ebook img

DTIC ADA539815: Forecasting Ocean Waves: Comparing a Physics-Based Model with Statistical Models PDF

0.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA539815: Forecasting Ocean Waves: Comparing a Physics-Based Model with Statistical Models

CoastalEngineering58(2011)409–416 ContentslistsavailableatScienceDirect Coastal Engineering journal homepage: www.elsevier.com/locate/coastaleng Forecasting ocean waves: Comparing a physics-based model with statistical models Gordon Reikarda,⁎, W. Erick Rogersb aStatisticsDepartment,LeapWireless,CO,USA bOceanographyDivision,NavalResearchLaboratory,StennisSpaceCenter,MS,USA a r t i c l e i n f o a b s t r a c t Articlehistory: The literature on ocean wave forecasting falls into two categories, physics-based models and statistical Received18June2010 methods. Since these two approaches have evolved independently, it is of interest to determine which Receivedinrevisedform8November2010 approachcanpredictmoreaccurately,andoverwhattimehorizons.Thispaperrunsacomparativeanalysisof Accepted20December2010 awell-knownphysics-basedmodelforsimulatingwavesnearshore,SWAN,andtwostatisticaltechniques, Availableonline14January2011 time-varyingparameterregressionandafrequencydomainalgorithm.Forecastsarerunforthesignificant waveheight,overhorizonsrangingfromthecurrentperiod(i.e.,theanalysistime)to15h.Sevendatasets, Keywords: fourfromthePacificOceanandthreefromtheGulfofMexico,areusedtoevaluatetheforecasts.Thestatistical Waveforecasting Simulationmodels modelsdoextremelywellatshorthorizons,producingmoreaccurateforecastsinthe1–5hourrange.The Timeseriesmodels SWANmodelissuperioratlongerhorizons.Thecrossoverpoint,atwhichtheforecasterrorfromthetwo methodsconverges,isintheareaof6h.Basedontheseresults,thechoiceofstatisticalversusphysics-based modelswilldependontheusestowhichtheforecastswillbeput.Utilitiesoperatingwavefarms,whichneed toforecastatveryshorthorizons,maypreferstatisticaltechniques.Naviesorshippingcompaniesinterested inoceanicconditionsoverlongerhorizonswillpreferphysics-basedmodels. ©2010ElsevierB.V.Allrightsreserved. 1.Introduction wavemodeling,seeJensenetal.(2002),Tolmanet al. (2002)and WISE(2007). The literature on ocean wave forecasting falls into two broad The statistical literature is more recent. The most popular categories, physics-based models and statistical techniques. In the technique has been neural networks (Deo and Naidu, 1998; Deo physicsliterature,large-scaleenergybalancemodelshavebeenthe et al., 2001; Tsai et al., 2002; Deo and Jagdale, 2003; Makarynskyy, methodologyofchoicesincethe1970s.Thislastmajoradvancein 2004;LondheandPanchang,2006;JainandDeo,2007;Tsengetal., this technology was the introduction of the third-generation (3G) 2007, and Zamani et al., 2008). Ozger (2010) investigates wavelet wave model (Komen et al., 1984). These 3G models are based on transformations. Regression-based models have been less popular, theoretical and experimental studies by a number of researchers buthavealsobeenusedtogoodeffect(Malmbergetal.,2005;Hoand includingPhillips(1957,1958),Miles(1957),Snyderetal.(1981), Yim,2006;Roulstonetal.,2005).GaurandDeo(2008)usegenetic Hasselmann et al. (1985), and Janssen (1991). The best-known is programming.Reikard(2009)extendsregressionandneuralnetwork the WAM (Wave Model), which has historically been used techniquestopredictingthewaveenergyflux. primarily for large-scale, deep-water applications (WAMDIG, Sincethesetwoapproacheshaveevolvedindependently,itisof 1988; Komen et al., 1994). The SWAN (Simulating Waves Near interest to determine which approach can predict more accurately, shore) model is a more recently developed 3G model, created for and over what time horizons. A reasonable critique of statistical the purpose of achieving economical solutions on high resolution methodsisthattheydonotcapturetheunderlyingphysics.However, grids (Booij etal., 1999). Themodelincludesmechanismsrelevant testsinfieldsrangingfromthesciencestofinancialeconomicshave to near-shore processes (depth-induced breaking, bottom friction, demonstrated that time series models can often forecast quite parameterized triad interactions) in addition to the traditional accuratelyovershorthorizons. mechanisms associated with global/regional wind wave models. Afurtherreasontocomparethetwoapproacheshastodowiththe SWANhasbeenusedsuccessfullyinhindcastapplications(Risetal., uses of the forecasts. Large-scale simulation models were initially 1999), and in real time wave prediction systems for coastal areas developed primarily to satisfy the requirements of national navies, (Rogersetal.,2007),Dykesetal.