility in polymer. As explained in the introduction part, the creases. Unlike the pure PEO, the mixture samples do not show physical state of the drug changes beyond the solubility limit, crossoverpointsat140(cid:3)Cand120(cid:3)Cwithinthetestedfrequency. whichleadstodifferentimpactofthedrugloadingontheviscos- ThephenomenasuggestthattheadditionofAPAPtransformsthe ity. Moredetailed illustrationcan be foundin thesections under mixtureintoamoreliquid-likematerial,as alsoindicatedbythe thetitleofsolubilitycalculation. lowervaluesofthedynamicviscosity.Thetablealsoindicatesthat thebestprocessingtemperaturesforanyPEO–APAPmixturesare 4.2.Coolingexperiment between 120 and 140(cid:3)C because G00 is always higher than G0 in the temperature range, suggesting the viscous behavior of the Fig.4showstherheologicaldataofPEOobtainedfromthecool- mixture. ing experiment, i.e., dynamic temperature sweep. This cooling experiment is analogous to the cooling scan in the differential scanningcalorimeterasshowninFig.5.InFig.4,G00isalwayshigh- 105 105 erthanG0 atthestartingtemperature,140(cid:3)C.However,G0 grows faster with the drop of the temperature and the two equals at the crossover point. Further, lowering the temperature makes G00 lessthanG0,andthematerialbehavesmorelikeasolid.Theexper- ) 104 104 imenthastoceaseoncetheinstrumentreachesthemaximumtor- G" ([Pa] [PEta qpuroecelismsiintgotfe2m0p0e0ragtcumre.aTnhdetchreosvsaolvueerspaoreinftouginvdesaltwheaymsicnloimseutmo G' ()[Pa] 103 103 a-s])* ( tahseshPoEwOncrinysTtaalblilzeat2i.onThteemrepseurlattaulrseodsuetgegremstisnetdhaftrothmeDmSiCnimteustms, processing temperature for pure PEO is close to 100(cid:3)C, as con- cludedinthepreviouswork[3].Itisverycommontochoosethe processing temperature to be 50(cid:3)C or more than the transition point,inthiscasethecrystallizationtemperatureofthePEO. 102 102 10-1 100 101 102 Freq [rad/s] 4.3.Solubilitycalculation:dynamictimesweep Fig.2. ViscoelasticpropertiesofPEOat140(cid:3)C. Fig.6showstheoverlayofdynamicviscosityofPEOatdifferent temperatures. As expected, the viscosity at 140(cid:3)C is the lowest, 105 105 106 105 G' / G" Crossover Point:(25.6,4.7x104) ) G' ()G" ([Pa][Pa] 104 104[Pa-s])Eta* ( )G" ()[Pa] 105 G'/G" Crossover: 43.6 [°C] 104[Pa-s]Eta* ( G' ([Pa] 104 ) 103 103 10-1 100 101 102 Freq [rad/s] 103 103 40.0 60.0 80.0 100.0 120.0 140.0 Fig.3. ViscoelasticpropertiesofPEOat80(cid:3)C.(Forinterpretationofthereferences Temp [°C] to color in this figure legend, the reader is referred to the web version of this article.) Fig.4. G0,G00andtheviscosityofpurePEOobtainedfromthecoolingexperiment. Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013 4 H.Suwardieetal./EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx 15 3.0 46.96°C 80°C 10 W/g) 2.0 w ( ) 100°C Heat Flo 5 n/no ([ ] 120°C 49.06°C 0 149.4J/g 1.0 140°C -5 20 30 40 50 60 Exo Up Temperature (°C) Universal V4.0C TA Instruments 0.0 0.0 10.0 20.0 30.0 40.0 50.0 Fig.5. CrystallizationpeakofPEOduringthecoolingscaninDSC.(Forinterpre- APAP Concentration [%] tationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.) Fig.7. Overlayofreducedviscositydataandthefittingcurves. Table2 Table3 CrystallizationtemperaturedeterminedfromDSCandrheologicaltests. SolubilityofAPAPinmoltenPEOatdifferenttemperatures(datafromdynamictime sweep). wt.