(2009).Forrecentreviewsof3G although application in civilian forecasting centers is now wide- spread.Forinstance,forecastsarealsousedbycommercialshipping lines, and typically involve prediction of wave heights over longer ⁎ Correspondingauthor.Tel.:+13037347768. horizons, on the order of several hours to a few days. Recently, E-mailaddress:[email protected](G.Reikard). however, the technology has been developed to make wave farms 0378-3839/$–seefrontmatter©2010ElsevierB.V.Allrightsreserved. doi:10.1016/j.coastaleng.2010.12.001 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED NOV 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Forecasting ocean waves: Comparing a physics-based model with 5b. GRANT NUMBER statistical models 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Research Laboratory,Stennis Space Center,MS,39529 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The literature on ocean wave forecasting falls into two categories, physics-based models and statistical methods. Since these two approaches have evolved independently, it is of interest to determine which approach can predict more accurately, and over what time horizons. This paper runs a comparative analysis of a well-known physics-based model for simulating waves near shore, SWAN, and two statistical techniques time-varying parameter regression and a frequency domain algorithm. Forecasts are run for the significant wave height, over horizons ranging from the current period (i.e., the analysis time) to 15 h. Seven data sets four from the Pacific Ocean and three from the Gulf of Mexico, are used to evaluate the forecasts. The statistical models do extremely well at short horizons, producing more accurate forecasts in the 1?5 hour range. The SWAN model is superior at longer horizons. The crossover point, at which the forecast error from the two methods converges, is in the area of 6 h. Based on these results, the choice of statistical versus physics-based models will depend on the uses to which the forecasts will be put. Utilities operating wave farms, which need to forecast at very short horizons, may prefer statistical techniques. Navies or shipping companies interested in oceanic conditions over longer horizons will prefer physics-based models. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 8 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 410 G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 commercially viable. Since electricity is perishable, utilities will be in the mathematics may wish to omit Eqs. (3)–(7), and proceed interestedinforecastingovermuchshorterhorizons,ontheorderof directlytothealgorithm. 1–6h,consistentwithgeneratingandsellingpower. The moving average representation models a time series as a This paper runs a comparison of the SWAN model with two functionofitsinnovations: statisticaltechniques.Themostcommonlypredictedvariable,inthe contextof a 3Gwave modelsuchasSWAN,isthe significant wave HSt=βðLÞεt ð3Þ height, H , which is the measure of the total energy (i.e., the integratedStwavespectrum).PredictionsaredenotedHS(t+τ),wheret whereL is thebackshift operator, β(0)=1,andεtistheresidual. istheanalysistimeandτistheforecasthorizon,orlook-aheadperiod. Thisrepresentationiscommonly usedintheARIMAframeworkof Sevendatasets,fromthePacificOceanandGulfofMexico,areusedto Box and Jenkins (1976), where it is modeled in the time domain evaluatethemodels.Section2consistsofareviewofthemodels.The using a rational polynomial. Let ϕ(L) be the autoregressive setupoftheforecastingtestsisdiscussedinSection3,andresultsare operator, represented as a polynomial in the backshift operator: presentedinSection4.Section5concludes. ϕ(L)=1–ϕ1L–… –ϕpLp, and let θ(L) be the moving average operator:θ(L)=1+θ L+…+θ Lq.Ignoringconstants,themoving 1 q 2.Theforecastingmodels average representation is then given by the ratio of the moving average and autoregressive polynomials: β=[θ(L) / ϕ(L) ]ε. t t t The SWAN model represents surface waves with the two- Inthefrequencydomain,spectralmethodscanbeusedtocalculate dimensionalwaveactiondensityspectrumN(σ,θ)=E(σ,θ)/σ,where theFouriertransformofβ,whichcanbeusedtoforecast.Thespectral σistheintrinsicfrequency(i.e.,thewavefrequencymeasuredfroma density(F)ofHStcanbeexpressedasafunctionofthez-transform: frameofreferencewhichmayincludethemotionofacurrent),θisthe (cid:2) (cid:3) wave direction, and E is the spectral energy density. The wave FHSt=βðzÞβ z−1 ν2 ð4Þ spectrumisdescribedbythespectralactionbalanceequation: Thez-transformconvertsthediscretevaluesofatimeseriesintoa ∂N +∇⋅CN= S ð1Þ complexfrequencydomainrepresentation,andisgivenby: ∂t σ z=ΛexpðδφÞ=Λðcosφ+δsinφÞ ð5Þ where∇isthegradientoperatorinx,y,θ,andσ;Cisthepropagation speed,whichintheabsenceofcurrentsisthewavegroupvelocity. where Λ is the magnitude of z and φ is the complex argument, or Thelefthandsideofthisgoverningequationrepresentsconservative phase,inradians. phenomena such as refraction and shoaling. The right-hand side Letγdenoteaone-sidedpolynomialinpositivepowersofz.Then containsthesourceterms.Thetotal sourcetermSis giveninmost thelogspectraldensitycanbeexpressedas: general form as: S=Sinput+Sdiss+Snl i.e., input, dissipation, and (cid:2) (cid:3) nonlinear interactions respectively. Specific source terms include lnF =γðzÞ+γ z−1 +γ ð6Þ HSt 0 depth-limited wave breaking S , steepness-limited wave breaking br (white-capping) S , dissipation by bottom friction S , four-wave wc bf Takingantilogs,andsettingEq.(4)equaltoEq.(6): nonlinear interaction S , and input from the local wind S . For a nl4 in (cid:2) (cid:3) h (cid:2) (cid:3)i discussion of the other source terms, see Booij et al. (1999) and βðzÞβ z−1 ν2=exp½γðzÞ(cid:2)+exp γ z−1 +expðγ Þ ð7Þ SWAN(2008). 0 There is a wide range of statistical methods available in the literature,butintheinterestsoftractability,onlytwoareevaluated. Eq.(7)providesafrequencydomainestimateofβ,whichcanthen One is a regressionwithtime-varying coefficients. This approach is beprojectedoutsidetherangeofthedataset. attractivefortworeasons.First,anynonlinearmodelcaninprinciple Thestepsoftheforecastingalgorithmareasfollows: beapproximatedbya stochasticcoefficientmodel(Granger,2008). • Computethelogspectraldensityofthetimeseriestobeforecasted. Second,empiricaltestshaveoftenfoundthattime-varyingparameter • InverseFouriertransform,tomaskthenegativepowers. regressionsyieldthemostaccurateforecastsforvolatiledata(seefor • Fouriertransformagain,andtakeanti-logsinthefrequencydomain. instance Bunn, 2004). Let ln denote natural logs, let ω denote a • InverseFouriertransformtoestimateβ.Normalizesothatβ(0)=1. coefficient,letthet-subscriptdenotetimevariation,andletε denote t • Fouriertransform,andfilterthetransformedseriesby1/β(L);this theresidual.Themodelisoftheform: computestheresiduals. • InverseFouriertransform,andmasktheresidualsoutsidetherange lnHSt=ω0t+ω1tlnHSt−1+ω2tln(cid:2)HSt−2(cid:3)+ω3tlnHSt−3 ð2Þ ofthedata. +ω4tlnHSt−4+εt εteP 0;ν2 • Fouriertransformandfiltertheresidualsbyβ(L)inthefrequency domain. • InverseFouriertransformthefilteredresidualseries,extendingthe wherePistheprobabilitydistribution,andν2istheresidualvariance. daterangetoencompasstheforecastrange. Heretheregressionincludesfourlags.Withhourlydata,allthelags • Define an equationin the time domainsuch that the seriesto be were statistically significant, and this specification was found to forecasted is a deterministic function of the series defined in the predict more accurately than models with shorter or longer lag previousstep,andforecastthisequation. structures. Thesecondisafrequencydomainmethod.Thereasonforgoingto IntheRegressionAnalysisofTimeSeriessoftwarepackageusedto thefrequencydomainisthattheseasurfacecanberepresentedasa runthestatisticalmodels,thefrequencydomainalgorithmisavailable spectrum,whilewavescanberepresentedasasuperpositionofcycles as an automated routine, while the code can also be extracted for at different frequencies. The specific approach used here involves moreflexibleprogramming.Thewebsiteofthissoftwarepackageis: takingtheFouriertransformofthemovingaveragerepresentationof http://www.estima.com. theseries(Koopmans,1974,235–237).Becausethisapproachisnot One crucial issue in the statistical models is the method of widelyknown,themathematicalderivationispresented,followedby estimating the time-varying coefficients. Time-varying parameters thestepsofthealgorithmusedintheforecasts.Readersnotinterested canbeestimatedusingaKalmanfilter(Kalman,1960),orbysliding G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 411 window techniques. When the Kalman filter is unrestricted, the Table1 coefficientsbehavelikearandomwalk.Inhighlyvariabletimeseries, TheSWANforecastsandlocations. however, the unrestricted Kalman filter is susceptible to finding NDBC SWANForecasts Location Latitude, spurious patterns in random events. The degree of variation in the Buoy Longitude coefficients can be reduced either by restricting the filter, or by 46050 714values,Jan.2008 StonewallBanks,Oregon, 44.641N adjusting the widths of the moving window. Preliminary experi- toMay2009 20NMWest 124.500W mentswererunwiththedatasetsbelowtodeterminetheoptimal 46041 714values,Jan.2008 CapeElizabeth,Washington, 47.353N degree of restriction on the Kalman filter, by running forecasting toMay2009 45NMNorthwest 124.731W 46029 714values,Jan.2008 ColumbiaRiver,Oregon, 46.144N tests and comparing the errors. Generally, the tests favored high toMay2009 20NMWest 124.510W degreesofrestriction. 46211* 714values,Jan.2008 Gray'sHarbor,Washington, 46.515N Asecondsetofexperimentswererunusingamovingwindow,and toMay2009 4.5NMSouthwest 124.146W comparingtheerrorsassociatedwithvariouswindowwidths.Atshort 42007 1679values,Oct.2007 Biloxi,Mississippi, 30.090N toMay2010 22NMSouthSoutheast 88.769W widths,ontheorderof100horless,theresultsweresimilartothe 42040 1679values,Oct.2007 Mobile,Alabama, 29.212N unrestrictedKalmanfilter.Overwiderwidths,ontheorderof600to toMay2010 64NMSouth 88.207W 1200h,themodelsbecametooinertial,anddidnotrespondwellto 42039 306values,Dec.2009 Pensacola,Florida, 28.791N changingconditions.Theoptimalwindowwidthsfromthestandpoint toMay2010 115NMEastSoutheast 86.008W ofoverallforecastaccuracywereintherangeof400to600h.Onthe NDBC:Nationaldatabuoycenter(http://www.ndbc.noaa.gov). basisofthetests,awidthof480observationswasused.Thespectral *EquivalenttoCoastalDataInformationProgramsite036(http://www.cdip.ucsd.edu). algorithmwasfoundtobeless sensitivetochangesinthewindow NM=Nauticalmiles. widths,butherealso480hyieldedgoodresults.Additionaltestswere runfordatasetsinavarietyofotherlocations,includingdeepwater sitesintheAtlanticandPacific.Again,themostaccurateforecastswere • InthecaseoftheCNWsystem,theresolutionoftheforcingprovided obtainedwhenthewindowwidthswereintherangeof400to600h. totheouterSWANnest(CNW-G1)caseisat1°intervalsalongthe Finally,apersistenceforecast–settingthepredictedvalueequalto