%ofAPAP Crystallizationtemperature((cid:3)C) CoolinginDSC Coolinginrheometer Temperature((cid:3)C) Solubility(wt.%) 0 47.0 43.8 80 23.0 10 41.0 43.8 100 30.0 20 38.6 40.0 120 36.3 30 36.9 39.3 140 39.3 40 41.5 43.0 50 – 42.6 sweep. It is interesting to find out whether the data from the 104 dynamicfrequencysweepcanalsobeusedtocalculatethesolubil- ity.Forthatend,thezeroshearviscosityofPEO–APAPmixturewas calculatedfromthedataobtainedfromdynamicfrequencysweep 80 C ofthemixture.Thedynamicviscosityofthemixturesatdifferent ) frequency was fittedwith the following Cross’constitutiveequa- y ( 100 C tion[8]: sit g cos] g¼ o ð2Þ VisPa- 120 C 1þðc2xÞð1(cid:2)c3Þ c [ mi 140 C wherec isassociatedwithrelaxationtimeandc withthepower 2 3 a n law index. Fig. 8 shows the data obtained from the dynamic fre- y D quencysweepof PEOat 140(cid:3)C andthe fittingparameters. Asthe figureindicates,theequationfitsthecurveperfectly. 103 0.0 300.0 600.0 900.0 1200.0 1500.0 1800.0 105 105 time [s] Fig.6. OverlayofdynamicviscosityofPEOatdifferenttemperatures. ofoflltohweetdimbeys1w20e,e1p0i0sannodrm80al(cid:3)iCze.dThweimthixtthuerep’usrveisPcEoOsi’tsyvgisactotshiteyegnod. G" ()[Pa] 104 104[PEta wTanhadescrfieotdntuceecdendtursavitniisogcno5swtithyasdocefagPlrcEeuOela–ptAeoPdlAyanPnogdm/sgiaholo,awtannddiifnfeaFreimgn.itn7ti.meEmaucpmhercpautourivnreet G' ()[Pa] 103 103a-s]* () Data: Eta*(Freq) [1..16] (16 pts) wasobtainedforeachcurve.Asexplainedintheintroductionpart, Note: Predefined Fit theminimalviscositypointgivesthedrug’ssolubilityinpolymer. MEqond:e l:c 1C/(r1o+ss(c M2xo)(d1e-cl3 )) Table3displaysthesolubilityofAPAPinmoltenpolymeratfour Fit Error: 0.9997 3 Coefficients: differenttemperatures. 102 1.525x104 3.4966 0.5337 102 10-1 100 101 102 4.4.Solubilitycalculation:zeroshearviscosity Freq [rad/s] Fig. 8. Dynamic frequency sweep of PEO at 140(cid:3)C. (For interpretation of the Theabovesectionexplainshowthedrug’ssolubilitycanbeob- referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof tained using the dynamic viscosity data from the dynamic time thisarticle.) Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013 H.Suwardieetal./EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx 5 Table4givesthevaluesofCross’parametersforPEOatvarious Theshearratefortheoscillatoryrheometerislimitedbythetorque temperatures.Thereducedviscosityisdefinedastheratioofzero andedgeeffect.Theedgeeffectbecomesmoresevereastheshear shearviscosityofPEO–APAPtothatofPEOatthesametempera- rateincreases[9].Themaximumtorquefortheoscillatoryrheom- ture.Thereducedviscositywasplottedagainstwt.