boundary,andthiswasobtainedfromtheoperationalNCEPWW3 the most recently observed actual value – is also reported. This EasternNorthPacific(ENP)model,whichhasaresolutionof0.25°. method is commonly used to provide a benchmark forecast in • The Gulf of Mexico outer grid, denoted GMEX-G1 in Table 2, econometrics(Theil,1971). includestheentireGulfandtheCaribbeannorthof18N.Boundary forcing is not applied to this grid. Swells from east of the Florida Straits or from the southern Caribbean are not included in the 3.Theforecastingtests forecast, since they typically have a negligible influence in the northernGulf. The physics-based numerical model outputs are all taken from • In all cases, boundary forcings are provided as full directional archived output from real time forecasting systems designed and spectra(i.e.notparameterized). operatedtheNavalResearchLaboratory,usingSWAN.Inputstothese • The JONSWAP bottom friction formulation is used (see SWAN systemswereofficialoperationalwindandwaveproducts.Thusthe manual). A non-default friction coefficient is used in the Gulf of wave predictions from these systems can be fairly portrayed as Mexico SWAN models. The value is based on an unpublished completely“blindfolded”.Further,theydidnotbenefitfrompostfacto documentbyDr.HendrikTolman(NCEP). improvements to forcing fields, as might be the case for hindcast • For the CNWSWANmodels, the default setting for depth-limited simulations driven by observational data and/or reanalysis wind breaking is used. For the GMEX SWAN models, depth-limited fields. The first forecasting system is the Coastal Northwest (CNW) breakingisdisabled. systemfortheWashingtonandOregoncoastlines(http://www7320. • Default propagation schemes are used in all cases. The default nrlssc.navy.mil/CNW/). This system operated from October 2004 to schemes for geographic propagation in SWAN are second order May 2009. The initial setup was performed for the NOAA Coastal accurate.Forstationarycomputations,numericaldiffusionissecond Storms Program. The second system is the north central Gulf of order.Fornonstationarycomputations,numericaldiffusionisthird Mexico (GMEX) system, which was initiated in October 2006 and order(seeRogersetal.,2002). continues to operate at time of writing. The initial setup was • TheGMEX-G11SWANmodelincludessurfacecurrentsinitsforcing. performedfortheCenGOOS(CentralGulfOceanObservingSystem) Thesefieldsaretakenfroma1/25°implementationoftheHYCOM program(http://www7320.nrlssc.navy.mil/CenGOOS/). model,alsooperatedbyNRL. Table1reportsthelocationsofthesites,thedatesoftheforecasts. ThegriddomainsforthesetwosystemsareshowninFigs.1and2. Additional detailsforthese forecasts are given in Table2. “Fully Somefeaturesofthemodelsetupare: nonstationary” indicates that computations are made in full time steppingmode.“Pseudo-nonstationary”indicatesthatthatthemodel • Spherical coordinates were used, with grid spacing as shown in uses a time-sequence of computations that utilize the stationary Table2. assumption (see discussion in Rogers et al., 2007). The deepwater • ThedirectionalresolutionΔθ=10°inallcases. sourcetermparameterizationsusedarenottunedforthissimulation • The frequency grid is logarithmic, with 34 frequencies from orforthisarea;rathertheyarethesameaswhatareusedinSWAN 0.0418Hzto1.0Hz. forecastingsystemsrunatNRLforotherareas. • ThedefaultparameterizationsinSWANarethatofWAM,Cycle3, Unlikethestatisticalmodel,thephysics-basedmodeldoesnotuse sometimesreferredtointheliteratureas“WAM3physics”.Inthis wave observations to produce its forecast. Instead, in SWAN, wave study,thedefaultparameterizationsforS ,S ,S areused,except energyisintroducedintwoways:Eitherbythemodelsourceterm's in ds nl4 thattheintegerusedfortheweightingofrelativewavenumberwas responsetowindforcing(i.e.,therighthandsideofEq.(1)),orby increasedby1.0(seealsoRogersetal.,2003andJanssenetal.1989). inputsofdirectionalspectralatthegridboundary,providedbyahost • Forthefullynon-stationarymodels,atimestepof10minisused. wavemodel,asindicatedinTable2. • For the pseudo non-stationary models (see below), the default AtthefourPacificCoastsites,theforecastswererunforselected convergencecriterionforiterationswasused. dates spanning the period from January 1, 2008 through May 17, • Theintervalofwindinputis3hinallcases. 2009,andforthefollowinghorizons:τ=0,3,6,9,12and15h.For 412 G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 Fig.1.DiagramofCoastalNorthwestGrid1(CNW-G1). each value of τ, 714 forecasted values are available. Different time 3,6,9,12,and15h.ThetimespanisfromOctober25,2007through spansandforecasthorizonswereusedattheGulfsites.AttheBiloxi May17,2010,and1679predictedvaluesareavailableforeachvalue buoy(NOAANDBC42007)theforecastswerealsoavailableforτ=0, ofτ.AttheMobilebuoy(42040)thetimespanisthesame,butthe Fig.2.DiagramofGulfofMexicogrid11(GMEX-G11). G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 413 Table2 AdditionalDetailfortheSWANForecasts. GridID CNW-G1 CNW-G11 CNW-G111 GMEX-G11 GMEX-G111 Griddescr. CoastalNorthwest CoastalNorthwest GraysHarbor North-CentralGulf North-CentralGulf (outer) (shelf) ofMexico(outer) ofMexico(shelf) Δx(longitude) 3.75′or4.9km 0.92′or1.17km 0.229′or289m 4′–6.5km 1.17′~1.88km Δy(latitude) 3.75′or6.9km 0.92′or1.71km 0.232′or430m 4′=7.4km 1.17′=2.18km Origin(°E,°N) 233.5042.75 235.0045.16 235.7446.84 267.027.0 270.1229.15 (#x-cells, 45 73 43 164 198 #y-cells) 93 147 45 59 78 Bathymetry 1′NGDC 15″NGDC 3″NGDC NRLDBDB(2′) NRLDBDB(1′) Computation Fullynonstationary Pseudo-nonstationary Pseudo-nonstationary Fullynonstationary Pseudo-nonstationary mode Bottomfriction Cf=0.067(default) Cf=0.019 coefficient Outputlocations 46050(depth=123m) 46041(132m)46029(135m) 46211(38m)(CDIP-036) 42039(307m)42040(165m) 42007(14m) Boundaryforcing NCEPWW3ENP SWANCNW-G1 SWANCNW-G11 SWANGMEX-G1 SWANGMEX-G11 from 15′×15′resolution Windforcing NCEPGFSENP, FNMOCCOAMPSCENAM, 15′×15′resolution 12′×12′resolution Boundaryforcingto CNW-G11 CNW-G111,G112,G113 None GMEX-G111 none Outputinterval 3h hourly 3h forecastrange(days) 3 2.0 1.5 2.0 2.0 valuesofτruncontinuouslyfromzerothrough15h.Thereare1679 Second,themissingvalueswereinterpolatedusingapolynomial.To forecastsforeveryvalueofτ.AtthePensacolabuoy(42039)thetime verify that the interpolations produced realistic numbers, the span is from December 12, 2009 through May 15, 2010. Again, the statistical models were tested both over the interpolated data sets values of τ run from zero through 15h, and 306 predictions are and on the original data, simply omitting any missing values. The availableforeachvalueofτ. forecasterrorswereextremelyclose,indicatingthatinterpolationdid The data sets used to validate the forecasts were downloaded notappreciablybiastheresults.However,insomecases,datawere from the National Oceanographic and Atmospheric Administra- missingforseveralmonthsatatime(seeTable3).Thesevalueswere tion's National Data Buoy Center (http://www.ndbc.noaa.gov). simplyomitted. Table 3 reports the available dates, along with other properties of The experiments using the statistical models were set up as the data. Fig. 3 shows the wave height over a 12-month period follows.TheforecasthorizonswerethesameasfortheSWANmodel, from one of the Pacific Coast sites, Cape Elizabeth. Data from the exceptthat 1–2 and 4–5hourpredictionswerealso generated. The other three Pacific sites are comparable. At all of these sites, the forecastswererunoveralltheavailabledata,andtwosetsoferrors mean wave height ranges from 2.09 to 2.27m, and the standard arereported,fortheentiredataset,andforthesamevaluesinthe deviationisslightlyover1m.Thereisevidenceofexcesskurtosis. SWAN forecasts. The models were estimated over an initial set of Fig. 4 shows one of the three Gulf sites, Pensacola. The Gulf data starting values, and were then forecasted a given number of steps shows somewhat different properties. There are more outlying ahead.Atthenextstepthemodelswerere-estimatedandforecasted, fluctuations, and greater seasonal volatility. As Table 3 indicates, continuing through the end of the data set. All forecasting was the mean wave heights in the Gulf are lower, but the kurtosis is dynamic,andthepredictedvaluesaretrueout-of-sampleforecasts,in significantlygreater. thattheyuseonlydatapriortothestartoftheforecasthorizon.The Amajorissueintheobservationaldataismissingcalendardates, reportederrorforhorizonsbeyondoneperiodisfortheforecastfor and missing values. The databases were interpolated in two steps. thathorizononly;interveningvaluesareomitted.Inotherwords,the First, the date fields were used to create a continuous calendar. erroratτ=3omitstheerrorsatτ=1andτ=2h. Table3 4.Results Propertiesofthebuoydata. Waveheightstatistics Table4reportstheresultsforthePacificCoast,andTable5reports theresultsfortheGulf.Thefirstthreecolumnsreporttheerrorsfrom NDBCId/ Water Mean Standard Kurtosis Dates the SWAN forecasts and the statistical forecasts only for the same Sitename depth Deviation Available_____________ horizons and values as in the SWAN simulations. The error is 46050 Stonewall 123m 2.21 1.09 2.69 Mar.5,2008to measured as the mean absolute error, i.e., the absolute difference Banks May31,2009 46041 Cape 132m 2.27 1.18 1.64 Jan.1,2008to betweentheforecastandtheactualvalue.Forτ=0,theregression Elizabeth May31,2009 forecastisofcoursethein-samplefit.Nofrequencydomainforecastis 46029 Columbia 135m 2.25 1.13 2.75 Mar.3,2008to reported for τ=0, since the fit would be nearly perfect. Since the River May31,2009* SWANmodeldoesnotutilizetheobservationaldata,itspredictionfor 46211 Gray's 40m 2.04 1.08 2.21 Jan.1,2008to τ=0is,bycontrast,notperfect.Thenextthreecolumnsreportthe Harbor Dec31,2009 42007 Biloxi 35m 0.76 0.51 17.06 Oct.1,2007to errors fromthe statistical modelsand persistence forecasts over all Dec31,2009** availabledatapoints. 