%ofAPAPatdif- eterusedinthisstudyis1500gcm,whiletheedgeeffectisoften ferenttemperature,andthecurveateachtemperaturewasfitted manifestedbythesuddendropofthetorque. with5thdegreepolynomial,asthecasewithdynamictimesweep. TheviscosityinacapillaryflowiscalculatedusingfollowingEq. Table5showsthevaluesofsolubilityatdifferenttemperature [10]: obtainedbyzeroshearviscositymethod.Fig.9comparesthesolu- s ¼gc_ ð3Þ bility data obtained by two different methods (reduced viscosity w w from the dynamic time sweep and reduced zero shear viscosity and fromdynamicfrequencysweep).Theresultssuggestthatsolubility D DP RDP F=A dataobtainedfromtwomethodsonlyhaveveryminordifferences, s ¼ c ¼ ¼ barrel ð4Þ w 4L 2L 4L=D withthedynamictimemethodgivingslightlyandyetconsistently c lower solubility. This slight difference may be a result of the Eq. (4) does not take into consideration of Bagley’s correction frequency difference: the dynamic time sweep is conducted at a [11]. L/D, the ratio of the die length to the diameter, used in all frequency of 1Hz, while the zero shear viscosity essentially is experiments was 30. The values of s , shear stress at the wall, w theviscosityatextremelysmallfrequency. calculatedwithoutBagley’scorrectiontypicallyhavelessthan2% error.Twoorthreedieswithsimilardiameteranddifferentlength 4.5.Steadyviscositymeasurement areusuallyemployedforBagley’scorrection.Fistheforcerequired ateachshearrate,andAistheareaofthebarrel. Steadyexperimentswereconductedusingbothoscillatoryand Thecorrectedshearrateatthewall,c_w,canbecalculatedafter capillaryrheometer.Oscillatoryrheometergivesthesteadyviscos- Rabinowitsch’s[12]correctionusingthefollowingequation: ityatlowshearrates,usuallybetween0.01and101/sorless.In 1 (cid:2) dlogðCÞ(cid:3) contrast, capillary rheometer gives the steady viscosity at higher c_w¼4C 3þdlogðs Þ ð5Þ shearrates,intherangeof1–10,0001/s,whichcoverstheranges w usually seen in extrusion and injection molding operations. and 4Q 4ðCHSÞðAÞ C¼ ¼ barrel ð6Þ Table4 pR3 pðDc=2Þ3 Cross’parametersforPEOatvarioustemperatures. whereCisapparentshearrate,andCHSisthecrossheadspeedof Temperature((cid:3)C) g0(Pas) c2 c3 theplungerintherheometer.Finally,thecorrectedshearviscosity 140 15,250 3.5 0.5337 canbecalculatedfromfollowingequation: 120 22,420 5.3 0.5232 100 32,500 7.7 0.5079 g¼sw=c_w ð7Þ 80 47,980 11.1 0.4905 The shear viscosity data from the oscillatory rheometer were combined with the data obtained from the capillary rheometer. ThecombineddataofshearviscosityofPEOat140(cid:3)Careshown Table5 onFig.10.ThesteadyshearviscositywasfittedusingCross’consti- Solubility of APAP in molten PEO at different temperatures, zero shear viscosity method. tutiveequation.ThezeroshearviscosityofPEO–APAPmixturesat differenttemperatureisgiveninTable6. Temperature((cid:3)C) Solubility(wt.%) Fig.11showsarepresentativeoverlayofsteadyshearviscosity 80 24.5 of PEO–APAP mixture at 100, 120 and 140(cid:3)C, respectively. The 100 33.0 graphscontainthesteadyshearviscosityobtainedfrombothoscil- 120 37.6 latoryandcapillaryrheometer.Itisworthwhiletopointoutthat 140 42.2 105 50.0 50.0 Data: Eta(Rate) [1..25] (25 pts) Note: Predefined Fit Model: Cross Model Eqn: c1/(1+(c2x)(1-c3)) 40.0 40.0 104 Fit Error: 0.9976 ) E 3 Coefficients: xp 6844.2 0.5623 0.4137 e alculated Solubility ([%]2300..00 Zero Shear Viscosity Dynamic Time 2300..00[ ]rimental Solubility ( Eta ()[Pa-s] 110023 Oscillatory Rheometer C ) 10.0 10.0 Capillary Rheometer 0.0 0.0 101 25.0 50.0 75.0 100.0 125.0 150.0 10-3 10-2 10-1 100 101 102 103 104 Temp [°C] Rate [s-1] Fig. 9. Solubility of APAP in PEO determined from two different methods. (For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred Fig.10. SteadyviscosityofPEOat140(cid:3)C.