42040 Mobile 161m 1.06 0.77 17.45 Oct.1,2007to In all the sites, the statistical models are found to predict more Oct5,2009*** accurately at short horizons, while SWAN predicts more accurately 42039 Pensacola 307m 1.41 0.83 4.24 Dec.1,2009to Mar.31,2010 overlongerhorizons.Atτ=1-5,theerrorsfromtheregressionand spectral algorithms are significantly lower than in the SWAN *TheColumbiaRiversiteismissingdatafromApril15throughJune20,2008. forecasts.Thestatisticalmodelerrorsovertheentiredatasetarein **TheBiloxisiteismissingdatafromJune24throughAugust31,2008. ***TheMobilesiteismissingdatafromFebruary15throughMay18,2008. thesameoverallrangeastheerrorsforthesmallerdatasetforwhich 414 G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 Meters, January 1 to December 31, 2008 9 8 7 6 5 4 3 2 1 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2008 Fig.3.Thesignificantwaveheight,CapeElizabeth. the SWAN predictions are available — as would be expected if the 5.Conclusions valuesusedintheSWANforecastsrepresentarandomsampleofthe largerdataset.Amongthestatisticalmethods,thefrequencydomain Thetestshaveyieldedonecentralconclusion.Theaccuracyofthe algorithmissomewhatbetterthantheregression.At allthePacific modelsisafunctionprimarilyoftheforecasthorizon.Atveryshort Coast sites, both statistical models are superior to the persistence horizons, up to 5h, the statistical models achieve more accurate forecast. However, as the horizon increases, the accuracy of the predictions. However, as the horizon extends, the accuracy of the statisticalmodelsdeteriorates.Atτ=6h,thestatisticalmodelsand statisticalmodelsfallsoffrapidly.Athorizonsbeyond6h,theSWAN SWANshowcomparableforecasterrorsatnearlyallthesites.AtτN6, forecastsareuniformlymoreaccurate.Asageneralrule,thecrossover SWANisunambiguouslysuperior. point,atwhichtheaccuracyofthetwomethodsconverges,inthearea ThetestsfortheMobileandPensacolalocationsareofparticular of6h.AnotablefeatureoftheSWANforecastsisthattheymaintain interest,sincetheyincludealargernumberofforecasthorizonsfor thesamelevelofaccuracyatlongerhorizons.Additionaltestsofthe SWAN.Inbothinstances,however,theresultsaresimilar.Theerrors SWAN model have found that the error only decays after longer fromthestatisticalmodelssignificantlylowerthantheSWANerrors periodoftime,ontheorderofseveraldays. at very short horizons, but the gap between the two falls as the OnequestionthatariseshereiswhetherSWAN'sperformanceat horizonincreases,withtheconvergencepointsinvariablyoccurringat short horizons can be explained by the forcing terms used in the ornear6h.Atτ=7,thestatisticalmodelerrorsstarttoexceedthe model. To evaluate this, the wind speed data at one of the sites SWANerror.InallthreeGulfsites,thefrequencydomainalgorithmis (Mobile)wascomparedwiththeSWANwindforcingvaluesforthe superiortotheregression.Interestingly,thepersistenceforecastdoes samelocation.Theerrorisextremelysimilaroverarangeofhorizons, betterattheGulfsites.AttheBiloxiandMobilesites,itiscomparable similar to the performance of SWAN itself on wave height. When to the regression, although the spectral algorithm is consistently regression models were estimated for the Mobile wind speed, the better. At the Pensacola site, the persistence forecast is marginally errorwasfoundtobelowerattheshorthorizons,andhigheratlonger betterthanalltheothermodelsforthefirst5h. horizons,withacrossoverpointintheareaof8h. Meters, June 1 2009 to March 31, 2010 7 6 5 4 3 2 1 0 Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 2009 Fig.4.Thesignificantwaveheight,Pensacola. G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 415 Table4 Table5 Comparisonofforecasterrors,PacificCoastsites.StatisticsareMeanAbsoluteError. Comparisonofforecasterrors,GulfofMexicosites.StatisticsareMeanAbsoluteError. Forecast Testsforsimulationvalues Testsforallvalues Forecast Testforsimulationvalues Testsforallvalues Horizon Horizon SWAN Regression Spectral Regression Spectral Persistence SWAN Regression Spectral Regression Spectral Persistence StonewallBanks Biloxi 0 0.297 0.133 … 0.131 … … 0 0.186 0.059 … 0.065 … .. 1 … … … 0.130 0.129 0.140 1 … … … 0.068 0.061 0.066 2 … … … 0.168 0.161 0.182 2 … … … 0.087 0.082 0.085 3 0.295 0.197 0.192 0.206 0.194 0.223 3 0.169 0.110 0.096 0.112 0.098 0.110 4 … … … 0.242 0.228 0.261 4 … … … 0.134 0.116 0.131 5 … … … 0.290 0.272 0.313 5 … … … 0.163 0.141 0.159 6 0.299 0.303 0.295 0.315 0.295 0.340 6 0.174 0.179 0.156 0.178 0.154 0.174 9 0.309 0.392 0.368 0.396 0.371 0.431 9 0.178 0.202 0.192 0.203 0.194 0.224 12 0.298 0.447 0.422 0.452 0.427 0.501 12 0.182 0.227 0.227 0.233 0.228 0.262 15 0.307 0.498 0.471 0.503 0.479 0.562 15 0.189 0.251 0.254 0.255 0.256 0.292 CapeElizabeth Mobile 0 0.306 0.132 … 0.127 … … 0 0.200 0.068 … 0.069 … … 1 … … .. 0.126 0.119 0.131 1 0.199 0.069 0.064 0.071 0.065 0.070 2 … … … 0.165 0.158 0.172 2 0.199 0.096 0.093 0.095 0.094 0.100 3 0.331 0.205 0.187 0.208 0.201 0.217 3 0.204 0.129 0.122 0.128 0.124 0.131 4 … … … 0.247 0.238 0.258 4 0.207 0.156 0.149 0.158 0.151 0.159 5 … … … 0.301 0.288 0.314 5 0.203 0.178 0.176 0.181 0.179 0.188 6 0.327 0.311 0.293 0.328 0.314 0.343 6 0.200 0.201 0.200 0.204 0.201 0.210 9 0.334 0.397 0.369 0.422 0.401 0.441 7 0.201 0.220 0.209 0.217 0.203 0.233 12 0.356 0.455 0.421 0.495 0.428 0.521 8 0.201 0.241 0.226 0.238 0.221 0.253 15 0.351 0.511 0.491 0.553 0.538 0.592 9 0.203 0.263 0.245 0.265 0.249 0.272 10 0.198 0.282 0.260 0.284 0.262 0.289 ColumbiaRiver 11 0.199 0.301 0.276 0.305 0.279 0.306 0 0.319 0.131 … 0.125 … … 12 0.198 0.311 0.283 0.309 0.283 0.321 1 … … … 0.125 0.124 0.133 13 0.205 0.331 0.312 0.329 0.308 0.335 2 … … … 0.148 0.148 0.174 14 0.200 0.349 0.318 0.347 0.317 0.349 3 0.322 0.182 0.186 0.183 0.185 0.219 15 0.206 0.371 0.338 0.373 0.339 0.362 4 … … … 0.219 0.217 0.243 5 … … … 0.267 0.259 0.275 Pensacola 6 0.328 0.308 0.289 0.292 0.281 0.292 0 0.295 0.084 … 0.092 … … 9 0.338 0.375 0.339 0.368 0.352 0.432 1 0.280 0.085 0.076 0.093 0.083 0.076 12 0.342 0.427 0.394 0.426 0.406 0.508 2 0.272 0.129 0.110 0.124 0.119 0.112 15 0.364 0.474 0.449 0.479 0.461 0.578 3 0.273 0.171 0.152 0.170 0.147 0.146 4 0.270 0.206 0.190 0.208 0.188 0.182 Gray'sHarbor 5 0.266 0.245 0.220 0.238 0.212 0.214 0 0.276 0.094 … 0.069 … … 6 0.270 0.263 0.235 0.276 0.241 0.249 1 … … … 0.072 0.078 0.106 7 0.272 0.318 0.276 0.308 0.273 0.272 2 … … … 0.135 0.138 0.152 8 0.267 0.339 0.302 0.337 0.303 0.298 3 0.288 0.181 0.179 0.182 0.178 0.199 9 0.278 0.367 0.321 0.363 0.323 0.322 4 … … … 0.214 0.208 0.238 10 0.286 0.398 0.358 0.389 0.348 0.344 5 … … … 0.257 0.248 0.291 11 0.293 0.427 0.391 0.412 0.372 0.366 6 0.286 0.266 0.258 0.279 0.269 0.318 12 0.295 0.446 0.387 0.435 0.385 0.386 9 0.295 0.336 0.226 0.364 0.344 0.406 13 0.281 0.467 0.394 0.456 0.402 0.405 12 0.302 0.394 0.368 0.430 0.399 0.472 14 0.277 0.469 0.399 0.464 0.421 0.423 15 0.295 0.445 0.416 0.469 0.447 0.535 15 0.283 0.487 0.415 0.492 0.448 0.439 Using statistical forecasts of wind as an input to SWAN would Theseresultssuggestthatthechoiceofstatisticalversusphysics- howeverbeproblematic.InSWAN,wavesarenotgeneratedbywind based models for forecasting will depend on the intended uses. atasinglesite,butbywindoverarangeoflocations.Thewavemodel Utilities operating wave farms will need to predict power flows at isatemporalandspatialintegration,orstatedanotherway,afunctionof horizonsofonlyafewhours,andforthisreasonmayprefertorelyon wind histories at several different points. Using the statistical wind statistical techniques. Navies or shipping companies interested in forecastwouldrequireasimplifiedversionofSWANthatwouldnot oceanicconditionsoverlongerhorizons,andindeniedareasorother considerpropagation,orspatialgradients.Further,thegoalinthispaper locations where in situ data are not available to drive statistical isnottoevaluateindividualinputs,butrathertocomparetheaccuracy forecasts,willpreferphysics-basedmodels. oftheSWANmodelingsystem,initsentirety,tothestatisticalmodels. The results also point to some directions for further research. For The SWAN model physics, wind forcing, bathymetry input, and certain applications, it may be possible to combine physics-based and boundary forcing are all part of the SWAN modeling system and all statistical models. The combined prediction from a hybrid model contributetoitsperformance. combining elements of both approaches may be superior to either Instead,themainreasonforthedifferencesbetweenthetwotypes methodindividually.Anotherextensionispredictionofthewaveenergy ofmodelslieswiththedataitself.Athighfrequencies,thedataexhibit flux,ratherthanthewaveheightalone.Thenextstageinthisresearchisa high degrees of dependence between time points (or in statistical combinationofphysics-basedandstatisticalmodelsforwaveenergy. terms,serialcorrelation).Overshorthorizons,thedataaredominated bythisdependence.Thestatisticalmodelsareabletoparameterize this, and predict more accurately. However, at slightly lower Acronymsandabbreviations frequencies, the dependence dissipates. At these longer horizons, CenGOOS CentralGulfOceanObservingSystem the data is more dominated by the underlying signals. As a result, CDIP CoastalDataInformationProgram physics-basedmodelsareabletoforecastmoreeffectively. CNW CoastalNorthwestSWANforecastingsystem 416 G.Reikard,W.E.Rogers/CoastalEngineering58(2011)409–416 COAMPS CoupledOcean/AtmosphereMesoscalePredictionSystem Jensen,R.E., Wittmann,P.A.,Dykes, J.D.,2002. Global andregional wave modeling activities.Oceanography15,57–66. (Hodur,1997) Kalman, R.E., 1960. A new approach to linear filtering and prediction problems, DBDB NRLDigitalBathymetricDataBase transactions oftheAmerican SocietyofMechanical Engineers.JournalofBasic ENP EasternNorthPacific,referringtoaWW3implementation Engineering83D,35–45. Komen,G.J.,Hasselmann,S.,Hasselmann,K.,1984.Ontheexistenceofafullydeveloped atNCEP wind-seaspectrum.JournalofPhysicalOceanography14,1271–1285. FNMOC FleetNumericalMeteorologyandOceanographyCenter Komen,G.J.,Cavaleri,L.,Donelan,M.,Hasselmann,K.,Hasselmann,S.,Janssen,P.A.E.M., GMEX northcentralGulfofMexicoforecastingsystem 1994.Dynamicsandmodellingofoceanwaves.CambridgeUniversityPress. HYCOM HYbridCoordinateOceanModel(Bleck,2002). Londhe,S.N.,Panchang,V.,2006.One-daywaveforecastsbasedonartificialneural networks.JournalofAtmosphericandOceanicTechnology23,1593–1603. JONSWAP JointNorthSeaWaveProject,(Hasselmannetal.,1973) Makarynskyy,O.,2004.Improvingwavepredictionswithartificialneuralnetworks. NCEP NationalCentersforEnvironmentalPrediction OceanEngineering31,709–724. NDBC NationalDataBuoyCenter Malmberg, A.,Holst, U.,Holst, J.,2005. Forecasting near-surface oceanwinds with Kalmanfiltertechniques.OceanEngineering32,273–291. NGDC NationalGeophysicalDataCenter Miles,J.W.,1957.Onthegenerationofsurfacewavesbyshearflows.JournalofFluid NOAA NationalOceanicandAtmosphericAdministration Mechanics3,185–204. SWAN