(Forinterpretationofthereferencesto tothewebversionofthisarticle.) colorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013 6 H.Suwardieetal./EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx Table6 1.2 ZeroshearviscosityofPEO–APAPmixtureatdifferenttemperature. Material wt.%ofAPAP Zeroshearviscosity(Pas) 1.0 100 1/s 100(cid:3)C 120(cid:3)C 140(cid:3)C PEO 0 – 11,550 6844 0.8 10 1/s PEO-10 10 12,160 9929 6218 ) PEO-20 20 10,590 7011 5092 PPEEOO--3400 3400 –7091 33576024 13675272 n/no ([ ] 0.6 32.43%2.9% 1 1/s PEO-50 50 – 6571 2411 0.4 37.6% 0.2 0.0 10.0 20.0 30.0 40.0 50.0 % APAP [%] Fig.13. OverlaysteadyviscosityofPEO–APAPat120(cid:3)Catvariousshearrates. 1.2 1.0 100 1/s 10 1/s 0.8 ) Fig.11. OverlayofsteadyviscosityofPEO-20at100,120and140(cid:3)C. no ([ ] 0.6 32.4% 1 1/s n/ 32.9% theshearratesofcommonprocessessuchasextrusionandinjec- 0.4 tionmoldingtypicallyfallinthetestrangeofthecapillaryrheom- 37.6% eter.Thefigureclearlyindicatesthattheviscositydecreasesasthe temperature increases. PEO–APAP mixtures exhibit Newtonian 0.2 behavior at low shear rates and shear thinning behavior at high shear rates for all temperatures. Also, the temperature-induced 0.0 viscositydifferencebecomessmallerathighshearrates. 10.0 20.0 30.0 40.0 50.0 Fig.12showstheeffectoftheAPAPconcentrationonthesteady % APAP [%] viscosity.At120(cid:3)C,theviscositydecreaseswiththeAPAPconcen- Fig.14. OverlaysteadyviscosityofPEO–APAPat140(cid:3)Catvariousshearrates. trationupto40%,indicatingtheplasticizereffectoftheAPAP.The viscosityfor50%APAPishigherthanthatof40%APAP,indicating thatthesystemhadreachedthesolubilityofAPAPatthattemper- Figs.13and14showhowthereducedviscosityofthemixture ature.Thedecreaseinviscosityisverypronouncedatlowershear changeswiththedrugloadingat120(cid:3)Cand140(cid:3)C,respectively,at rates up to 101/s and becomes insignificant at high shear rates. threedifferentshearrates:1,10and1001/s.Thecriticaldrugload- Thephenomenonsuggeststhatitisbettertouselowershearrate ings are 37.6%, 32.9% and 32.4% for the shear rates of 1, 10 and to obtain the drug’s solubility data as shown later in Figs. 13 1001/s, respectively. The critical drug loadings change to 44.1%, and14. 44.4% and 45.4% for the same shear rates at 140(cid:3)C. The critical pointforeachshearratewasobtainedbasedon5thdegreepolyno- mialfitting,same as the dynamicmethod in previous paragraph. Thecriticaldrug loadingdecreases withincreasingshearrates at 120(cid:3)C, while it is almost independent of the shear rates at 140(cid:3)C.Thisapparentdiscrepancyisprobablyduetothat5thde- gree polynomial equation is not accurate enough to describe the relationshipbetweentheviscosityandthedrugloading. 5.Conclusions ThedynamicandsteadyviscositiesofAPAP–PEOmixturewere determined using oscillatory and capillary rheometers. The com- prehensiverheologicalstudyonthedrug–polymerbinarysystem notonly helps to determinethe extrusionprocessing parameters suchasthetemperaturebutalsoprovidesthedrug’ssolubilitydata inpolymer.Thecurvesofviscosityvs.drugloadinggenerallyhave a‘‘V’’shape,andtheminimalpointgivestheAPAP’ssolubilityin Fig.12. OverlayofthesteadyviscosityofPEO–APAPat120(cid:3)C. PEO. Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013 H.Suwardieetal./EuropeanJournalofPharmaceuticsandBiopharmaceuticsxxx(2011)xxx–xxx 7 The results suggest that different dynamic methods lead to [2] A. Paradkar, A. Kelly, P. Coates, P. York, Journal of Pharmaceutical and essentiallythesamesolubilitydata.Thesolubilitycanalsobecal- BiomedicalAnalysis44(2009)304. [3] M.Read,K.Coppens,M.Hall,P.Larsen,S.Mitchell,U.Shrestha,SPE-ANTEC culatedfromthesteadyviscositydata.However,thedataseemto Tech.Papers,vol.41,1995. bemoresensitivetotheshearrateused. [4] R.J.Chokshi,H.S.Sanadhu,R.M.Iyer,N.H.Shah,A.W.Malick,H.Zia,Journalof Themixturesshowshearthinningbehaviorathighshearrates. PharmaceuticalSciences94(2005)2463. [5] H.Liu,P.Wang,X.Zhang,F.Shen,C.G.Gogos,Effectsofextrusion process Furthermore,theviscositybecomeslesssensitivetothedrugload- parametersonthedissolutionbehaviorofindomethacininEudragit(cid:4)EPO ingathighshearrates.Ontheotherhand,itisbettertouselower solid dispersions, International Journal of Pharmaceutics 383 (1–2) (2010) shearrate inordertouse theviscositydata todeducethedrug’s 161–169. [6] A.Einstein,AnnualPhysics19(1906); solubility in polymer. Furthermore, viscosity data at high shear A.Einstein,AnnualPhysics34(1911). ratesaremorerepresentativeofthematerials’rheologicalproper- [7] V.B.Warrier,D.B.Todd,SPE-ANTECTech.Papers,vol.46,2000. tiesduringextrusion. [8] M.M.Cross,JournalofColloidScience20(1965)417. [9] C.W.Macosko,Rheology,Principles,Measurements,andApplications,Wiley- Thiscomprehensivestudyforthefirsttimedeterminesthesol- VCH,NewYork,1994. ubilityofthedruginthepolymersystemusingsolelyrheological [10] Z.Tadmor,C.G.Gogos,PrinciplesofPolymerProcessing,JohnWileyandSons, method in both dynamic and steady measurements from low to NewYork,2006. moderateshearrates. [11] E.B.Bagley,JournalofAppliedPhysics28(1957)624. [12] B.Rabinowitsch,ZeitschriftPhysik-ChemieA145(1929)1. [13] H. Liu, P. Wang, M. Xanthos, L. Zhu, C.G. Gogos, Review Paper: Processing Acknowledgment Aspects of hot Melt Extrusion in Pharmaceutical Applications, SPE-ANTEC Tech.Papers,vol.4,2009,pp.2370–2375. [14] R.J.Chokshi,N.H.Shah,H.K.Sandhu,A.W.Malick,H.Zia,Stabilizationoflow This research work was partially financially supported by glasstransitiontemperatureindomethacinformulations:impactofpolymer- NationalScienceFoundationunderGrantCMMI-0927142. typeanditsconcentration,JournalofPharmaceuticalSciences97(6)(2008) 2286–2298. [15] M. Yang, P. Wang, C. Huang, M.S. Ku, H. Liu, C. Gogos, Solid dispersion of References acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing, InternationalJournalofPharmaceutics395(2010)53–61. [1] J. Tao, Y. Sun, G.G.Z. Zhang, L. Yu, Solubility of small-molecule crystals in polymers:D-mannitolinPVP,indomethacininPVP/VA,andnifedipineinPVP/ VA,PharmaceuticalResearch26(4)(2009)855–864. Pleasecitethisarticleinpressas:H.Suwardieetal.,Rheologicalstudyofthemixtureofacetaminophenandpolyethyleneoxideforhot-meltextrusion application,Eur.J.Pharm.Biopharm.(2011),doi:10.1016/j.ejpb.2011.03.013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.