SimulatingWAvesNearshore(Booijetal.,1999) Ozger,M.,2010.Significantwaveheightforecastingusingwaveletfuzzylogicapproach. OceanEngineering37,1443–1451. WAM WAveModel(WAMDIG,1988;Komenetal.,1994) Phillips,O.M.,1957.Onthegenerationofwavesbyaturbulentwind.JournalofFluid WW3 WAVEWATCHIII®(Tolman,1991;Tolman,2002) Mechanics2,417–445. Phillips,O.M.,1958.Theequilibriumrangeinthespectrumofwind-generatedwaves. JournalofFluidMechanics4,426–434. Reikard,G.,2009.Forecastingoceanwaveenergy:testsoftimeseriesmodels.Ocean References Engineering36,348–356. Ris,R.C.,Booij,N.,Holthuijsen,L.H.,1999.Athird-generationwavemodelforcoastal Bleck, R., 2002. An oceanic general circulation model framed in hybrid isopycnic- region,PartII:verification.JournalofGeophysicalResearch104(C4),7667–7681. cartesiancoordinates.OceanModelling4,55–88. Roulston, M.S., Ellepola, J., von Hardenberg, J., Smith, L.A., 2005. Forecasting wave Booij,N.,Ris,R.C.,Holthuijsen,L.H.,1999.Athird-generationmodelforcoastalregions. heightprobabilitieswithnumericalweatherpredictionmodels.OceanEngineering Part1:Modeldescriptionandvalidation.JournalofGeophysicalResearch104, 32,1841–1863. 7649–7666. Rogers,W.E.,Kaihatu,J.M.,Petit,H.A.H.,Booij,N.,Holthuijsen,L.H.,2002.Diffusion Box,G.E.P.,Jenkins,G.J.,1976.TimeSeriesAnalysis:ForecastingandControl.Holden- reduction in an arbitrary scale third generation wind wave model. Ocean Day,SanFrancisco. Engineering29,1357–1390. Bunn,D.W.,2004.ModellingPricesinCompetitiveElectricityMarkets.Wiley,NewYork. Rogers,W.E.,Hwang,P.A.,Wang,D.W.,2003.Investigationofwavegrowthanddecayin Deo,M.C.,Jagdale,S.S.,2003.Predictionofbreakingwaveswithneuralnetworks.Ocean theSWANModel:threeregional-scaleapplications.JournalofPhysicalOceanography Engineering30,1163–1178. 33,366–389. Deo,M.C.,Naidu,C.S.,1998.Realtimewaveforecastingusingneuralnetworks.Ocean Rogers, W.E., Kaihatu, J.M., Hu, L., Jensen, R.E., Dykes, J.D., Holland, K.T., 2007. Engineering26,191–203. Forecasting and hindcasting waves with the SWAN model in the Southern Deo, M.C., Jha, A., Chaphekar, A.S., Ravikant, K., 2001. Neural Networks for Wave Californiabight.CoastalEngineering54,1–15. Forecasting.OceanEngineering28,889–898. Snyder, R.L., Dobson, F.W., Elliott, J.A., Long, R.B., 1981. Array measurements of Dykes,J.D.,Wang,D.W.,Book,J.W.,2009.Anevaluationofahigh-resolutionoperational atmosphericpressurefluctuationsabovesurfacegravitywaves.JournalofFluid waveforecastingsystemintheAdriaticSea.JournalofMarineSystems78,255–271. Mechanics102,1–59. Gaur, S., Deo, M.C., 2008. Real-time wave forecasting using genetic programming. SWANteam,2008.SWANTechnicalDocumentation.DelftUniversityofTechnology OceanEngineering35,1166–1172. http://www.swan.tudelft.nl. Granger,C.W.J.,2008.Non-LinearModels:WhereDoWeGoNext–TimeVarying Theil,H.,1971.PrinciplesofEconometrics.Wiley,NewYork. ParameterModels?.:StudiesinNonlinearDynamicsandEconometrics12:Article1 Tolman,H.L.,1991.Athirdgenerationmodelforwindwavesonslowlyvarying,unsteady http://www.bepress.cxom/snde/vol12/iss3/art1. and inhomogeneous depths and currents. Journal of Physical Oceanography 21, Hasselmann,K.,andCoauthors,1973:Measurementsofwindwavegrowthandswell 782–797. decayduringtheJointNorthSeaWaveProject(JONSWAP).Herausgegebenvom Tolman,H.L.,2002.UsermanualandsystemdocumentationofWAVEWATCH-IIIversion Deutsch.Hydrograph.Institut.,ReiheA,#12. 2.22.:NCEPTechnicalNotehttp://polar.ncep.noaa.gov/waves/references.html. Hasselmann,S.,Hasselmann,K.,Allender,J.H.,Barnett,T.P.,1985.Computationsand Tolman,H.L.,Balasubramaniyan,B.,Burroughs,L.D.,Chalikov,D.V.,Chao,Y.Y.,Chen,H.S., parameterizationsofthenon-linearenergytransferinagravitywavespectrum. Gerald,V.M.,2002.Developmentandimplementationofwind-generatedocean PartII:parameterizationsofthenon-linearenergytransferforapplicationinwave surfacewavemodelsatNCEP.WeatherForecasting.17,311–333. models.JournalofPhysicalOceanography15,1378–1391. Tsai,C.P.,Lin,C.,Shen,J.N.,2002.Neuralnetworkforwaveforecastingamongmulti- Ho,P.C.,Yim,J.Z.,2006.Waveheightforecastingbythetransferfunctionmodel.Ocean stations.OceanEngineering29,1683–1695. Engineering33,1230–1248. Tseng, C.M., Jan, C.D., Wang, J.S., Wang, C.M., 2007. Application of artificial neural Hodur, R.M., 1997. The Naval Research Laboratory's Coupled Ocean/Atmospheric networksintyphoonsurgeforecasting.OceanEngineering34,1757–1768. MesoscalePredictionSystem(COAMPS).MonthlyWeatherReview125,1414–1430. WAMDIGroup,1988. TheWAMmodel—athird generationoceanwaveprediction Jain,P.,Deo,M.C.,2007.Real-timewaveforecastsoffthewesternIndiancoast.Applied model.JournalofPhysicalOceanography18,1775–1810. OceanResearch29,72–79. The WISE Group, 2007. Wave Modelling – The state of the art. Progress in Janssen, P., 1991. Quasi-linear theory of wind–wave generation applied to wave Oceanography75,603–674. forecasting.JournalofPhysicalOceanography21,1631–1642. Zamani,A.,Solomatine,D.,Azimian,A.,Heemink,A.,2008.Learningfromdatafor Janssen, P., Lionello, P., Reistad, M., Hollingsworth, A., 1989. Hindcasts and data wind–waveforecasting.OceanEngineering35,953–962. assimilationstudieswiththeWAMmodelduringtheSeasatperiod.Journalof GeophysicalResearchC94,973–993.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.